Compare commits

...

438 Commits

Author SHA1 Message Date
1881feb5e2 Merge pull request 'Fix #532 by making ShapeND a non-value class' (!522) from bug/defaultStridesCache into dev
Reviewed-on: kscience/kmath#522
Reviewed-by: Alexander Nozik <altavir@gmail.com>
2024-05-09 09:16:52 +03:00
Gleb Minaev
201887187d Make ShapeND a usual non-value class. Implement its equals and hashCode methods. Deprecate contentEquals and contentHashCode. 2024-05-08 21:59:49 +03:00
fc0393436f Document ShapeND.asArray() 2024-04-15 18:01:58 +03:00
9228e6019c Update Attributes version 2024-04-15 17:57:00 +03:00
edbf8c05be cleanup Minuit 2024-04-15 17:52:15 +03:00
SPC-code
f335d63659
Update docs/buffers.md
Co-authored-by: Gleb Minaev <43728100+lounres@users.noreply.github.com>
2024-04-15 17:42:52 +03:00
SPC-code
c696a22f62
Update kmath-functions/src/commonMain/kotlin/space/kscience/kmath/integration/GaussIntegrator.kt
Co-authored-by: Gleb Minaev <43728100+lounres@users.noreply.github.com>
2024-04-15 17:41:52 +03:00
2fe04040c6 Fix AttributeBuilder inlining 2024-03-27 09:58:28 +03:00
255d4ba6b7 Dump API. Update readme 2024-03-27 09:51:23 +03:00
48b334a2b6 Singleton implementation for Attributes.EMPTY 2024-03-27 09:45:56 +03:00
ac851bea62 Change logic of AttributesBuilder. It no longer exposes the constructor 2024-03-27 09:18:46 +03:00
3b74968f9a Change logic of AttributesBuilder. It no longer exposes the constructor 2024-03-27 09:11:35 +03:00
214467d21c Reformat code 2024-03-27 09:11:12 +03:00
ecb5d28110 Attributes modify->modified 2024-03-27 08:51:56 +03:00
ec88d6be9e Remove unnecessary reification 2024-03-27 08:19:22 +03:00
461e5a7c54 Refactor names for AttributesBuilder behavior 2024-03-27 08:12:39 +03:00
1be6a5ca0e LinearSpace.compute -> LinearSpace.withComputedAttribute 2024-03-27 07:45:57 +03:00
a67bda8a33 Adjust build 2024-03-27 07:44:53 +03:00
efef5996e1 Remove contracts 2024-03-27 07:44:33 +03:00
69b59b43f4 Mark polymorphic attribute getters and setters as unstable 2024-03-27 07:43:54 +03:00
82196250f6 Remove unnecessary internal dependencies 2024-03-17 09:42:50 +03:00
86324a9219 Add RingBuffer reset and capacity 2024-03-17 09:29:15 +03:00
203a350650 Merge remote-tracking branch 'github/dev' into dev 2024-03-08 10:19:20 +03:00
b076a6573a Update versions 2024-03-08 10:18:32 +03:00
SPC-code
e7d8b94889
Update attributes-kt/src/commonMain/kotlin/space/kscience/attributes/SafeType.kt
Co-authored-by: Gleb Minaev <43728100+lounres@users.noreply.github.com>
2024-03-08 10:07:54 +03:00
5dea38eef8 Merge remote-tracking branch 'github/dev' into dev 2024-03-08 10:07:28 +03:00
SPC-code
dcf5b19d80
Update attributes-kt/src/commonMain/kotlin/space/kscience/attributes/Attributes.kt
Co-authored-by: Gleb Minaev <43728100+lounres@users.noreply.github.com>
2024-03-08 10:06:30 +03:00
11722db3c8 Add Attributes container equality 2024-03-08 10:04:37 +03:00
fcb7e2fa7d Reverse types for buffers and typealiases for geometry. 2024-02-22 21:03:58 +03:00
dba001eff3 Fix types in geometry algebras 2024-02-20 20:39:57 +03:00
49f0d1fe7d Fix types in geometry algebras 2024-02-20 19:35:00 +03:00
ad66a63ac2 Merge remote-tracking branch 'github/dev' into dev 2024-02-20 19:05:58 +03:00
32c5b3c10d Add publishing to attributes-kt 2024-02-20 18:38:21 +03:00
SPC-code
bc1b75f79e
Merge branch 'master' into dev 2024-02-18 15:10:51 +03:00
fd9da63ef9 Prepare for 0.4.0 release 2024-02-18 15:05:56 +03:00
024e2a1a4f Add .kotlin to gitignore 2024-02-18 14:26:47 +03:00
41a325d428 fix dot bug introduced in the last refactor. Add test for parallel linear algebra. 2024-02-18 14:22:20 +03:00
79642a869d LUP cleanup 2024-02-18 14:00:38 +03:00
fbee95ab8b LUP cleanup 2024-02-18 13:32:22 +03:00
10739e0d04 Performance fixes 2024-02-18 12:27:46 +03:00
f8e91c2402 Finishing fixes 2024-02-17 21:32:26 +03:00
7d88fb0166 Merge branch 'dev' into dev-0.4
# Conflicts:
#	kmath-ejml/src/main/kotlin/space/kscience/kmath/ejml/_generated.kt
2024-02-16 18:57:57 +03:00
ca9df8a167 Add more corner cases for complex power 2024-02-08 18:06:06 +03:00
9e3fd240b8 Update versions 2024-02-08 17:39:19 +03:00
a526dcc16b Merge branch 'dev' into dev-0.4
# Conflicts:
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/linear/MatrixFeatures.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/misc/Featured.kt
#	kmath-ejml/src/main/kotlin/space/kscience/kmath/ejml/_generated.kt
#	kmath-memory/src/commonMain/kotlin/space/kscience/kmath/memory/MemoryBuffer.kt
#	kmath-optimization/src/commonMain/kotlin/space/kscience/kmath/optimization/OptimizationBuilder.kt
2024-02-07 21:53:49 +03:00
83d9e1f0af Merge remote-tracking branch 'github/dev' into dev 2024-02-07 21:42:49 +03:00
8a754ace19 Fixed GitHub #524 (Complex power of real-valued number 2024-02-07 21:18:47 +03:00
c6f6191ef1 Deprecate direct angle conversion 2024-01-28 18:15:33 +03:00
SPC-code
960a334b8e
Merge pull request #522 from SciProgCentre/copyright-upgrade
Update/Add copyright comments. Regenerate code for kmath-ejml.
2024-01-05 09:56:22 +03:00
Gleb Minaev
cc4159be67 Update/Add copyright comments. Regenerate code for kmath-ejml. 2024-01-05 01:50:27 +03:00
24b934eab7 Add Buffer.asList() 2023-11-22 14:32:56 +03:00
5c82a5e1fa 0.4 WIP 2023-11-18 22:29:59 +03:00
2f2f552648 0.4 WIP 2023-11-11 10:19:09 +03:00
2386ecba41 0.4 WIP 2023-11-04 11:49:31 +03:00
46eacbb750 0.4 WIP 2023-11-03 09:56:19 +03:00
ea887b8c72 0.4 WIP 2023-11-01 08:55:47 +03:00
544b8610e1 Merge branch 'dev' into dev-0.4
# Conflicts:
#	buildSrc/settings.gradle.kts
#	gradle.properties
#	gradle/wrapper/gradle-wrapper.properties
#	kmath-geometry/src/commonMain/kotlin/space/kscience/kmath/geometry/euclidean2d/Circle2D.kt
#	kmath-geometry/src/commonMain/kotlin/space/kscience/kmath/geometry/euclidean2d/Float32Space2D.kt
#	kmath-geometry/src/commonMain/kotlin/space/kscience/kmath/geometry/euclidean2d/Float64Space2D.kt
#	kmath-geometry/src/commonMain/kotlin/space/kscience/kmath/geometry/quaternionOperations.kt
2023-10-31 14:18:50 +03:00
a84f1e1500 Merge branch 'kotlin/1.9.20' into dev 2023-10-31 14:05:37 +03:00
328d45444c 1.9.20 finalization 2023-10-31 14:05:17 +03:00
1765f8cf8c Remove asPolynomial 2023-10-25 10:28:39 +03:00
bfb556b013 remove webpack and node version fixture 2023-10-03 19:33:39 +03:00
5129f29084 update geometry 2023-09-22 09:53:44 +03:00
56933ecff3 1.9.20-Beta2 2023-09-22 09:04:39 +03:00
12a02320ec Merge branch 'dev' into kotlin/1.9.20
# Conflicts:
#	build.gradle.kts
2023-09-22 08:33:40 +03:00
7a4e9e70f9 add some quaternion operations 2023-09-22 08:21:14 +03:00
23c0758ba6 Kotlin 1.9.20 2023-09-13 13:25:54 +03:00
dd3d38490a [WIP] refactor features to attributes 2023-09-13 09:00:56 +03:00
9da14089e0 Update integration to use Attributes 2023-08-14 10:06:23 +03:00
5196322b7a Update integration to use Attributes 2023-08-13 19:13:39 +03:00
eff70eb690 Refactor rotations. Add Rotation matrix to Euler conversion 2023-08-13 14:51:50 +03:00
67994d35d9 Merge branch 'dev' into dev-0.4
# Conflicts:
#	CHANGELOG.md
#	build.gradle.kts
#	examples/src/main/kotlin/space/kscience/kmath/operations/mixedNDOperations.kt
#	kmath-commons/src/main/kotlin/space/kscience/kmath/commons/linear/CMMatrix.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/linear/Float64LinearSpace.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/linear/LupDecomposition.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/nd/Float64FieldND.kt
#	kmath-geometry/src/commonMain/kotlin/space/kscience/kmath/geometry/euclidean2d/Circle2D.kt
#	kmath-geometry/src/commonMain/kotlin/space/kscience/kmath/geometry/euclidean2d/Float64Space2D.kt
#	kmath-geometry/src/commonMain/kotlin/space/kscience/kmath/geometry/euclidean3d/Float64Space3D.kt
#	kmath-geometry/src/commonMain/kotlin/space/kscience/kmath/geometry/vectorPrecision.kt
#	kmath-nd4j/src/main/kotlin/space/kscience/kmath/nd4j/Nd4jTensorAlgebra.kt
#	kmath-tensorflow/src/main/kotlin/space/kscience/kmath/tensorflow/DoubleTensorFlowAlgebra.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/IntTensorAlgebra.kt
#	kmath-viktor/src/main/kotlin/space/kscience/kmath/viktor/ViktorFieldOpsND.kt
2023-08-12 21:38:43 +03:00
efb853c1bc Refactor geometry 2023-08-12 13:16:18 +03:00
19bebfd1ed Finish naming change 2023-08-12 11:21:59 +03:00
62f1c59d73 Fix Median statistics. Update algebra naming. Add integer fields 2023-08-12 10:46:43 +03:00
976714475e levenbergMarquardt cleanup 2023-07-28 20:56:31 +03:00
1e2a8a40e5 levenbergMarquardt cleanup 2023-07-28 20:39:05 +03:00
cfac7ecffc Merge branch 'dev' into dev-0.4 2023-07-28 12:02:17 +03:00
14f0fa1a6f Merge remote-tracking branch 'space/dev' into dev 2023-07-18 11:15:27 +03:00
a3c65e5b17 [WIP] Features to Attributes refactoring 2023-07-18 11:14:23 +03:00
4abe25c188 [WIP] Features to Attributes refactoring 2023-07-18 10:13:36 +03:00
6da51b7794 [WIP] Features to Attributes refactoring 2023-07-09 15:51:50 +03:00
a001c74025 1.9.0-RC 2023-06-22 08:49:51 +03:00
d3893ab7e6 [WIP] moving from features to attributes 2023-06-20 19:45:21 +03:00
SPC-code
7e46c7de4e
Merge pull request #513 from margarita0303/dev
Added Levenberg-Marquardt algorithm and svd Golub-Kahan
2023-06-19 16:11:56 +03:00
Gleb Minaev
e00c2a4e2b Fix version of matheclipse-core. 2023-06-16 16:00:48 +03:00
Margarita Lashina
5f2690309b fix mistake in streaming version 2023-06-13 03:06:55 +03:00
c0a7cff1d8 Merge branch 'dev' into dev-0.3.2
# Conflicts:
#	build.gradle.kts
#	gradle/wrapper/gradle-wrapper.properties
#	kmath-core/build.gradle.kts
#	kmath-tensors/build.gradle.kts
2023-06-11 09:10:31 +03:00
009f93adbb Add rotation coversion test for XYZ 2023-06-08 09:28:26 +03:00
Margarita Lashina
ef4335bc41 use function types for input func 2023-06-07 15:24:01 +03:00
1f6b7abf46 wasm test version 2023-06-07 15:16:58 +03:00
Margarita Lashina
f91b018d4f add assertEquals to middle and difficult test 2023-06-07 07:24:47 +03:00
Margarita Lashina
346e2e97f2 add minor fixes 2023-06-07 06:14:05 +03:00
Margarita Lashina
0655642933 add documentation to the main function levenbergMarquardt 2023-06-07 06:00:58 +03:00
Margarita Lashina
e8dafad6c5 the input data is placed in a separate class, to which the documentation is written 2023-06-07 05:25:32 +03:00
Margarita Lashina
162e37cb2f removed extra comments, unnecessary variables, renaming variables and secondary functions 2023-06-07 02:52:00 +03:00
Margarita Lashina
cac5b513f3 made class for settings private and removed settings as input from a custom function 2023-06-07 01:55:38 +03:00
Margarita Lashina
0c7f5697da add documentation for enum TypeOfConvergence 2023-06-07 00:50:27 +03:00
Margarita Lashina
1ed40cd8ce fix problem with imports 2023-06-06 20:43:59 +03:00
Margarita Lashina
29d392a8a0 fix problem with imports 2023-06-06 20:31:15 +03:00
Margarita Lashina
963e14b00a move enums 2023-06-06 20:07:42 +03:00
c940645e2e fix simja version 2023-06-06 17:43:38 +03:00
Margarita Lashina
c017d58265 Merge remote-tracking branch 'origin/dev' into dev 2023-06-06 01:42:57 +03:00
Margarita Lashina
8d81d2d8d5 move lm-algorithm from DoubleTensorAlgebra as extension 2023-06-06 01:41:08 +03:00
Margarita
f65a463773
Merge branch 'dev' into dev 2023-06-06 00:56:12 +03:00
Margarita
2ead722620
Merge pull request #4 from margarita0303/streaming_lm_algorithm
tests changed
2023-06-06 00:40:14 +03:00
Margarita Lashina
47600dff23 tests changed 2023-06-06 00:39:19 +03:00
Margarita
3a1817586f
Merge pull request #3 from margarita0303/streaming_lm_algorithm
Streaming lm algorithm, tests and examples
2023-05-29 15:15:02 +03:00
Margarita Lashina
1afb0d0a4c fixed time for js tests for lm 2023-05-29 15:13:13 +03:00
Margarita Lashina
33cb317cee added examples and tests 2023-05-28 23:07:01 +03:00
Margarita Lashina
20c20a30e8 y_dat added generation 2023-05-27 16:07:13 +03:00
Margarita Lashina
e738fbc86d typo fixed 2023-05-27 01:24:37 +03:00
Margarita Lashina
ce16946105 added streaming version of LM 2023-05-27 01:16:43 +03:00
Margarita Lashina
a18fa01100 added parameter check in tests 2023-05-26 21:53:50 +03:00
65c6962544 Update build tools 2023-05-26 16:46:18 +03:00
3e9d28be31 Update build tools 2023-05-26 11:38:50 +03:00
SPC-code
b5f85a6d86
Merge pull request #514 from SciProgCentre/dev
0.3.1
2023-05-12 22:19:48 +03:00
13d6ea2a16 Merge remote-tracking branch 'space/dev' into dev 2023-05-12 20:58:53 +03:00
378180ba09 Pre-release fixes 2023-05-12 20:57:55 +03:00
SPC-code
1c337789a5
Merge branch 'master' into dev 2023-05-10 16:06:34 +03:00
SPC-code
debcef4c9a
Update README.md
change space shield address
2023-05-09 20:34:29 +03:00
SPC-code
acff855c93
Merge branch 'dev' into dev 2023-05-09 20:32:46 +03:00
1222fd4617 Merge remote-tracking branch 'space/master' into dev 2023-05-09 20:14:28 +03:00
8cdbc8dbbe Add opt-ins 2023-05-09 20:12:18 +03:00
4ab2244ac9 update space automation 2023-05-09 19:44:39 +03:00
4ab1b7d0d4 update space automation 2023-05-09 19:28:38 +03:00
8eb25596a0 Variance test post-merge cleanup 2023-05-09 19:22:39 +03:00
4dbcaca87c Merge remote-tracking branch 'space/dev' into dev 2023-05-09 19:01:56 +03:00
1316e6548e Remove vector type from polygon 2023-05-09 19:01:37 +03:00
SPC-code
46b3773419
Merge pull request #511 from mrFendel/mrfendel
VarianceRatioTest implementation for Series
2023-05-09 19:00:21 +03:00
Margarita Lashina
cfe8e9bfee done TODOs, deleted prints and added type of convergence to output of lm 2023-05-07 21:34:20 +03:00
Margarita Lashina
64e563340a fixed error for chi_sq and added more complete output for lm 2023-05-07 17:26:59 +03:00
mrFendel
f44039e309 -- refactoring 2023-05-05 18:50:10 +03:00
mrFendel
16385b5f4e -- refactoring 2023-05-05 18:45:54 +03:00
Margarita Lashina
b526f9a476 added Levenberg-Marquardt algorithm + test 2023-05-04 20:05:32 +03:00
Margarita Lashina
89a5522144 added new svd algorithm (Golub Kahan) and used by default for svd 2023-05-04 00:44:18 +03:00
Margarita Lashina
19c1af1874 added helper functions for levenberg-marquardt algorithm 2023-05-03 21:25:30 +03:00
Margarita Lashina
10f84bd630 added function solve 2023-05-03 21:14:29 +03:00
40b3fa782c Merge remote-tracking branch 'space/master' into dev-0.3.2 2023-05-03 10:12:01 +03:00
Margarita Lashina
a02085918a Merge remote-tracking branch 'origin/dev' into dev 2023-05-02 23:16:31 +03:00
Margarita
a9627071ff
Merge branch 'SciProgCentre:dev' into dev 2023-05-02 23:16:01 +03:00
Margarita Lashina
a74a7808a2 Merge remote-tracking branch 'origin/dev' into dev 2023-05-02 23:14:37 +03:00
SPC-code
a7c54d3ffb
Merge pull request #512 from SciProgCentre/dependabot/github_actions/dot-github/workflows/gradle/gradle-build-action-2.4.2
Bump gradle/gradle-build-action from 2.1.5 to 2.4.2 in /.github/workflows
2023-05-01 16:54:09 +03:00
dependabot[bot]
0c565c6056
Bump gradle/gradle-build-action in /.github/workflows
Bumps [gradle/gradle-build-action](https://github.com/gradle/gradle-build-action) from 2.1.5 to 2.4.2.
- [Release notes](https://github.com/gradle/gradle-build-action/releases)
- [Commits](https://github.com/gradle/gradle-build-action/compare/v2.1.5...v2.4.2)

---
updated-dependencies:
- dependency-name: gradle/gradle-build-action
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 13:50:29 +00:00
f09371a3f9 Explicit mutability for StructureND builders 2023-04-22 09:13:06 +03:00
cdfddb7551 Explicit mutability for StructureND builders 2023-04-21 12:41:46 +03:00
8e281e8b0f Merge remote-tracking branch 'space/dev' into dev 2023-04-21 10:38:01 +03:00
mrFendel
1e27af9cf5 - Zelen-Severo CDF aproximation
- p-value for varianceRatioTest
2023-04-19 17:13:47 +03:00
mrFendel
0193349f94 requirements, default parameters, new Test for varianceRatioTest 2023-04-19 01:36:54 +03:00
mrFendel
98781c83ad fixed bug with heteroscedastic z-score in Variance Ratio Test 2023-04-18 19:16:10 +03:00
mrFendel
e6da61c52a refactoring 2023-04-18 01:53:07 +03:00
mrFendel
dababe3075 Merge remote-tracking branch 'kmath/dev' into mrfendel 2023-04-18 01:02:40 +03:00
Gleb Minaev
85395ff82e Add autodiff example 2023-04-14 21:17:44 +03:00
mrFendel
5b95923bb9 fixed zip in SereiesAlgebra + tests for VarianceRatio 2023-04-14 06:36:20 +03:00
mrFendel
a91b43a52d tests for varianceRatio 2023-04-13 17:52:14 +03:00
mrFendel
0ce1861ab4 refactoring 2023-04-13 03:47:36 +03:00
mrFendel
a68ebef26d zScore for variance Ratio Test 2023-04-13 03:38:10 +03:00
mrFendel
2b83560da8 Variance Ratio function 2023-04-12 22:24:48 +03:00
e76d8e0774 fix zipWithNextCircular on single element 2023-04-12 11:40:27 +03:00
875e32679b [WIP] geometry refactor 2023-04-12 11:39:28 +03:00
mrFendel
31d1cc774a added shiftOperartion and diff 2023-04-11 20:31:04 +03:00
mrFendel
a4ca6e3d58 Merge remote-tracking branch 'kmath/dev' into mrfendel 2023-04-10 19:13:38 +03:00
5965ca940b Merge remote-tracking branch 'space/master' into dev 2023-04-09 14:02:00 +03:00
e1d5409c0d Patch changelog 2023-04-09 11:12:04 +03:00
8ac7567afd Patch changelog 2023-04-09 11:08:39 +03:00
b2746e5c0e Wasm support 2023-04-09 10:55:58 +03:00
ce388fed44 Move annotations to base package. Fix series 2023-04-07 19:55:34 +03:00
mrFendel
4db091d898 deleted TimeSeriesAlgebra 2023-04-07 12:39:30 +03:00
mrFendel
165dfd6c5d Merge branch 'dev-local' into mrfendel
# Conflicts:
#	kmath-stat/src/commonMain/kotlin/space/kscience/kmath/series/SeriesAlgebra.kt
2023-04-07 10:55:25 +03:00
mrFendel
ba26c7020e started TimeSeriesAlgebra 2023-04-06 17:58:29 +03:00
mrFendel
1d7f4ed538 shiftOp and diff in SeriesAlgebra 2023-04-06 03:17:01 +03:00
SPC-code
115736e98a
Merge pull request #510 from SciProgCentre/dev
0.3.1-dev-11
2023-04-05 18:46:35 +03:00
SPC-code
96554d2b0c
Merge branch 'master' into dev 2023-04-05 18:46:20 +03:00
7cc6a4be40 remove trajectory 2023-04-05 15:26:09 +03:00
00ce7d5a48 Obstacle avoidance finished 2023-04-05 13:30:13 +03:00
a0e2ef1afc refactor lines and segments 2023-04-04 19:33:43 +03:00
025cb58060 refactoring directions 2023-04-04 19:02:24 +03:00
639a255aaf refactoring directions 2023-04-04 18:50:17 +03:00
f5201b6be0 refactoring directions 2023-04-04 17:42:40 +03:00
1e46ffbd98 refactoring directions 2023-04-04 16:50:30 +03:00
fd35d7c614 [WIP] refactoring directions 2023-04-04 15:28:02 +03:00
109e050f03 Hieraechy for trajectory types 2023-04-04 15:16:33 +03:00
f809e40791 Disentangle obstacle code phase 1 2023-04-04 11:42:58 +03:00
d08424428e Merge remote-tracking branch 'space/dev' into artdegt 2023-04-04 11:42:22 +03:00
93bc15f346 Merge remote-tracking branch 'space/artdegt' into artdegt 2023-03-28 08:37:26 +03:00
Artyom Degtyarev
11dd4088d9 search for shortest path algorithm 2023-03-24 10:39:51 +03:00
Artyom Degtyarev
24c39c97cd search for shortest path algorithm 2023-03-24 10:30:13 +03:00
Artyom Degtyarev
ea5305c8d8 search for shortest path algorithm 2023-03-24 10:28:02 +03:00
SPC-code
d87eefcaa3
Add macOsArm64 to publish.yml 2023-03-22 18:04:16 +03:00
6d219341f9 Merge branch 'dev' into artdegt 2023-03-22 12:30:28 +03:00
56bba749c0 Update publishing 2023-03-22 10:54:24 +03:00
Artyom Degtyarev
81213eb943 search for shortest path algorithm 2023-03-21 12:04:27 +03:00
c442eb7e94 Fix publish task names 2023-03-19 19:41:31 +03:00
62c8610a9e Update publishing CD 2023-03-19 19:16:46 +03:00
c36af3515e Update trajectory description 2023-03-19 18:39:27 +03:00
ef336af87d Fix vector product 2023-03-16 09:37:03 +03:00
cd2ade881a Revert "Remove the choice of left-handed product. Refactor vectorProduct. Remove leviChivita function."
This reverts commit 28b85b0f53.
2023-03-16 09:33:17 +03:00
5625800fc9
Merge SCI-MR-180: feature/vector-product 2023-03-14 17:16:34 +00:00
Gleb Minaev
28b85b0f53 Remove the choice of left-handed product. Refactor vectorProduct. Remove leviChivita function. 2023-03-14 20:13:34 +03:00
Artyom Degtyarev
4c1ffdb6d9 search for shortest path algorithm 2023-03-14 13:50:42 +03:00
72c7030297 Add time series example stub 2023-03-10 22:50:41 +03:00
a3963ac4f5 Refactor series naming and docs 2023-03-10 21:40:14 +03:00
4871baf0e5 Add vector product to Euclidean3DSpace 2023-03-10 12:01:08 +03:00
Artyom Degtyarev
2bce369c5d search for shortest path algorithm 2023-03-09 16:03:48 +03:00
Artyom Degtyarev
1b6a41c728 search for shortest path algorithm 2023-03-09 08:39:20 +03:00
Artyom Degtyarev
61d43ae5fa search for shortest path algorithm 2023-03-04 21:31:06 +03:00
Artyom Degtyarev
6288eb9d97 Merge branch 'dev' of https://git.jetbrains.space/spc/sci/kmath into artdegt
# Conflicts:
#	kmath-trajectory/src/commonMain/kotlin/space/kscience/kmath/trajectory/tangent.kt
2023-03-04 20:58:35 +03:00
Artyom Degtyarev
2c13386646 search for shortest path algorithm 2023-03-01 10:40:54 +03:00
db61f71440 update build tools 2023-02-18 19:04:07 +03:00
04127fc3f2 Fix tests 2023-02-18 18:53:03 +03:00
Artyom Degtyarev
cc0fb2a718 non-existence of tangents throws exception 2023-02-16 18:47:42 +03:00
ed4aa47913 Minor refactoring of tangents 2023-02-16 10:57:24 +03:00
67316c4a70 Add documentation after circle tangent changes 2023-02-16 10:39:25 +03:00
7d897ad8cb Cleanup after circle tangent changes 2023-02-16 10:29:12 +03:00
Artyom Degtyarev
8998a394b3 tangentsToCircle fixed 2023-02-15 17:55:39 +03:00
Artyom Degtyarev
c342c5cd78 tangentsToCircle fixed 2023-02-15 17:53:32 +03:00
Artyom Degtyarev
d535a2155f tangentsToCircle fixed 2023-02-15 15:06:47 +03:00
Artyom Degtyarev
bef317677c tangentsToCircle fixed 2023-02-15 14:36:58 +03:00
Artyom Degtyarev
50579f4712 added tangent between two circles 2023-02-13 23:17:13 +03:00
784d397ab1 Fix serial names for trajectory serializers 2023-02-12 10:40:53 +03:00
6deeaf057e Add angle serializer 2023-02-11 21:51:19 +03:00
2c6d1e89c5 Update type-safe angles 2023-02-05 20:05:53 +03:00
0366a69123 Refactor trajectory 2023-02-03 19:33:22 +03:00
db30913542 Move to build tools 0.14 2023-02-03 19:32:53 +03:00
d97888f135 Fix test 2023-01-24 21:22:25 +03:00
7f4f4c7703 Update of symbolic operations 2023-01-24 21:01:26 +03:00
2e4be2aa3a A minor change to XYfit arguments 2023-01-24 11:36:53 +03:00
3f4fe9e43b Migrate to 1.8. Use universal autodiffs 2022-12-31 15:02:52 +03:00
6d47c0ccec
Ordered segments in trajectory 2022-12-10 12:30:15 +03:00
29977650f1
Naive classifier notebook 2022-12-10 12:21:56 +03:00
991ab907d8
Encapsulate internal constants in Expression 2022-12-10 11:09:55 +03:00
Margarita
9e141db871
Merge pull request #2 from SciProgCentre/dev
Dev
2022-12-10 04:01:45 +03:00
b14e2fdd08
Moved polynomials to https://github.com/SciProgCentre/kmath-polynomial 2022-11-05 21:44:41 +03:00
cff563c321
Major tensor refactoring 2022-11-05 16:14:23 +03:00
8286db30af
Optimize tensor shape computation 2022-10-16 20:15:37 +03:00
94489b28e2
Fix visibility in Trajectory2D 2022-10-16 14:41:48 +03:00
fb0d016aa8
Perform merge build only on JVM 2022-10-15 18:58:30 +03:00
e24463c58b
Refactor Dubins path 2022-10-15 18:45:06 +03:00
ee569b85f8
Safe shapes 2022-10-14 13:05:39 +03:00
b0abcf2d0c
Safe shapes 2022-10-14 12:47:57 +03:00
c653052d8c
Merge remote-tracking branch 'space/dev' into dev 2022-10-04 09:20:18 +03:00
SPC-code
2376d278c3
Merge pull request #504 from SciProgCentre/dev
Merge to update docs and contributions
2022-10-03 20:58:00 +03:00
89d0cbc7ea
Refactoring and optimization of tensorAlgebra 2022-09-30 11:34:44 +03:00
b602066f48
Change the default strides and unify strides processing 2022-09-27 16:57:06 +03:00
d70389d2e6
Fix after series merge 2022-09-26 16:47:38 +03:00
4d1137659b
Merge branch 'feature/series' into dev
# Conflicts:
#	build.gradle.kts
#	kmath-commons/src/main/kotlin/space/kscience/kmath/commons/transform/Transformations.kt
#	kmath-core/build.gradle.kts
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/nd/AlgebraND.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/nd/BufferAlgebraND.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/nd/BufferND.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/nd/ShapeIndices.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/operations/BufferAlgebra.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/operations/DoubleBufferOps.kt
#	kmath-core/src/commonMain/kotlin/space/kscience/kmath/structures/bufferExtensions.kt
#	kmath-histograms/src/jvmMain/kotlin/space/kscience/kmath/histogram/UnivariateHistogram.kt
#	kmath-stat/src/commonMain/kotlin/space/kscience/kmath/distributions/UniformDistribution.kt
#	kmath-stat/src/commonMain/kotlin/space/kscience/kmath/samplers/Sampler.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/BroadcastDoubleTensorAlgebra.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/BufferedTensor.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/broadcastUtils.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/linUtils.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/tensorCastsUtils.kt
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/internal/utils.kt
#	settings.gradle.kts
2022-09-26 13:10:59 +03:00
6bf8d9d325
Naming refactoring 2022-09-26 13:08:49 +03:00
2358f53cf7 Make Circle2D data class 2022-09-15 17:42:37 +03:00
20886d6f6b
Global refactor of tensors 2022-09-11 17:10:26 +03:00
b5d04ba02c
Global refactor of tensors 2022-09-11 15:27:38 +03:00
3729faf49b
Rename Tensor::get to Tensor::getTensor to avoid name clash. 2022-09-05 23:24:01 +03:00
a9821772db
Move power to ExtendedFieldOps 2022-09-05 22:08:35 +03:00
5042fda751
Int Tensor Algebra implementation 2022-09-05 16:30:39 +03:00
ad97751327
Refactor for build tools 0.13.0 2022-09-04 20:59:30 +03:00
0c1d0aa64e
Merge remote-tracking branch 'origin/dev' into dev 2022-08-21 19:18:05 +03:00
ec77cd1fc3
Geometry overhaul 2022-08-21 19:17:38 +03:00
Gleb Minaev
26662b5114
Merge pull request #502 from lounres/fix/#472
Fix #455: Update copyrights
2022-08-21 15:06:41 +03:00
98e21f3c3a
Merge remote-tracking branch 'origin/dev' into dev 2022-08-21 11:40:20 +03:00
978de59b7a
Add rotations converter to Quaternions 2022-08-21 11:40:02 +03:00
5af0c91f0a
Misc 2022-08-21 11:39:41 +03:00
6111c673ee
Type-safe angles 2022-08-21 11:39:17 +03:00
Alexander Nozik
7f77c1e710
Merge pull request #501 from lounres/fix/old-domain-appearances
Replace main `mipt-npm` appearances with `SciProgCentre`.
2022-08-20 09:50:55 +03:00
Gleb Minaev
efe14f50bf #472: Update copyright. 2022-08-19 15:59:13 +03:00
Gleb Minaev
b6d2eb3b1b Replace main mipt-npm appearances with SciProgCentre.
Now link in "Documentation site (WIP)" works.
2022-08-19 15:19:01 +03:00
a8182fad23
Multik went MPP 2022-08-04 09:54:59 +03:00
ee0d44e12e
rename bdot to matmul 2022-08-03 18:20:46 +03:00
e636ed27bd
Merge remote-tracking branch 'origin/dev' into dev 2022-08-03 18:13:08 +03:00
5402ba47c9
Restrict tensor dot ot vectors and matrices only. Introduce bdot to Double TensorAlgebra for broadcasting operations. 2022-08-03 18:10:44 +03:00
9456217935
Update multik algebra 2022-08-03 17:29:01 +03:00
Alexander Nozik
c5516e5581
Merge pull request #498 from mipt-npm/refactor/dubins
Refactor/dubins
2022-07-30 09:53:46 +03:00
0e9072710f
Kotlin 1.7.20-Beta 2022-07-29 15:58:02 +03:00
137ddb3ade
Code simplification for Dubins path 2022-07-29 14:12:44 +03:00
Alexander Nozik
99fee476bc
Merge pull request #469 from lounres/feature/polynomials
Feature: Polynomials and rational functions
2022-07-28 18:04:06 +03:00
Gleb Minaev
a2fb14a221 Merge remote-tracking branch 'origin/feature/polynomials' into feature/polynomials 2022-07-28 12:03:12 +03:00
Gleb Minaev
c2025ee1c9 Remove Polynomial interface, fix consequent platform clashes. Add invariance. 2022-07-27 14:36:20 +03:00
Alexander Nozik
b5406e460e
Merge branch 'dev' into feature/polynomials 2022-07-27 08:26:08 +03:00
323e8b6872
Code simplification for Dubins path 2022-07-26 09:19:04 +03:00
1e8a8cac7e
Fix readme 2022-07-24 12:01:02 +03:00
TatianaMy
ad30c68eba
Merge pull request #495 from ESchouten/trajectory
Trajectory: Dubins path
2022-07-24 11:29:24 +03:00
Gleb Minaev
0c6ad35c13 Simplify the version catalog usage. 2022-07-23 10:24:52 +03:00
Gleb Minaev
e1b8fcdbbf Two consecutive dots... 2022-07-20 19:10:35 +03:00
Gleb Minaev
fe4eb96dae Add docs. 2022-07-20 19:09:20 +03:00
Gleb Minaev
163a7c717a Fix description. 2022-07-20 08:28:47 +03:00
Gleb Minaev
9d4df5d8e0 Add and regenerate READMEs. Fix files' directory. 2022-07-20 08:22:41 +03:00
Erik Schouten
f2cbbeba20 Author details 2022-07-17 15:56:24 +02:00
Erik Schouten
429eefa3f7 Arc direction as computed property 2022-07-17 15:48:08 +02:00
Erik Schouten
86fce7ec68 Arc contains circle, circle direction is computed from poses, factory function can create Arc based on Vector points and provided direction 2022-07-17 15:47:05 +02:00
Erik Schouten
8faa312424 Dubins factory functions 2022-07-17 14:56:21 +02:00
Erik Schouten
3260c3d171 Pose2D facrtory function 2022-07-17 14:39:43 +02:00
Erik Schouten
7de157ce24 Re-introduce line/straight segment, rename components to start/end 2022-07-17 14:21:12 +02:00
Gleb Minaev
f48e4483cc Last cosmetic changes. 2022-07-16 22:21:13 +03:00
Gleb Minaev
2d86cf1cc7 Remove power overriding and algebraic stub. 2022-07-16 21:55:35 +03:00
Gleb Minaev
99c7174802 Turn Polynomial data class back. 2022-07-16 20:55:10 +03:00
Gleb Minaev
58d7015782 Remove utils modules. Revive suddenly lost tests. 2022-07-16 20:15:30 +03:00
Gleb Minaev
3a91cb2579 Draft another DSL for labeled polynomials. Add variance. 2022-07-16 18:46:40 +03:00
Gleb Minaev
db19df4329 Merge branch 'dev' into feature/polynomials 2022-07-16 17:23:39 +03:00
Gleb Minaev
a1a2c41846 Add a bit more utilities for maps and refactor polynomials' code. 2022-07-16 17:13:05 +03:00
3eef778f60
Add mandatory MutableBufferFactory to Algebra #477 2022-07-16 16:27:11 +03:00
Gleb Minaev
579511a5ee Add utilities for maps. Fix some tests. 2022-07-16 16:07:03 +03:00
68add4cb5f
Refactor test naming 2022-07-16 11:35:50 +03:00
b522e5919e
Merge remote-tracking branch 'origin/dev' into dev 2022-07-16 10:19:55 +03:00
Alexander Nozik
fc036215a5
Merge pull request #402 from mipt-npm/commandertvis/diff
Copy `DerivativeStructure` from Commons Math to multiplatform
2022-07-16 10:05:59 +03:00
Alexander Nozik
debff5357b
Merge pull request #494 from mipt-npm/altavir/diff
altavir/diff
2022-07-16 09:58:43 +03:00
Erik Schouten
4f88982734 Formatting 2022-07-15 22:13:50 +02:00
Erik Schouten
fa6d741869 Small improvement in test classes, theta function 2022-07-15 22:12:36 +02:00
Erik Schouten
ada1141738 Use Line distancTo function 2022-07-15 18:57:10 +02:00
Erik Schouten
cdb116fa20 Cleanup 2022-07-15 18:55:37 +02:00
Erik Schouten
32769d6906 Dubins path 2022-07-15 18:13:50 +02:00
18ae964e57
Name refactor 2022-07-15 17:35:13 +03:00
bfadf5b33d
Name refactor 2022-07-15 17:31:28 +03:00
846a6d2620
Grand derivative refactoring. Phase 3 2022-07-15 17:20:00 +03:00
f5fe53a9f2
Grand derivative refactoring. Phase 2 2022-07-15 16:20:28 +03:00
5846f42141
Grand derivative refactoring. Phase 1 2022-07-15 15:21:49 +03:00
Gleb Minaev
4ea29c82c5 Small fix of DSL1. 2022-07-13 12:05:53 +03:00
56f3c05907
Merge remote-tracking branch 'origin/dev' into altavir/diff 2022-07-13 10:13:47 +03:00
Gleb Minaev
87aeda84d9 Added MathJax to docs. 2022-07-12 23:10:38 +03:00
0eb9bd810c
Kotlin 1.7.10 2022-07-12 22:56:08 +03:00
Gleb Minaev
f7d159bc03 Made IntModulo implement ScaleOperations. 2022-07-12 02:05:29 +03:00
Gleb Minaev
5bc627f1d4 Rollback all breaking changes. The only breaking change now is value class. 2022-07-12 01:56:34 +03:00
Gleb Minaev
6ff79e28ac Fix names, references, etc. 2022-07-12 00:57:44 +03:00
Gleb Minaev
f726e6d0f1 Minimise appearance of new feature, leave only upgrades. 2022-07-11 23:32:15 +03:00
Gleb Minaev
51dd72e48f Finish move. 2022-07-11 22:39:13 +03:00
Gleb Minaev
1c719b9e70 Fix examples. 2022-07-11 17:52:46 +03:00
Gleb Minaev
d44a48bdb1 Moving to new modules. 2022-07-11 17:27:59 +03:00
Gleb Minaev
d3be07987c Simplify usages of LabeledPolynomial constructing fabrics. Fix bugs. Add tests for variable's interoperability. 2022-07-06 23:16:25 +03:00
Gleb Minaev
923c52737d Adapt NumberedPolynomial tests to LabeledPolynomial tests. 2022-07-06 17:13:50 +03:00
Gleb Minaev
5834fad938 Renamed constructing DSLs components. Fixed rejected NumberedPolynomial tests. 2022-07-06 00:37:46 +03:00
Gleb Minaev
45ed45bd13 Finish tests generation for numbered utilities. Also:
- Optimize a bit labeled and numbered differentiation.
- Fixed bugs in numbered anti-differentiation.
2022-07-05 03:41:52 +03:00
Gleb Minaev
e40977647d Added suppresses. 2022-07-05 03:35:56 +03:00
Gleb Minaev
e89e4e19d3 Return suppresses. 2022-07-04 03:54:28 +03:00
Gleb Minaev
39088ec36b Replaced assertFailsWith with assertFailsWithTypeAndMessage. 2022-07-04 02:36:46 +03:00
Gleb Minaev
102e83b478 Tests generation for numbered utilities in progress: finish substitutions. 2022-07-04 02:24:46 +03:00
Gleb Minaev
672a3c1552 Tests generation for numbered utilities in progress: finish map-wise substitutions. Also:
- Upgrade operations on Rational.
- Add new assertions.
- Changed a bit FIXME comments.
2022-07-03 15:47:12 +03:00
Gleb Minaev
f147636e9d Tests generation for numbered utilities in progress. 2022-07-01 14:46:05 +03:00
Gleb Minaev
c8b9951f46 Added for list utilities for rational functions. 2022-06-29 14:54:49 +03:00
Gleb Minaev
64b33aed18 Remove extra suppresses. 2022-06-29 14:53:12 +03:00
Gleb Minaev
da46ea923c Extended test for NumberedPolynomial 2022-06-28 15:07:09 +03:00
Gleb Minaev
043d292eca Added test. Fixed bug in NumberedPolynomial's DSL. 2022-06-27 17:14:03 +03:00
Gleb Minaev
0ef2258665 Removed extra suppresses. 2022-06-27 17:11:39 +03:00
Gleb Minaev
ed634013f6 Removed extra suppresses. 2022-06-27 17:07:33 +03:00
Gleb Minaev
cb7291ccb0 Little addition to polynomials design note. 2022-06-26 12:58:30 +03:00
Gleb Minaev
630d16bbee Added design notes. Also:
- Changed `xxxPolynomialSpace()` and `xxxPolynomialSpace()` functions to `xxxPolynomialSpace` value properties.
- Changed inconsistency of names `XxxRationalFunctionalSpaceYyy` and `XxxRationalFunctionSpaceYyy` in favor of second one.
2022-06-26 12:16:51 +03:00
Gleb Minaev
fc2455fe34 Merge branch 'dev' into feature/polynomials 2022-06-25 23:29:34 +03:00
Gleb Minaev
3e917baaaf Added examples for polynomials. Also:
- Fixed bug in differentiation of NumberedPolynomials.
- Fixed bug in addition and subtraction of LabeledPolynomials.
- Added references to NumberedPolynomialWithoutCheck and LabeledPolynomialWithoutCheck.
- Made NumberedRationalFunction and LabeledRationalFunction classes data. Made their constructor public.
2022-06-25 21:23:32 +03:00
Gleb Minaev
403ff93f4a Moved optimizations to branch refactor/polynomials 2022-06-25 16:01:18 +03:00
Gleb Minaev
9fc99a4c72 Removed extra copyright comment. 2022-06-25 15:45:10 +03:00
Gleb Minaev
6c8fa29304 Merge branch 'feature/polynomials-sift' into feature/polynomials 2022-06-18 01:26:33 +03:00
Gleb Minaev
d416f8cf34 Merge branch 'dev' into feature/polynomials 2022-06-18 01:25:46 +03:00
Gleb Minaev
680d23ddcb Last sift. Cleaned up labeled structures. 2022-06-18 01:25:14 +03:00
Gleb Minaev
1ea336b70e Added some test of NumberedPolynomial utilities. 2022-06-17 22:07:54 +03:00
Gleb Minaev
b5a94923b5 Fixed problems with JVM names. Exposed internal NumberedPolynomial constructor with opt-in condition. Added and upgraded tests. Fixed small bugs (mistakes). Upgraded arithmetic operations a bit. 2022-06-17 01:53:40 +03:00
Gleb Minaev
eadd521e35 Merge branch 'dev' into feature/polynomials-sift 2022-06-14 19:46:50 +03:00
Gleb Minaev
d0134bdbe9 Sift 4. Cleaned up "numbered" case. Tests are in progress. 2022-06-14 19:15:36 +03:00
Gleb Minaev
58e0715714 Removed duplicates of copyright comments. 2022-06-13 12:15:14 +03:00
Gleb Minaev
5928adfe45 Fixed merging accidents. 2022-06-13 12:08:58 +03:00
Gleb Minaev
4e08d6d877 Merge branch 'feature/polynomials-listPolynomials-applications' into feature/polynomials-sift 2022-06-13 12:04:57 +03:00
Gleb Minaev
37ad48e820 Sift # 3. Filtered last sift and usages of [ListPolynomial]s. 2022-06-13 02:06:15 +03:00
Gleb Minaev
dbb48a2a9f Added docstrings to ListPolynomial and ListRationalFunction fabric functions. 2022-06-13 01:41:04 +03:00
Gleb Minaev
ab9bba2202 Put suddenly disappeared files back. 2022-06-13 00:16:22 +03:00
Gleb Minaev
b50d8dcd23 Merge branch 'feature/polynomials-ListPolynomials' into feature/polynomials-sift
# Conflicts:
#	kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt
#	kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt
#	kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt
#	kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt
#	kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtilOptimized.kt
#	kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt
#	kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt
#	kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt
#	kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt
2022-06-12 23:54:30 +03:00
Gleb Minaev
94fd24d852 Fixed some tests and docstrings. Removed zero and one overridings because overrided fields are already lazily initialized. 2022-06-12 23:49:44 +03:00
Gleb Minaev
e710013800 Fixed tests. 2022-06-12 23:02:26 +03:00
Gleb Minaev
3a6aa14320 Cleaned up ListPolynomials and ListRationalFunctions:
- Added/updated docs.
- Fully (but in a simple way) implemented invocation, substitution, functional representation, derivatives and antiderivatives. Optimized reimplementation is in progress.
- Upgraded `PolynomialSpaceOfFractions` by adding a bit of laziness.
- Other little things...
2022-06-12 22:52:08 +03:00
Gleb Minaev
17703e407d Applied changes from previous sift. 2022-06-12 00:24:23 +03:00
Gleb Minaev
a6b86eeee1 Cleaned out useless code. 2022-06-11 19:31:01 +03:00
Gleb Minaev
03b92de6e0 Sifted ListPolynomial's basics. 2022-06-11 19:29:14 +03:00
Gleb Minaev
8af183a969 Fixed typos. Added docstrings. Added variable convertional methods. 2022-06-11 19:22:57 +03:00
Gleb Minaev
a2b02ef09e Sifted rest usage of non-basic polynomial things. 2022-06-11 16:15:59 +03:00
Gleb Minaev
9b51062bf7 Sift. 2022-06-11 16:09:24 +03:00
Gleb Minaev
89cdbf4d71 Changed names of algebraic stub. Added FIXMEs about KT-31420. Changed JVM/JS names style. 2022-06-11 15:58:25 +03:00
Gleb Minaev
af2e437a48 Merge branch 'master' into feature/polynomials
# Conflicts:
#	README.md
#	kmath-ast/README.md
#	kmath-complex/README.md
#	kmath-core/README.md
#	kmath-ejml/README.md
#	kmath-for-real/README.md
#	kmath-functions/README.md
#	kmath-jafama/README.md
#	kmath-kotlingrad/README.md
#	kmath-nd4j/README.md
#	kmath-tensors/README.md
2022-06-03 21:58:37 +03:00
Gleb Minaev
7f7b550674 Simplified polynomial builders. 2022-04-03 11:44:42 +03:00
Gleb Minaev
b3087c245f Fixed tests. 2022-03-25 17:46:13 +03:00
Gleb Minaev
f7286d33d2 Moved constructors to separate files. Replaced some TODOs with FIXMEs. 2022-03-25 17:18:56 +03:00
Gleb Minaev
7e328a5dbf Enhanced DSL constructor a bit. 2022-03-25 00:59:48 +03:00
Gleb Minaev
060f0ee35d Removed comparability feature. 2022-03-25 00:57:32 +03:00
Gleb Minaev
420bf05b22 Fixed annoying JVM clashes 😑 2022-03-22 19:42:59 +03:00
Gleb Minaev
0a5122a974 Prototyped DSL-like constructor for NumberedPolynomial. 2022-03-22 19:40:55 +03:00
Gleb Minaev
d75a41482d Added fabrics for LabeledPolynomial and NumberedPolynomial. 2022-03-22 17:09:33 +03:00
Gleb Minaev
5b8d6b601e Added degreeBy to Numbered.... 2022-03-22 15:37:19 +03:00
Gleb Minaev
b44c99c265 Added multivariate abstractions. 2022-03-22 15:28:34 +03:00
Gleb Minaev
39ce855075 Added constructors for RFs' spaces 2022-03-22 14:25:09 +03:00
Gleb Minaev
2f9e504357 Added division to RFs' Spaces. Added conversion to polynomial and RFs' spaces. Added requirements for RFs' denominators' changes for case of non-integral domain. Added requirements for non-zero divisor to RFs' divisions. 2022-03-22 13:58:29 +03:00
Gleb Minaev
09868f090b Enhanced tests of Double substitution. 2022-03-22 02:39:43 +03:00
Gleb Minaev
98b9a70893 Enhanced tests of Double substitution. 2022-03-22 02:37:26 +03:00
Gleb Minaev
c6d1068df4 Renamed Polynomial, etc. to ListPolynomial, etc. and AbstractPolynomial to Polynomial.
As it was advised by @CommanderTvis.
2022-03-21 23:47:10 +03:00
Gleb Minaev
51b0d232b5 Renamed AbstractPolynomialFractionsSpace to PolynomialSpaceOfFractions 2022-03-21 23:21:55 +03:00
Gleb Minaev
83d57c7295 Added RFs' interface to remove another boilerplate. Fixed bug in RFs' equalsTo. 2022-03-21 21:22:25 +03:00
Gleb Minaev
88e0dcf413 Added usage of more correct exceptions. 2022-03-21 18:26:09 +03:00
Gleb Minaev
25ec59b985 Finished with tests for Polynomial. 2022-03-20 23:22:39 +03:00
Gleb Minaev
fbc21101bb Added test. Fixed isOne and isMinusOne for Polynomial. 2022-03-20 06:26:52 +03:00
Gleb Minaev
5d4514a742 More test tools! More tests!! More fixes of stupid bugs!!! 😭 2022-03-19 19:35:41 +03:00
Gleb Minaev
90a7c4d901 Simplified use of Rational (current BigInt are hard to use and actually useless). Added tests, fixed bug. 2022-03-19 18:08:43 +03:00
Gleb Minaev
a965f5683f Added some tests and some utilities for tests. Fixed bug in utility of PolynomialSpace. 2022-03-19 16:54:30 +03:00
Gleb Minaev
85cd3b4de6 Added some test. Fixed bug in algebraicStub.kt 2022-03-18 20:39:01 +03:00
Gleb Minaev
cdc85291bc Fixed bug in implementations of polynomial operations 2022-03-18 20:04:21 +03:00
Gleb Minaev
ed2f14b68e Optimised existing substitution function. Prototyped substitution for RFs. 2022-03-18 01:47:03 +03:00
Gleb Minaev
86553e9f35 Added utilities. Rewrote polynomial-in-polynomial substitution 2022-03-17 16:28:41 +03:00
Gleb Minaev
d63c4acf10 Added space and scope fabrics for RFs 2022-03-17 16:27:02 +03:00
Gleb Minaev
ffd3ae7684 Optimized allocation during coefficients generation in Polynomial 2022-03-17 16:02:41 +03:00
Gleb Minaev
a8a95c9df7 Fixed typo 2022-03-17 02:15:48 +03:00
Gleb Minaev
e5186d469a Fixed issue with confusing countOfVariables in Numbered... 2022-03-17 02:12:40 +03:00
Gleb Minaev
2082175af5 Fixed typos. 2022-03-16 23:31:07 +03:00
Gleb Minaev
75fd920735 Deleted suddenly missed region marks and unused error classes 2022-03-16 23:22:51 +03:00
Gleb Minaev
3c9d8a4eee Deleted all region marks 2022-03-16 22:44:55 +03:00
Gleb Minaev
24944cdb16 Added support of power function to abstract structures.
Implemented exponentiation by squaring as default implementation of `power`. Updated docs in algebraicStub.kt and updated realisations in it.
2022-03-16 15:19:27 +03:00
Gleb Minaev
9aa131a9c6 Replaced Variable in Labeled... by Symbol and deleted it 2022-03-16 01:06:39 +03:00
Gleb Minaev
16cf1bc65e Implemented all derivative-like functions 2022-03-16 00:47:07 +03:00
Gleb Minaev
bb5e638b31 Added polynomial spaces and scopes fabrics 2022-03-15 20:38:27 +03:00
Gleb Minaev
1f9d8d34f5 Tried to add constructors and/or fabrics for polynomials 2022-03-15 20:18:39 +03:00
Gleb Minaev
91c9ea61da Added derivative-like functions to Polynomial 2022-03-15 18:10:11 +03:00
Gleb Minaev
1754ae0695 Added some docs 2022-03-15 16:43:22 +03:00
Gleb Minaev
79736a0a9b Forgot to remove unnecessary tailrec 2022-03-15 15:36:10 +03:00
Gleb Minaev
f86529d659 Optimized optimizedMultiply and optimizedAddMultiplied for cases of negative value of other and multiplier 2022-03-15 15:35:17 +03:00
Gleb Minaev
ebd7f799ad Attempts to implement derivatives and antiderivatives 2022-03-15 00:47:23 +03:00
Gleb Minaev
31ccf744c5 Deleted useless annotations JvmName, JsName and Suppress 2022-03-14 23:33:00 +03:00
Gleb Minaev
fb01d85197 Removed extra JSName annotations. Now everything builds 2022-03-14 22:23:50 +03:00
Gleb Minaev
44febbdd73 Processed labeledRationalFunctionUtil.kt 2022-03-14 20:19:42 +03:00
Gleb Minaev
dd820da765 1. Prototyped rest 2 algebraic structures of rational functions
2. Added `constantZero` and `constantOne` to abstract spaces and applied them instead of `ring.zero` and `ring.one`
3. Moved logic of `R.isZero` and 5 others to `AbstractRationalFunctionalSpace`
4. Deleted forgotten overridden functions of constants
5. Added KMath contributors' copyright notes
6. Added TODO 😄 The `NumberedPolynomial`'s `countOfVariables` is a confusing
2022-03-14 19:59:53 +03:00
Gleb Minaev
07f4b83722 Fixed forgotten TODOs 2022-03-14 14:18:15 +03:00
Gleb Minaev
de53d032af 1. Prototyped Rational Functions
2. Added abstract interfaces for removing boilerplates
3. Changed or added default values in interfaces
4. Renamed non-operator `equals` to `equalsTo`, and made it infix
2022-03-14 14:14:24 +03:00
Gleb Minaev
033edd3feb Removed kotlin-js-store 2022-03-13 03:55:51 +03:00
Gleb Minaev
59e65afc63 Merge remote-tracking branch 'origin/feature/polynomials' into feature/polynomials
# Conflicts:
#	kmath-functions/src/commonMain/kotlin/space/kscience/kmath/interpolation/Interpolator.kt
#	kotlin-js-store/yarn.lock
2022-03-13 03:53:29 +03:00
Gleb Minaev
93de1d5311 Added support for all polynomials. But standard utilities still are not fully implemented. 2022-03-13 03:44:16 +03:00
Gleb Minaev
571c6342dd Regenerated READMEs 2022-03-13 03:44:16 +03:00
Gleb Minaev
cab5958107 Added abstract rational functions 2022-03-13 03:44:16 +03:00
Gleb Minaev
191dd02e47 Restructured Polynomial 2022-03-13 03:44:15 +03:00
Gleb Minaev
843d63c76a Added support for all polynomials. But standard utilities still are not fully implemented. 2022-03-13 03:27:00 +03:00
Gleb Minaev
ffea8cc223 Regenerated READMEs 2022-03-13 03:25:25 +03:00
Gleb Minaev
ab9dcd83b9 Added abstract rational functions 2022-03-10 01:44:14 +03:00
Gleb Minaev
2483c56f1c Restructured Polynomial 2022-03-03 20:45:35 +03:00
Iaroslav Postovalov
7b1bdc21a4 Copy DerivativeStructure to multiplatform 2022-02-09 22:08:37 +07:00
9a1f8a2266 remove unnecessary toInt 2021-11-10 11:51:20 +03:00
fa9ff4c978 Minor refactoring 2021-11-09 17:56:53 +03:00
d62bc66d4a Refactoring 2021-11-09 13:42:22 +03:00
f6b576071d Add non-boxing BufferView access 2021-11-09 12:25:17 +03:00
1315a8cd34 views cleanup 2021-11-08 19:57:22 +03:00
a1351aa942 Buffer views 2021-11-08 17:50:49 +03:00
bf504ae6c5 Basic series 2021-11-05 16:58:13 +03:00
612 changed files with 20882 additions and 8843 deletions

3
.github/CODEOWNERS vendored Normal file
View File

@ -0,0 +1,3 @@
@altavir
/kmath-trajectory @ESchouten

View File

@ -7,26 +7,18 @@ on:
jobs:
build:
strategy:
matrix:
os: [ macOS-latest, windows-latest ]
runs-on: ${{matrix.os}}
timeout-minutes: 40
runs-on: windows-latest
timeout-minutes: 20
steps:
- uses: actions/checkout@v3.0.0
- uses: actions/setup-java@v3.0.0
- uses: actions/checkout@v3
- uses: actions/setup-java@v3.5.1
with:
java-version: 11
distribution: liberica
- name: Cache konan
uses: actions/cache@v3.0.1
with:
path: ~/.konan
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
java-version: '11'
distribution: 'liberica'
cache: 'gradle'
- name: Gradle Wrapper Validation
uses: gradle/wrapper-validation-action@v1.0.4
- uses: gradle/gradle-build-action@v2.1.5
- name: Gradle Build
uses: gradle/gradle-build-action@v2.4.2
with:
arguments: build
arguments: test jvmTest

View File

@ -22,7 +22,7 @@ jobs:
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- uses: gradle/gradle-build-action@v2.1.5
- uses: gradle/gradle-build-action@v2.4.2
with:
arguments: dokkaHtmlMultiModule --no-parallel
- uses: JamesIves/github-pages-deploy-action@v4.3.0

View File

@ -15,7 +15,7 @@ jobs:
runs-on: ${{matrix.os}}
steps:
- uses: actions/checkout@v3.0.0
- uses: actions/setup-java@v3.0.0
- uses: actions/setup-java@v3.10.0
with:
java-version: 11
distribution: liberica
@ -26,26 +26,25 @@ jobs:
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- uses: gradle/wrapper-validation-action@v1.0.4
- name: Publish Windows Artifacts
if: matrix.os == 'windows-latest'
uses: gradle/gradle-build-action@v2.1.5
uses: gradle/gradle-build-action@v2.4.2
with:
arguments: |
releaseAll
-Ppublishing.enabled=true
-Ppublishing.sonatype=false
publishAllPublicationsToSpaceRepository
-Ppublishing.targets=all
-Ppublishing.space.user=${{ secrets.SPACE_APP_ID }}
-Ppublishing.space.token=${{ secrets.SPACE_APP_SECRET }}
- name: Publish Mac Artifacts
if: matrix.os == 'macOS-latest'
uses: gradle/gradle-build-action@v2.1.5
uses: gradle/gradle-build-action@v2.4.2
with:
arguments: |
releaseMacosX64
releaseIosArm64
releaseIosX64
-Ppublishing.enabled=true
-Ppublishing.sonatype=false
publishMacosX64PublicationToSpaceRepository
publishMacosArm64PublicationToSpaceRepository
publishIosX64PublicationToSpaceRepository
publishIosArm64PublicationToSpaceRepository
publishIosSimulatorArm64PublicationToSpaceRepository
-Ppublishing.targets=all
-Ppublishing.space.user=${{ secrets.SPACE_APP_ID }}
-Ppublishing.space.token=${{ secrets.SPACE_APP_SECRET }}

8
.gitignore vendored
View File

@ -3,9 +3,10 @@ build/
out/
.idea/
.vscode/
.fleet/
.kotlin/
# Avoid ignoring Gradle wrapper jar file (.jar files are usually ignored)
!gradle-wrapper.jar
@ -19,4 +20,5 @@ out/
!/.idea/copyright/
!/.idea/scopes/
/kotlin-js-store/yarn.lock
/gradle/yarn.lock

View File

@ -1,6 +1,7 @@
<component name="CopyrightManager">
<copyright>
<option name="notice" value="Copyright 2018-2021 KMath contributors.&#10;Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file." />
<option name="myName" value="kmath" />
</copyright>
</component>
<copyright>
<option name="allowReplaceRegexp" value="Copyright \d{4}-\d{4} KMath" />
<option name="notice" value="Copyright 2018-&amp;#36;today.year KMath contributors.&#10;Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file." />
<option name="myName" value="kmath" />
</copyright>
</component>

View File

@ -1,5 +1,5 @@
<component name="CopyrightManager">
<settings default="kmath">
<settings>
<module2copyright>
<element module="Apply copyright" copyright="kmath" />
</module2copyright>

View File

@ -1,3 +1,48 @@
import kotlin.io.path.readText
val projectName = "kmath"
job("Build") {
gradlew("openjdk:11", "build")
//Perform only jvm tests
gradlew("spc.registry.jetbrains.space/p/sci/containers/kotlin-ci:1.0.3", "test", "jvmTest")
}
job("Publish") {
startOn {
gitPush { enabled = false }
}
container("spc.registry.jetbrains.space/p/sci/containers/kotlin-ci:1.0.3") {
env["SPACE_USER"] = "{{ project:space_user }}"
env["SPACE_TOKEN"] = "{{ project:space_token }}"
kotlinScript { api ->
val spaceUser = System.getenv("SPACE_USER")
val spaceToken = System.getenv("SPACE_TOKEN")
// write the version to the build directory
api.gradlew("version")
//read the version from build file
val version = java.nio.file.Path.of("build/project-version.txt").readText()
val revisionSuffix = if (version.endsWith("SNAPSHOT")) {
"-" + api.gitRevision().take(7)
} else {
""
}
api.space().projects.automation.deployments.start(
project = api.projectIdentifier(),
targetIdentifier = TargetIdentifier.Key(projectName),
version = version + revisionSuffix,
// automatically update deployment status based on the status of a job
syncWithAutomationJob = true
)
api.gradlew(
"publishAllPublicationsToSpaceRepository",
"-Ppublishing.space.user=\"$spaceUser\"",
"-Ppublishing.space.token=\"$spaceToken\"",
)
}
}
}

0
.space/CODEOWNERS Normal file
View File

View File

@ -1,11 +1,10 @@
# KMath
## [Unreleased]
## Unreleased
### Added
### Changed
- Kotlin 1.7
- `LazyStructure` `deffered` -> `async` to comply with coroutines code style
### Deprecated
@ -15,8 +14,82 @@
### Security
## [0.3.0]
## 0.4.0-dev-3 - 2024-02-18
### Added
- Reification. Explicit `SafeType` for algebras.
- Integer division algebras.
- Float32 geometries.
- New Attributes-kt module that could be used as stand-alone. It declares. type-safe attributes containers.
- Explicit `mutableStructureND` builders for mutable structures.
- `Buffer.asList()` zero-copy transformation.
- Wasm support.
- Parallel implementation of `LinearSpace` for Float64
- Parallel buffer factories
### Changed
- Buffer copy removed from API (added as an extension).
- Default naming for algebra and buffers now uses IntXX/FloatXX notation instead of Java types.
- Remove unnecessary inlines in basic algebras.
- QuaternionField -> QuaternionAlgebra and does not implement `Field` anymore since it is non-commutative
- kmath-geometry is split into `euclidean2d` and `euclidean3d`
- Features replaced with Attributes.
- Transposed refactored.
- Kmath-memory is moved on top of core.
### Deprecated
- ND4J engine
### Removed
- `asPolynomial` function due to scope pollution
- Codegend for ejml (450 lines of codegen for 1000 lines of code is too much)
### Fixed
- Median statistics
- Complex power of negative real numbers
- Add proper mutability for MutableBufferND rows and columns
- Generic Float32 and Float64 vectors are used in geometry algebras.
## 0.3.1 - 2023-04-09
### Added
- Wasm support for `memory`, `core`, `complex` and `functions` modules.
- Generic builders for `BufferND` and `MutableBufferND`
- `NamedMatrix` - matrix with symbol-based indexing
- `Expression` with default arguments
- Type-aliases for numbers like `Float64`
- Autodiff for generic algebra elements in core!
- Algebra now has an obligatory `bufferFactory` (#477).
### Changed
- Removed marker `Vector` type for geometry
- Geometry uses type-safe angles
- Tensor operations switched to prefix notation
- Row-wise and column-wise ND shapes in the core
- Shape is read-only
- Major refactor of tensors (only minor API changes)
- Kotlin 1.8.20
- `LazyStructure` `deffered` -> `async` to comply with coroutines code style
- Default `dot` operation in tensor algebra no longer support broadcasting. Instead `matmul` operation is added
to `DoubleTensorAlgebra`.
- Multik went MPP
### Removed
- Trajectory moved to https://github.com/SciProgCentre/maps-kt
- Polynomials moved to https://github.com/SciProgCentre/kmath-polynomial
## 0.3.0
### Added
- `ScaleOperations` interface
- `Field` extends `ScaleOperations`
- Basic integration API
@ -40,8 +113,9 @@
- `contentEquals` with tolerance: #364
- Compilation to TeX for MST: #254
### Changed
- Annotations moved to `space.kscience.kmath`
- Exponential operations merged with hyperbolic functions
- Space is replaced by Group. Space is reserved for vector spaces.
- VectorSpace is now a vector space
@ -73,12 +147,12 @@
- Rework of histograms.
- `UnivariateFunction` -> `Function1D`, `MultivariateFunction` -> `FunctionND`
### Deprecated
- Specialized `DoubleBufferAlgebra`
### Removed
- Nearest in Domain. To be implemented in geometry package.
- Number multiplication and division in main Algebra chain
- `contentEquals` from Buffer. It moved to the companion.
@ -88,16 +162,15 @@
- Second generic from DifferentiableExpression
- Algebra elements are completely removed. Use algebra contexts instead.
### Fixed
- Ring inherits RingOperations, not GroupOperations
- Univariate histogram filling
## 0.2.0
### Security
## [0.2.0]
### Added
- `fun` annotation for SAM interfaces in library
- Explicit `public` visibility for all public APIs
- Better trigonometric and hyperbolic functions for `AutoDiffField` (https://github.com/mipt-npm/kmath/pull/140)
@ -116,8 +189,8 @@
- New `MatrixFeature` interfaces for matrix decompositions
- Basic Quaternion vector support in `kmath-complex`.
### Changed
- Package changed from `scientifik` to `space.kscience`
- Gradle version: 6.6 -> 6.8.2
- Minor exceptions refactor (throwing `IllegalArgumentException` by argument checks instead of `IllegalStateException`)
@ -141,8 +214,8 @@
- `symbol` method in `Algebra` renamed to `bindSymbol` to avoid ambiguity
- Add `out` projection to `Buffer` generic
### Removed
- `kmath-koma` module because it doesn't support Kotlin 1.4.
- Support of `legacy` JS backend (we will support only IR)
- `toGrid` method.
@ -150,21 +223,25 @@
- `Real` class
- StructureND identity and equals
### Fixed
- `symbol` method in `MstExtendedField` (https://github.com/mipt-npm/kmath/pull/140)
## [0.1.4]
## 0.1.4
### Added
- Functional Expressions API
- Mathematical Syntax Tree, its interpreter and API
- String to MST parser (https://github.com/mipt-npm/kmath/pull/120)
- MST to JVM bytecode translator (https://github.com/mipt-npm/kmath/pull/94)
- FloatBuffer (specialized MutableBuffer over FloatArray)
- FlaggedBuffer to associate primitive numbers buffer with flags (to mark values infinite or missing, etc.)
- Specialized builder functions for all primitive buffers like `IntBuffer(25) { it + 1 }` (https://github.com/mipt-npm/kmath/pull/125)
- Specialized builder functions for all primitive buffers
like `IntBuffer(25) { it + 1 }` (https://github.com/mipt-npm/kmath/pull/125)
- Interface `NumericAlgebra` where `number` operation is available to convert numbers to algebraic elements
- Inverse trigonometric functions support in ExtendedField (`asin`, `acos`, `atan`) (https://github.com/mipt-npm/kmath/pull/114)
- Inverse trigonometric functions support in
ExtendedField (`asin`, `acos`, `atan`) (https://github.com/mipt-npm/kmath/pull/114)
- New space extensions: `average` and `averageWith`
- Local coding conventions
- Geometric Domains API in `kmath-core`
@ -172,22 +249,23 @@
- Full hyperbolic functions support and default implementations within `ExtendedField`
- Norm support for `Complex`
### Changed
- `readAsMemory` now has `throws IOException` in JVM signature.
- Several functions taking functional types were made `inline`.
- Several functions taking functional types now have `callsInPlace` contracts.
- BigInteger and BigDecimal algebra: JBigDecimalField has companion object with default math context; minor optimizations
- BigInteger and BigDecimal algebra: JBigDecimalField has companion object with default math context; minor
optimizations
- `power(T, Int)` extension function has preconditions and supports `Field<T>`
- Memory objects have more preconditions (overflow checking)
- `tg` function is renamed to `tan` (https://github.com/mipt-npm/kmath/pull/114)
- Gradle version: 6.3 -> 6.6
- Moved probability distributions to commons-rng and to `kmath-prob`
### Fixed
- Missing copy method in Memory implementation on JS (https://github.com/mipt-npm/kmath/pull/106)
- D3.dim value in `kmath-dimensions`
- Multiplication in integer rings in `kmath-core` (https://github.com/mipt-npm/kmath/pull/101)
- Commons RNG compatibility (https://github.com/mipt-npm/kmath/issues/93)
- Multiplication of BigInt by scalar
- Multiplication of BigInt by scalar

View File

@ -1,6 +1,6 @@
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg)
![Gradle build](https://github.com/SciProgCentre/kmath/workflows/Gradle%20build/badge.svg)
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22)
[![Space](https://img.shields.io/badge/dynamic/xml?color=orange&label=Space&query=//metadata/versioning/latest&url=https%3A%2F%2Fmaven.pkg.jetbrains.space%2Fmipt-npm%2Fp%2Fsci%2Fmaven%2Fspace%2Fkscience%2Fkmath-core%2Fmaven-metadata.xml)](https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven/space/kscience/)
@ -11,18 +11,22 @@ analog to Python's NumPy library. Later we found that kotlin is much more flexib
architecture designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like
experience could be achieved with [kmath-for-real](/kmath-for-real) extension module.
[Documentation site (**WIP**)](https://mipt-npm.github.io/kmath/)
[Documentation site](https://SciProgCentre.github.io/kmath/)
## Publications and talks
* [A conceptual article about context-oriented design](https://proandroiddev.com/an-introduction-context-oriented-programming-in-kotlin-2e79d316b0a2)
* [Another article about context-oriented design](https://proandroiddev.com/diving-deeper-into-context-oriented-programming-in-kotlin-3ecb4ec38814)
* [ACAT 2019 conference paper](https://aip.scitation.org/doi/abs/10.1063/1.5130103)
* [A talk at KotlinConf 2019 about using kotlin for science](https://youtu.be/LI_5TZ7tnOE?si=4LknX41gl_YeUbIe)
* [A talk on architecture at Joker-2021 (in Russian)](https://youtu.be/1bZ2doHiRRM?si=9w953ro9yu98X_KJ)
* [The same talk in English](https://youtu.be/yP5DIc2fVwQ?si=louZzQ1dcXV6gP10)
* [A seminar on tensor API](https://youtu.be/0H99wUs0xTM?si=6c__04jrByFQtVpo)
# Goal
* Provide a flexible and powerful API to work with mathematics abstractions in Kotlin-multiplatform (JVM, JS and Native)
.
* Provide a flexible and powerful API to work with mathematics abstractions in Kotlin-multiplatform (JVM, JS, Native and
Wasm).
* Provide basic multiplatform implementations for those abstractions (without significant performance optimization).
* Provide bindings and wrappers with those abstractions for popular optimized platform libraries.
@ -44,7 +48,7 @@ module definitions below. The module stability could have the following levels:
* **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could
break any moment. You can still use it, but be sure to fix the specific version.
* **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked
with `@UnstableKmathAPI` or other stability warning annotations.
with `@UnstableKMathAPI` or other stability warning annotations.
* **DEVELOPMENT**. API breaking generally follows semantic versioning ideology. There could be changes in minor
versions, but not in patch versions. API is protected
with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
@ -53,18 +57,20 @@ module definitions below. The module stability could have the following levels:
## Modules
### [attributes-kt](attributes-kt)
> An API and basic implementation for arranging objects in a continuous memory block.
>
> **Maturity**: DEVELOPMENT
### [benchmarks](benchmarks)
>
>
> **Maturity**: EXPERIMENTAL
### [examples](examples)
>
>
> **Maturity**: EXPERIMENTAL
### [kmath-ast](kmath-ast)
>
>
> **Maturity**: EXPERIMENTAL
>
@ -76,7 +82,7 @@ module definitions below. The module stability could have the following levels:
### [kmath-commons](kmath-commons)
>
> Commons math binding for kmath
>
> **Maturity**: EXPERIMENTAL
@ -86,8 +92,8 @@ module definitions below. The module stability could have the following levels:
> **Maturity**: PROTOTYPE
>
> **Features:**
> - [complex](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Complex.kt) : Complex Numbers
> - [quaternion](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Quaternion.kt) : Quaternions
> - [complex](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Complex.kt) : Complex numbers operations
> - [quaternion](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Quaternion.kt) : Quaternions and their composition
### [kmath-core](kmath-core)
@ -105,20 +111,19 @@ objects to the expression by providing a context. Expressions can be used for a
performance calculations to code generation.
> - [domains](kmath-core/src/commonMain/kotlin/space/kscience/kmath/domains) : Domains
> - [autodiff](kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions/SimpleAutoDiff.kt) : Automatic differentiation
> - [Parallel linear algebra](kmath-core/#) : Parallel implementation for `LinearAlgebra`
### [kmath-coroutines](kmath-coroutines)
>
>
> **Maturity**: EXPERIMENTAL
### [kmath-dimensions](kmath-dimensions)
>
> A proof of concept module for adding type-safe dimensions to structures
>
> **Maturity**: PROTOTYPE
### [kmath-ejml](kmath-ejml)
>
>
> **Maturity**: PROTOTYPE
>
@ -142,7 +147,7 @@ One can still use generic algebras though.
### [kmath-functions](kmath-functions)
>
> Functions, integration and interpolation
>
> **Maturity**: EXPERIMENTAL
>
@ -155,31 +160,28 @@ One can still use generic algebras though.
### [kmath-geometry](kmath-geometry)
>
>
> **Maturity**: PROTOTYPE
### [kmath-histograms](kmath-histograms)
>
>
> **Maturity**: PROTOTYPE
### [kmath-jafama](kmath-jafama)
>
> Jafama integration module
>
> **Maturity**: PROTOTYPE
> **Maturity**: DEPRECATED
>
> **Features:**
> - [jafama-double](kmath-jafama/src/main/kotlin/space/kscience/kmath/jafama/) : Double ExtendedField implementations based on Jafama
### [kmath-jupyter](kmath-jupyter)
>
>
> **Maturity**: PROTOTYPE
### [kmath-kotlingrad](kmath-kotlingrad)
>
> Kotlin∇ integration module
>
> **Maturity**: EXPERIMENTAL
>
@ -194,14 +196,14 @@ One can still use generic algebras though.
> **Maturity**: DEVELOPMENT
### [kmath-multik](kmath-multik)
>
> JetBrains Multik connector
>
> **Maturity**: PROTOTYPE
### [kmath-nd4j](kmath-nd4j)
>
> ND4J NDStructure implementation and according NDAlgebra classes
>
> **Maturity**: EXPERIMENTAL
> **Maturity**: DEPRECATED
>
> **Features:**
> - [nd4jarraystructure](kmath-nd4j/#) : NDStructure wrapper for INDArray
@ -210,27 +212,24 @@ One can still use generic algebras though.
### [kmath-optimization](kmath-optimization)
>
>
> **Maturity**: EXPERIMENTAL
### [kmath-stat](kmath-stat)
>
>
> **Maturity**: EXPERIMENTAL
### [kmath-symja](kmath-symja)
>
> Symja integration module
>
> **Maturity**: PROTOTYPE
### [kmath-tensorflow](kmath-tensorflow)
>
> Google tensorflow connector
>
> **Maturity**: PROTOTYPE
### [kmath-tensors](kmath-tensors)
>
>
> **Maturity**: PROTOTYPE
>
@ -241,9 +240,13 @@ One can still use generic algebras though.
### [kmath-viktor](kmath-viktor)
>
> Binding for https://github.com/JetBrains-Research/viktor
>
> **Maturity**: DEVELOPMENT
> **Maturity**: DEPRECATED
### [test-utils](test-utils)
>
> **Maturity**: EXPERIMENTAL
## Multi-platform support
@ -251,23 +254,24 @@ One can still use generic algebras though.
KMath is developed as a multi-platform library, which means that most of the interfaces are declared in the
[common source sets](/kmath-core/src/commonMain) and implemented there wherever it is possible. In some cases, features
are delegated to platform-specific implementations even if they could be provided in the common module for performance
reasons. Currently, the Kotlin/JVM is the primary platform, however Kotlin/Native and Kotlin/JS contributions and
reasons. Currently, Kotlin/JVM is the primary platform, however, Kotlin/Native and Kotlin/JS contributions and
feedback are also welcome.
## Performance
Calculation performance is one of major goals of KMath in the future, but in some cases it is impossible to achieve both
Calculation of performance is one of the major goals of KMath in the future, but in some cases it is impossible to
achieve both
performance and flexibility.
We expect to focus on creating convenient universal API first and then work on increasing performance for specific
We expect to focus on creating a convenient universal API first and then work on increasing performance for specific
cases. We expect the worst KMath benchmarks will perform better than native Python, but worse than optimized
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be
better than SciPy.
## Requirements
KMath currently relies on JDK 11 for compilation and execution of Kotlin-JVM part. We recommend to use GraalVM-CE 11 for
execution to get better performance.
KMath currently relies on JDK 11 for compilation and execution of Kotlin-JVM part. We recommend using GraalVM-CE or
Oracle GraalVM for execution to get better performance.
### Repositories
@ -287,11 +291,10 @@ dependencies {
}
```
Gradle `6.0+` is required for multiplatform artifacts.
## Contributing
The project requires a lot of additional work. The most important thing we need is a feedback about what features are
The project requires a lot of additional work. The most important thing we need is feedback about what features are
required the most. Feel free to create feature requests. We are also welcome to code contributions, especially in issues
marked with
[waiting for a hero](https://github.com/mipt-npm/kmath/labels/waiting%20for%20a%20hero) label.
marked
with [good first issue](hhttps://github.com/SciProgCentre/kmath/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22)
label.

21
attributes-kt/README.md Normal file
View File

@ -0,0 +1,21 @@
# Module attributes-kt
## Usage
## Artifact:
The Maven coordinates of this project are `space.kscience:attributes-kt:0.1.0`.
**Gradle Kotlin DSL:**
```kotlin
repositories {
maven("https://repo.kotlin.link")
mavenCentral()
}
dependencies {
implementation("space.kscience:attributes-kt:0.1.0")
}
```

View File

@ -0,0 +1,104 @@
public abstract interface class space/kscience/attributes/Attribute {
}
public abstract interface class space/kscience/attributes/AttributeContainer {
public abstract fun getAttributes ()Lspace/kscience/attributes/Attributes;
}
public abstract interface class space/kscience/attributes/AttributeScope {
}
public abstract interface class space/kscience/attributes/AttributeWithDefault : space/kscience/attributes/Attribute {
public abstract fun getDefault ()Ljava/lang/Object;
}
public abstract interface class space/kscience/attributes/Attributes {
public static final field Companion Lspace/kscience/attributes/Attributes$Companion;
public abstract fun equals (Ljava/lang/Object;)Z
public fun get (Lspace/kscience/attributes/Attribute;)Ljava/lang/Object;
public abstract fun getContent ()Ljava/util/Map;
public fun getKeys ()Ljava/util/Set;
public abstract fun hashCode ()I
public abstract fun toString ()Ljava/lang/String;
}
public final class space/kscience/attributes/Attributes$Companion {
public final fun equals (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attributes;)Z
public final fun getEMPTY ()Lspace/kscience/attributes/Attributes;
}
public final class space/kscience/attributes/AttributesBuilder : space/kscience/attributes/Attributes {
public final fun add (Lspace/kscience/attributes/SetAttribute;Ljava/lang/Object;)V
public final fun build ()Lspace/kscience/attributes/Attributes;
public fun equals (Ljava/lang/Object;)Z
public fun getContent ()Ljava/util/Map;
public fun hashCode ()I
public final fun invoke (Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)V
public final fun put (Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)V
public final fun putAll (Lspace/kscience/attributes/Attributes;)V
public final fun remove (Lspace/kscience/attributes/SetAttribute;Ljava/lang/Object;)V
public final fun set (Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)V
public fun toString ()Ljava/lang/String;
}
public final class space/kscience/attributes/AttributesBuilderKt {
public static final fun Attributes (Lkotlin/jvm/functions/Function1;)Lspace/kscience/attributes/Attributes;
}
public final class space/kscience/attributes/AttributesKt {
public static final fun Attributes (Lspace/kscience/attributes/Attribute;)Lspace/kscience/attributes/Attributes;
public static final fun Attributes (Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)Lspace/kscience/attributes/Attributes;
public static final fun getOrDefault (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/AttributeWithDefault;)Ljava/lang/Object;
public static final fun isEmpty (Lspace/kscience/attributes/Attributes;)Z
public static final fun modified (Lspace/kscience/attributes/Attributes;Lkotlin/jvm/functions/Function1;)Lspace/kscience/attributes/Attributes;
public static final fun plus (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attributes;)Lspace/kscience/attributes/Attributes;
public static final fun withAttribute (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attribute;)Lspace/kscience/attributes/Attributes;
public static final fun withAttribute (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)Lspace/kscience/attributes/Attributes;
public static final fun withAttributeElement (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/SetAttribute;Ljava/lang/Object;)Lspace/kscience/attributes/Attributes;
public static final fun withoutAttribute (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attribute;)Lspace/kscience/attributes/Attributes;
public static final fun withoutAttributeElement (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/SetAttribute;Ljava/lang/Object;)Lspace/kscience/attributes/Attributes;
}
public abstract interface class space/kscience/attributes/FlagAttribute : space/kscience/attributes/Attribute {
}
public abstract class space/kscience/attributes/PolymorphicAttribute : space/kscience/attributes/Attribute {
public synthetic fun <init> (Lkotlin/reflect/KType;Lkotlin/jvm/internal/DefaultConstructorMarker;)V
public fun equals (Ljava/lang/Object;)Z
public final fun getType-V0oMfBY ()Lkotlin/reflect/KType;
public fun hashCode ()I
}
public final class space/kscience/attributes/PolymorphicAttributeKt {
public static final fun get (Lspace/kscience/attributes/Attributes;Lkotlin/jvm/functions/Function0;)Ljava/lang/Object;
public static final fun set (Lspace/kscience/attributes/AttributesBuilder;Lkotlin/jvm/functions/Function0;Ljava/lang/Object;)V
}
public final class space/kscience/attributes/SafeType {
public static final synthetic fun box-impl (Lkotlin/reflect/KType;)Lspace/kscience/attributes/SafeType;
public static fun constructor-impl (Lkotlin/reflect/KType;)Lkotlin/reflect/KType;
public fun equals (Ljava/lang/Object;)Z
public static fun equals-impl (Lkotlin/reflect/KType;Ljava/lang/Object;)Z
public static final fun equals-impl0 (Lkotlin/reflect/KType;Lkotlin/reflect/KType;)Z
public final fun getKType ()Lkotlin/reflect/KType;
public fun hashCode ()I
public static fun hashCode-impl (Lkotlin/reflect/KType;)I
public fun toString ()Ljava/lang/String;
public static fun toString-impl (Lkotlin/reflect/KType;)Ljava/lang/String;
public final synthetic fun unbox-impl ()Lkotlin/reflect/KType;
}
public final class space/kscience/attributes/SafeTypeKt {
public static final fun getKClass-X0YbwmU (Lkotlin/reflect/KType;)Lkotlin/reflect/KClass;
}
public abstract interface class space/kscience/attributes/SetAttribute : space/kscience/attributes/Attribute {
}
public abstract interface annotation class space/kscience/attributes/UnstableAttributesAPI : java/lang/annotation/Annotation {
}
public abstract interface class space/kscience/attributes/WithType {
public abstract fun getType-V0oMfBY ()Lkotlin/reflect/KType;
}

View File

@ -0,0 +1,20 @@
plugins {
id("space.kscience.gradle.mpp")
`maven-publish`
}
version = rootProject.extra.get("attributesVersion").toString()
kscience {
jvm()
js()
native()
wasm()
}
readme {
maturity = space.kscience.gradle.Maturity.DEVELOPMENT
description = """
An API and basic implementation for arranging objects in a continuous memory block.
""".trimIndent()
}

View File

@ -0,0 +1,29 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
/**
* A marker interface for an attribute. Attributes are used as keys to access contents of type [T] in the container.
*/
public interface Attribute<T>
/**
* An attribute that could be either present or absent
*/
public interface FlagAttribute : Attribute<Unit>
/**
* An attribute with a default value
*/
public interface AttributeWithDefault<T> : Attribute<T> {
public val default: T
}
/**
* Attribute containing a set of values
*/
public interface SetAttribute<V> : Attribute<Set<V>>

View File

@ -0,0 +1,20 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
/**
* A container for [Attributes]
*/
public interface AttributeContainer {
public val attributes: Attributes
}
/**
* A scope, where attribute keys could be resolved.
* [O] is used only to resolve types in compile-time.
*/
public interface AttributeScope<O>

View File

@ -0,0 +1,143 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
/**
* A set of attributes. The implementation must guarantee that [content] keys correspond to their value types.
*/
public interface Attributes {
/**
* Raw content for this [Attributes]
*/
public val content: Map<out Attribute<*>, Any?>
/**
* Attribute keys contained in this [Attributes]
*/
public val keys: Set<Attribute<*>> get() = content.keys
/**
* Provide an attribute value. Return null if attribute is not present or if its value is null.
*/
@Suppress("UNCHECKED_CAST")
public operator fun <T> get(attribute: Attribute<T>): T? = content[attribute] as? T
override fun toString(): String
override fun equals(other: Any?): Boolean
override fun hashCode(): Int
public companion object {
public val EMPTY: Attributes = object : Attributes {
override val content: Map<out Attribute<*>, Any?> get() = emptyMap()
override fun toString(): String = "Attributes.EMPTY"
override fun equals(other: Any?): Boolean = (other as? Attributes)?.isEmpty() ?: false
override fun hashCode(): Int = Unit.hashCode()
}
public fun equals(a1: Attributes, a2: Attributes): Boolean =
a1.keys == a2.keys && a1.keys.all { a1[it] == a2[it] }
}
}
internal class MapAttributes(override val content: Map<out Attribute<*>, Any?>) : Attributes {
override fun toString(): String = "Attributes(value=${content.entries})"
override fun equals(other: Any?): Boolean = other is Attributes && Attributes.equals(this, other)
override fun hashCode(): Int = content.hashCode()
}
public fun Attributes.isEmpty(): Boolean = keys.isEmpty()
/**
* Get attribute value or default
*/
public fun <T> Attributes.getOrDefault(attribute: AttributeWithDefault<T>): T = get(attribute) ?: attribute.default
/**
* Check if there is an attribute that matches given key by type and adheres to [predicate].
*/
@Suppress("UNCHECKED_CAST")
public inline fun <T, reified A : Attribute<T>> Attributes.hasAny(predicate: (value: T) -> Boolean): Boolean =
content.any { (mapKey, mapValue) -> mapKey is A && predicate(mapValue as T) }
/**
* Check if there is an attribute of given type (subtypes included)
*/
public inline fun <reified A : Attribute<*>> Attributes.hasAny(): Boolean =
content.any { (mapKey, _) -> mapKey is A }
/**
* Check if [Attributes] contains a flag. Multiple keys that are instances of a flag could be present
*/
public inline fun <reified A : FlagAttribute> Attributes.hasFlag(): Boolean =
content.keys.any { it is A }
/**
* Create [Attributes] with an added or replaced attribute key.
*/
public fun <T, A : Attribute<T>> Attributes.withAttribute(
attribute: A,
attrValue: T,
): Attributes = MapAttributes(content + (attribute to attrValue))
public fun <A : Attribute<Unit>> Attributes.withAttribute(attribute: A): Attributes =
withAttribute(attribute, Unit)
/**
* Create a new [Attributes] by modifying the current one
*/
public fun <O> Attributes.modified(block: AttributesBuilder<O>.() -> Unit): Attributes = Attributes<O> {
putAll(this@modified)
block()
}
/**
* Create new [Attributes] by removing [attribute] key
*/
public fun Attributes.withoutAttribute(attribute: Attribute<*>): Attributes = MapAttributes(content.minus(attribute))
/**
* Add an element to a [SetAttribute]
*/
public fun <T, A : SetAttribute<T>> Attributes.withAttributeElement(
attribute: A,
attrValue: T,
): Attributes {
val currentSet: Set<T> = get(attribute) ?: emptySet()
return MapAttributes(
content + (attribute to (currentSet + attrValue))
)
}
/**
* Remove an element from [SetAttribute]
*/
public fun <T, A : SetAttribute<T>> Attributes.withoutAttributeElement(
attribute: A,
attrValue: T,
): Attributes {
val currentSet: Set<T> = get(attribute) ?: emptySet()
return MapAttributes(content + (attribute to (currentSet - attrValue)))
}
/**
* Create [Attributes] with a single key
*/
public fun <T, A : Attribute<T>> Attributes(
attribute: A,
attrValue: T,
): Attributes = MapAttributes(mapOf(attribute to attrValue))
/**
* Create Attributes with a single [Unit] valued attribute
*/
public fun <A : Attribute<Unit>> Attributes(
attribute: A,
): Attributes = MapAttributes(mapOf(attribute to Unit))
public operator fun Attributes.plus(other: Attributes): Attributes = MapAttributes(content + other.content)

View File

@ -0,0 +1,68 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
/**
* A builder for [Attributes].
* The builder is not thread safe
*
* @param O type marker of an owner object, for which these attributes are made
*/
public class AttributesBuilder<out O> internal constructor() : Attributes {
private val map = mutableMapOf<Attribute<*>, Any?>()
override fun toString(): String = "Attributes(value=${map.entries})"
override fun equals(other: Any?): Boolean = other is Attributes && Attributes.equals(this, other)
override fun hashCode(): Int = map.hashCode()
override val content: Map<out Attribute<*>, Any?> get() = map
public operator fun <T> set(attribute: Attribute<T>, value: T?) {
if (value == null) {
map.remove(attribute)
} else {
map[attribute] = value
}
}
public operator fun <V> Attribute<V>.invoke(value: V?) {
set(this, value)
}
public infix fun <V> Attribute<V>.put(value: V?) {
set(this, value)
}
/**
* Put all attributes for given [attributes]
*/
public fun putAll(attributes: Attributes) {
map.putAll(attributes.content)
}
public infix fun <V> SetAttribute<V>.add(attrValue: V) {
val currentSet: Set<V> = get(this) ?: emptySet()
map[this] = currentSet + attrValue
}
/**
* Remove an element from [SetAttribute]
*/
public infix fun <V> SetAttribute<V>.remove(attrValue: V) {
val currentSet: Set<V> = get(this) ?: emptySet()
map[this] = currentSet - attrValue
}
public fun build(): Attributes = MapAttributes(map)
}
/**
* Create [Attributes] with a given [builder]
* @param O the type for which attributes are built. The type is used only during compilation phase for static extension dispatch
*/
public fun <O> Attributes(builder: AttributesBuilder<O>.() -> Unit): Attributes =
AttributesBuilder<O>().apply(builder).build()

View File

@ -0,0 +1,34 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
/**
* An attribute that has a type parameter for value
* @param type parameter-type
*/
public abstract class PolymorphicAttribute<T>(public val type: SafeType<T>) : Attribute<T> {
override fun equals(other: Any?): Boolean = other != null &&
(this::class == other::class) &&
(other as? PolymorphicAttribute<*>)?.type == this.type
override fun hashCode(): Int = this::class.hashCode() + type.hashCode()
}
/**
* Get a polymorphic attribute using attribute factory
*/
@UnstableAttributesAPI
public operator fun <T> Attributes.get(attributeKeyBuilder: () -> PolymorphicAttribute<T>): T? =
get(attributeKeyBuilder())
/**
* Set a polymorphic attribute using its factory
*/
@UnstableAttributesAPI
public operator fun <O, T> AttributesBuilder<O>.set(attributeKeyBuilder: () -> PolymorphicAttribute<T>, value: T) {
set(attributeKeyBuilder(), value)
}

View File

@ -0,0 +1,35 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
import kotlin.jvm.JvmInline
import kotlin.reflect.KClass
import kotlin.reflect.KType
import kotlin.reflect.typeOf
/**
* Safe variant ok Kotlin [KType] that ensures that the type parameter is of the same type as [kType]
*
* @param kType raw [KType]
*/
@JvmInline
public value class SafeType<out T> @PublishedApi internal constructor(public val kType: KType)
public inline fun <reified T> safeTypeOf(): SafeType<T> = SafeType(typeOf<T>())
/**
* Derive Kotlin [KClass] from this type and fail if the type is not a class (should not happen)
*/
@Suppress("UNCHECKED_CAST")
@UnstableAttributesAPI
public val <T> SafeType<T>.kClass: KClass<T & Any> get() = kType.classifier as KClass<T & Any>
/**
* An interface containing [type] for dynamic type checking.
*/
public interface WithType<out T> {
public val type: SafeType<T>
}

View File

@ -0,0 +1,17 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
/**
* Marks declarations that are still experimental in the Attributes-kt APIs, which means that the design of the corresponding
* declarations has open issues that may (or may not) lead to their changes in the future. Roughly speaking, there is
* a chance of those declarations will be deprecated in the future or the semantics of their behavior may change
* in some way that may break some code.
*/
@MustBeDocumented
@Retention(value = AnnotationRetention.BINARY)
@RequiresOptIn("This API is unstable and could change in future", RequiresOptIn.Level.WARNING)
public annotation class UnstableAttributesAPI

View File

@ -1,10 +1,11 @@
@file:Suppress("UNUSED_VARIABLE")
import org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile
import space.kscience.kmath.benchmarks.addBenchmarkProperties
plugins {
kotlin("multiplatform")
kotlin("plugin.allopen")
alias(spclibs.plugins.kotlin.plugin.allopen)
id("org.jetbrains.kotlinx.benchmark")
}
@ -15,6 +16,8 @@ repositories {
mavenCentral()
}
val multikVersion: String by rootProject.extra
kotlin {
jvm()
@ -26,6 +29,9 @@ kotlin {
all {
languageSettings {
progressiveMode = true
optIn("kotlin.contracts.ExperimentalContracts")
optIn("kotlin.ExperimentalUnsignedTypes")
optIn("space.kscience.kmath.UnstableKMathAPI")
}
}
@ -39,7 +45,9 @@ kotlin {
implementation(project(":kmath-dimensions"))
implementation(project(":kmath-for-real"))
implementation(project(":kmath-tensors"))
implementation("org.jetbrains.kotlinx:kotlinx-benchmark-runtime:0.4.2")
implementation(project(":kmath-multik"))
implementation("org.jetbrains.kotlinx:multik-default:$multikVersion")
implementation(spclibs.kotlinx.benchmark.runtime)
}
}
@ -51,7 +59,6 @@ kotlin {
implementation(project(":kmath-kotlingrad"))
implementation(project(":kmath-viktor"))
implementation(project(":kmath-jafama"))
implementation(project(":kmath-multik"))
implementation(projects.kmath.kmathTensorflow)
implementation("org.tensorflow:tensorflow-core-platform:0.4.0")
implementation("org.nd4j:nd4j-native:1.0.0-M1")
@ -138,12 +145,10 @@ benchmark {
commonConfiguration()
include("ViktorLogBenchmark")
}
}
// Fix kotlinx-benchmarks bug
afterEvaluate {
val jvmBenchmarkJar by tasks.getting(org.gradle.jvm.tasks.Jar::class) {
duplicatesStrategy = DuplicatesStrategy.EXCLUDE
configurations.register("integration") {
commonConfiguration()
include("IntegrationBenchmark")
}
}
@ -151,11 +156,11 @@ kotlin.sourceSets.all {
with(languageSettings) {
optIn("kotlin.contracts.ExperimentalContracts")
optIn("kotlin.ExperimentalUnsignedTypes")
optIn("space.kscience.kmath.misc.UnstableKMathAPI")
optIn("space.kscience.kmath.UnstableKMathAPI")
}
}
tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile> {
tasks.withType<KotlinJvmCompile> {
kotlinOptions {
jvmTarget = "11"
freeCompilerArgs = freeCompilerArgs + "-Xjvm-default=all" + "-Xlambdas=indy"
@ -163,7 +168,7 @@ tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile> {
}
readme {
maturity = ru.mipt.npm.gradle.Maturity.EXPERIMENTAL
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL
}
addBenchmarkProperties()

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -9,9 +9,9 @@ import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.Algebra
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.operations.bindSymbol
import space.kscience.kmath.operations.invoke
import kotlin.math.sin
@ -84,7 +84,7 @@ class ExpressionsInterpretersBenchmark {
private val x by symbol
private const val times = 1_000_000
private val functional = DoubleField.expression {
private val functional = Float64Field.expression {
val x = bindSymbol(Symbol.x)
x * number(2.0) + 2.0 / x - 16.0 / sin(x)
}
@ -93,12 +93,14 @@ class ExpressionsInterpretersBenchmark {
x * 2.0 + number(2.0) / x - number(16.0) / sin(x)
}
private val mst = node.toExpression(DoubleField)
private val wasm = node.wasmCompileToExpression(DoubleField)
private val estree = node.estreeCompileToExpression(DoubleField)
private val mst = node.toExpression(Float64Field)
@OptIn(UnstableKMathAPI::class)
private val wasm = node.wasmCompileToExpression(Float64Field)
private val estree = node.estreeCompileToExpression(Float64Field)
private val raw = Expression<Double> { args ->
val x = args[x]!!
val x = args.getValue(x)
x * 2.0 + 2.0 / x - 16.0 / sin(x)
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -10,7 +10,7 @@ import kotlinx.benchmark.Blackhole
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.operations.BigIntField
import space.kscience.kmath.operations.JBigIntegerField
import space.kscience.kmath.operations.invoke
@ -67,7 +67,7 @@ internal class BigIntBenchmark {
@Benchmark
fun kmMultiplyLarge(blackhole: Blackhole) = BigIntField {
blackhole.consume(kmLargeNumber*kmLargeNumber)
blackhole.consume(kmLargeNumber * kmLargeNumber)
}
@Benchmark
@ -77,7 +77,7 @@ internal class BigIntBenchmark {
@Benchmark
fun jvmMultiplyLarge(blackhole: Blackhole) = JBigIntegerField {
blackhole.consume(jvmLargeNumber*jvmLargeNumber)
blackhole.consume(jvmLargeNumber * jvmLargeNumber)
}
@Benchmark

View File

@ -1,39 +1,80 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.ComplexField
import space.kscience.kmath.complex.complex
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.Float64Buffer
import space.kscience.kmath.structures.getDouble
import space.kscience.kmath.structures.permute
@State(Scope.Benchmark)
internal class BufferBenchmark {
@Benchmark
fun genericDoubleBufferReadWrite() {
val buffer = DoubleBuffer(size) { it.toDouble() }
@Benchmark
fun doubleArrayReadWrite(blackhole: Blackhole) {
val buffer = DoubleArray(size) { it.toDouble() }
var res = 0.0
(0 until size).forEach {
buffer[it]
res += buffer[it]
}
blackhole.consume(res)
}
@Benchmark
fun complexBufferReadWrite() {
val buffer = MutableBuffer.complex(size / 2) { Complex(it.toDouble(), -it.toDouble()) }
(0 until size / 2).forEach {
buffer[it]
fun doubleBufferReadWrite(blackhole: Blackhole) {
val buffer = Float64Buffer(size) { it.toDouble() }
var res = 0.0
(0 until size).forEach {
res += buffer[it]
}
blackhole.consume(res)
}
@Benchmark
fun bufferViewReadWrite(blackhole: Blackhole) {
val buffer = Float64Buffer(size) { it.toDouble() }.permute(reversedIndices)
var res = 0.0
(0 until size).forEach {
res += buffer[it]
}
blackhole.consume(res)
}
@Benchmark
fun bufferViewReadWriteSpecialized(blackhole: Blackhole) {
val buffer = Float64Buffer(size) { it.toDouble() }.permute(reversedIndices)
var res = 0.0
(0 until size).forEach {
res += buffer.getDouble(it)
}
blackhole.consume(res)
}
@Benchmark
fun complexBufferReadWrite(blackhole: Blackhole) = ComplexField {
val buffer = Buffer.complex(size / 2) { Complex(it.toDouble(), -it.toDouble()) }
var res = zero
(0 until size / 2).forEach {
res += buffer[it]
}
blackhole.consume(res)
}
private companion object {
private const val size = 100
private val reversedIndices = IntArray(size) { it }.apply { reverse() }
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -11,14 +11,11 @@ import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.commons.linear.CMLinearSpace
import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
import space.kscience.kmath.linear.Float64ParallelLinearSpace
import space.kscience.kmath.linear.invoke
import space.kscience.kmath.linear.linearSpace
import space.kscience.kmath.multik.multikAlgebra
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.tensorflow.produceWithTF
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.tensorAlgebra
import kotlin.random.Random
@ -29,10 +26,10 @@ internal class DotBenchmark {
const val dim = 1000
//creating invertible matrix
val matrix1 = DoubleField.linearSpace.buildMatrix(dim, dim) { _, _ ->
val matrix1 = Float64Field.linearSpace.buildMatrix(dim, dim) { _, _ ->
random.nextDouble()
}
val matrix2 = DoubleField.linearSpace.buildMatrix(dim, dim) { _, _ ->
val matrix2 = Float64Field.linearSpace.buildMatrix(dim, dim) { _, _ ->
random.nextDouble()
}
@ -47,7 +44,7 @@ internal class DotBenchmark {
@Benchmark
fun tfDot(blackhole: Blackhole) {
blackhole.consume(
DoubleField.produceWithTF {
Float64Field.produceWithTF {
matrix1 dot matrix1
}
)
@ -74,27 +71,23 @@ internal class DotBenchmark {
}
@Benchmark
fun tensorDot(blackhole: Blackhole) = with(DoubleField.tensorAlgebra) {
fun multikDot(blackhole: Blackhole) = with(multikAlgebra) {
blackhole.consume(matrix1 dot matrix2)
}
@Benchmark
fun multikDot(blackhole: Blackhole) = with(DoubleField.multikAlgebra) {
fun tensorDot(blackhole: Blackhole) = with(Float64Field.tensorAlgebra) {
blackhole.consume(matrix1 dot matrix2)
}
@Benchmark
fun bufferedDot(blackhole: Blackhole) = with(DoubleField.linearSpace(Buffer.Companion::auto)) {
fun bufferedDot(blackhole: Blackhole) = with(Float64Field.linearSpace) {
blackhole.consume(matrix1 dot matrix2)
}
@Benchmark
fun doubleDot(blackhole: Blackhole) = with(DoubleField.linearSpace) {
fun parallelDot(blackhole: Blackhole) = with(Float64ParallelLinearSpace) {
blackhole.consume(matrix1 dot matrix2)
}
@Benchmark
fun doubleTensorDot(blackhole: Blackhole) = DoubleTensorAlgebra.invoke {
blackhole.consume(matrix1 dot matrix2)
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -12,7 +12,7 @@ import kotlinx.benchmark.State
import space.kscience.kmath.asm.compileToExpression
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.Algebra
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.operations.bindSymbol
import space.kscience.kmath.operations.invoke
import kotlin.math.sin
@ -100,7 +100,7 @@ internal class ExpressionsInterpretersBenchmark {
private val x by symbol
private const val times = 1_000_000
private val functional = DoubleField.expression {
private val functional = Float64Field.expression {
val x = bindSymbol(Symbol.x)
x * number(2.0) + 2.0 / x - 16.0 / sin(x)
}
@ -109,12 +109,12 @@ internal class ExpressionsInterpretersBenchmark {
x * 2.0 + number(2.0) / x - number(16.0) / sin(x)
}
private val mst = node.toExpression(DoubleField)
private val mst = node.toExpression(Float64Field)
private val asmPrimitive = node.compileToExpression(DoubleField)
private val asmPrimitive = node.compileToExpression(Float64Field)
private val xIdx = asmPrimitive.indexer.indexOf(x)
private val asmGeneric = node.compileToExpression(DoubleField as Algebra<Double>)
private val asmGeneric = node.compileToExpression(Float64Field as Algebra<Double>)
private val raw = Expression<Double> { args ->
val x = args[x]!!

View File

@ -0,0 +1,40 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import org.openjdk.jmh.infra.Blackhole
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.algebra
import space.kscience.kmath.integration.gaussIntegrator
import space.kscience.kmath.integration.integrate
import space.kscience.kmath.integration.value
import space.kscience.kmath.operations.algebra
@State(Scope.Benchmark)
internal class IntegrationBenchmark {
@Benchmark
fun doubleIntegration(blackhole: Blackhole) {
val res = Double.algebra.gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
//sin(1 / x)
1 / x
}.value
blackhole.consume(res)
}
@Benchmark
fun complexIntegration(blackhole: Blackhole) = with(Complex.algebra) {
val res = gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
// sin(1 / x) + i * cos(1 / x)
1 / x - i / x
}.value
blackhole.consume(res)
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -11,10 +11,8 @@ import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.jafama.JafamaDoubleField
import space.kscience.kmath.jafama.StrictJafamaDoubleField
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.operations.invoke
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.random.Random
@State(Scope.Benchmark)
@ -26,7 +24,7 @@ internal class JafamaBenchmark {
@Benchmark
fun core(blackhole: Blackhole) = invokeBenchmarks(blackhole) { x ->
DoubleField { x * power(x, 4) * exp(x) / cos(x) + sin(x) }
Float64Field { x * power(x, 4) * exp(x) / cos(x) + sin(x) }
}
@Benchmark
@ -36,7 +34,6 @@ internal class JafamaBenchmark {
}
private inline fun invokeBenchmarks(blackhole: Blackhole, expr: (Double) -> Double) {
contract { callsInPlace(expr, InvocationKind.AT_LEAST_ONCE) }
val rng = Random(0)
repeat(1000000) { blackhole.consume(expr(rng.nextDouble())) }
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -15,6 +15,7 @@ import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
import space.kscience.kmath.linear.invoke
import space.kscience.kmath.linear.linearSpace
import space.kscience.kmath.linear.lupSolver
import space.kscience.kmath.linear.parallel
import space.kscience.kmath.operations.algebra
import kotlin.random.Random
@ -38,16 +39,19 @@ internal class MatrixInverseBenchmark {
}
@Benchmark
fun cmLUPInversion(blackhole: Blackhole) {
CMLinearSpace {
blackhole.consume(lupSolver().inverse(matrix))
}
fun kmathParallelLupInversion(blackhole: Blackhole) {
blackhole.consume(Double.algebra.linearSpace.parallel.lupSolver().inverse(matrix))
}
@Benchmark
fun ejmlInverse(blackhole: Blackhole) {
EjmlLinearSpaceDDRM {
blackhole.consume(matrix.toEjml().inverse())
}
fun cmLUPInversion(blackhole: Blackhole) = CMLinearSpace {
blackhole.consume(lupSolver().inverse(matrix))
}
@Benchmark
fun ejmlInverse(blackhole: Blackhole) = EjmlLinearSpaceDDRM {
blackhole.consume(matrix.toEjml().inverted())
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -13,14 +13,10 @@ import org.jetbrains.kotlinx.multik.api.Multik
import org.jetbrains.kotlinx.multik.api.ones
import org.jetbrains.kotlinx.multik.ndarray.data.DN
import org.jetbrains.kotlinx.multik.ndarray.data.DataType
import space.kscience.kmath.multik.multikAlgebra
import space.kscience.kmath.nd.BufferedFieldOpsND
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.nd.one
import space.kscience.kmath.UnsafeKMathAPI
import space.kscience.kmath.nd.*
import space.kscience.kmath.nd4j.nd4j
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.one
import space.kscience.kmath.tensors.core.tensorAlgebra
@ -28,11 +24,15 @@ import space.kscience.kmath.viktor.viktorAlgebra
@State(Scope.Benchmark)
internal class NDFieldBenchmark {
@Benchmark
fun autoFieldAdd(blackhole: Blackhole) = with(autoField) {
var res: StructureND<Double> = one(shape)
repeat(n) { res += 1.0 }
blackhole.consume(res)
private companion object {
private const val dim = 1000
private const val n = 100
private val shape = ShapeND(dim, dim)
private val specializedField = Float64Field.ndAlgebra
private val genericField = BufferedFieldOpsND(Float64Field)
private val nd4jField = Float64Field.nd4j
private val viktorField = Float64Field.viktorAlgebra
}
@Benchmark
@ -50,7 +50,7 @@ internal class NDFieldBenchmark {
}
@Benchmark
fun multikAdd(blackhole: Blackhole) = with(multikField) {
fun multikAdd(blackhole: Blackhole) = with(multikAlgebra) {
var res: StructureND<Double> = one(shape)
repeat(n) { res += 1.0 }
blackhole.consume(res)
@ -77,9 +77,10 @@ internal class NDFieldBenchmark {
blackhole.consume(res)
}
@OptIn(UnsafeKMathAPI::class)
@Benchmark
fun multikInPlaceAdd(blackhole: Blackhole) = with(DoubleField.multikAlgebra) {
val res = Multik.ones<Double, DN>(shape, DataType.DoubleDataType).wrap()
fun multikInPlaceAdd(blackhole: Blackhole) = with(multikAlgebra) {
val res = Multik.ones<Double, DN>(shape.asArray(), DataType.DoubleDataType).wrap()
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
@ -91,15 +92,5 @@ internal class NDFieldBenchmark {
// blackhole.consume(res)
// }
private companion object {
private const val dim = 1000
private const val n = 100
private val shape = intArrayOf(dim, dim)
private val autoField = BufferedFieldOpsND(DoubleField, Buffer.Companion::auto)
private val specializedField = DoubleField.ndAlgebra
private val genericField = BufferedFieldOpsND(DoubleField, Buffer.Companion::boxing)
private val nd4jField = DoubleField.nd4j
private val multikField = DoubleField.multikAlgebra
private val viktorField = DoubleField.viktorAlgebra
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -12,7 +12,9 @@ import kotlinx.benchmark.State
import space.kscience.kmath.linear.linearSpace
import space.kscience.kmath.linear.matrix
import space.kscience.kmath.linear.symmetric
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.tensors.core.symEigJacobi
import space.kscience.kmath.tensors.core.symEigSvd
import space.kscience.kmath.tensors.core.tensorAlgebra
import kotlin.random.Random
@ -22,16 +24,16 @@ internal class TensorAlgebraBenchmark {
private val random = Random(12224)
private const val dim = 30
private val matrix = DoubleField.linearSpace.matrix(dim, dim).symmetric { _, _ -> random.nextDouble() }
private val matrix = Float64Field.linearSpace.matrix(dim, dim).symmetric { _, _ -> random.nextDouble() }
}
@Benchmark
fun tensorSymEigSvd(blackhole: Blackhole) = with(Double.tensorAlgebra) {
blackhole.consume(matrix.symEigSvd(1e-10))
blackhole.consume(symEigSvd(matrix, 1e-10))
}
@Benchmark
fun tensorSymEigJacobi(blackhole: Blackhole) = with(Double.tensorAlgebra) {
blackhole.consume(matrix.symEigJacobi(50, 1e-10))
blackhole.consume(symEigJacobi(matrix, 50, 1e-10))
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -10,25 +10,19 @@ import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.nd.one
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.viktor.ViktorFieldND
@State(Scope.Benchmark)
internal class ViktorBenchmark {
@Benchmark
fun automaticFieldAddition(blackhole: Blackhole) {
with(autoField) {
var res: StructureND<Double> = one(shape)
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun realFieldAddition(blackhole: Blackhole) {
with(realField) {
fun doubleFieldAddition(blackhole: Blackhole) {
with(doubleField) {
var res: StructureND<Double> = one(shape)
repeat(n) { res += 1.0 }
blackhole.consume(res)
@ -55,11 +49,10 @@ internal class ViktorBenchmark {
private companion object {
private const val dim = 1000
private const val n = 100
private val shape = Shape(dim, dim)
private val shape = ShapeND(dim, dim)
// automatically build context most suited for given type.
private val autoField = BufferedFieldOpsND(DoubleField, Buffer.Companion::auto)
private val realField = DoubleField.ndAlgebra
private val doubleField = Float64Field.ndAlgebra
private val viktorField = ViktorFieldND(dim, dim)
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -10,19 +10,17 @@ import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.nd.BufferedFieldOpsND
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.nd.one
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.viktor.ViktorFieldND
@State(Scope.Benchmark)
internal class ViktorLogBenchmark {
@Benchmark
fun realFieldLog(blackhole: Blackhole) {
with(realField) {
with(doubleField) {
val fortyTwo = structureND(shape) { 42.0 }
var res = one(shape)
repeat(n) { res = ln(fortyTwo) }
@ -51,11 +49,10 @@ internal class ViktorLogBenchmark {
private companion object {
private const val dim = 1000
private const val n = 100
private val shape = Shape(dim, dim)
private val shape = ShapeND(dim, dim)
// automatically build context most suited for given type.
private val autoField = BufferedFieldOpsND(DoubleField, Buffer.Companion::auto)
private val realField = DoubleField.ndAlgebra
private val doubleField = Float64Field.ndAlgebra
private val viktorField = ViktorFieldND(dim, dim)
}
}

View File

@ -0,0 +1,11 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import org.jetbrains.kotlinx.multik.default.DefaultEngine
import space.kscience.kmath.multik.MultikDoubleAlgebra
val multikAlgebra = MultikDoubleAlgebra(DefaultEngine())

View File

@ -1,8 +1,13 @@
import space.kscience.gradle.useApache2Licence
import space.kscience.gradle.useSPCTeam
plugins {
id("ru.mipt.npm.gradle.project")
id("org.jetbrains.kotlinx.kover") version "0.5.0"
id("space.kscience.gradle.project")
id("org.jetbrains.kotlinx.kover") version "0.7.6"
}
val attributesVersion by extra("0.2.0")
allprojects {
repositories {
maven("https://repo.kotlin.link")
@ -11,7 +16,7 @@ allprojects {
}
group = "space.kscience"
version = "0.3.1-dev-1"
version = "0.4.0"
}
subprojects {
@ -31,7 +36,7 @@ subprojects {
localDirectory.set(kotlinDir)
remoteUrl.set(
java.net.URL("https://github.com/mipt-npm/kmath/tree/master/${this@subprojects.name}/$kotlinDirPath")
uri("https://github.com/SciProgCentre/kmath/tree/master/${this@subprojects.name}/$kotlinDirPath").toURL()
)
}
@ -51,26 +56,19 @@ subprojects {
}
}
}
plugins.withId("org.jetbrains.kotlin.multiplatform") {
configure<org.jetbrains.kotlin.gradle.dsl.KotlinMultiplatformExtension> {
sourceSets {
val commonTest by getting {
dependencies {
implementation(projects.testUtils)
}
}
}
}
}
}
readme.readmeTemplate = file("docs/templates/README-TEMPLATE.md")
ksciencePublish {
github("kmath", addToRelease = false)
space()
sonatype()
pom("https://github.com/SciProgCentre/kmath") {
useApache2Licence()
useSPCTeam()
}
repository("spc", "https://maven.sciprog.center/kscience")
sonatype("https://oss.sonatype.org")
}
apiValidation.nonPublicMarkers.add("space.kscience.kmath.misc.UnstableKMathAPI")
apiValidation.nonPublicMarkers.add("space.kscience.kmath.UnstableKMathAPI")
val multikVersion by extra("0.2.3")

View File

@ -1,12 +1,8 @@
plugins {
kotlin("jvm") version "1.7.0"
`kotlin-dsl`
`version-catalog`
alias(npmlibs.plugins.kotlin.plugin.serialization)
}
java.targetCompatibility = JavaVersion.VERSION_11
repositories {
mavenLocal()
maven("https://repo.kotlin.link")
@ -14,20 +10,25 @@ repositories {
gradlePluginPortal()
}
val toolsVersion = npmlibs.versions.tools.get()
val kotlinVersion = npmlibs.versions.kotlin.asProvider().get()
val benchmarksVersion = npmlibs.versions.kotlinx.benchmark.get()
val toolsVersion = spclibs.versions.tools.get()
val kotlinVersion = spclibs.versions.kotlin.asProvider().get()
val benchmarksVersion = spclibs.versions.kotlinx.benchmark.get()
dependencies {
api("ru.mipt.npm:gradle-tools:$toolsVersion")
api(npmlibs.atomicfu.gradle)
api("space.kscience:gradle-tools:$toolsVersion")
//plugins form benchmarks
api("org.jetbrains.kotlinx:kotlinx-benchmark-plugin:$benchmarksVersion")
api("org.jetbrains.kotlin:kotlin-allopen:$kotlinVersion")
//api("org.jetbrains.kotlin:kotlin-allopen:$kotlinVersion")
//to be used inside build-script only
implementation(npmlibs.kotlinx.serialization.json)
//implementation(spclibs.kotlinx.serialization.json)
implementation("com.fasterxml.jackson.module:jackson-module-kotlin:2.14.+")
}
kotlin.sourceSets.all {
languageSettings.optIn("kotlin.OptIn")
kotlin {
jvmToolchain {
languageVersion.set(JavaLanguageVersion.of(11))
}
sourceSets.all {
languageSettings.optIn("kotlin.OptIn")
}
}

View File

@ -5,6 +5,10 @@
enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS")
plugins {
id("org.gradle.toolchains.foojay-resolver-convention") version "0.8.0"
}
dependencyResolutionManagement {
val projectProperties = java.util.Properties()
file("../gradle.properties").inputStream().use {
@ -18,6 +22,7 @@ dependencyResolutionManagement {
val toolsVersion: String = projectProperties["toolsVersion"].toString()
@Suppress("UnstableApiUsage")
repositories {
mavenLocal()
maven("https://repo.kotlin.link")
@ -26,8 +31,8 @@ dependencyResolutionManagement {
}
versionCatalogs {
create("npmlibs") {
from("ru.mipt.npm:version-catalog:$toolsVersion")
create("spclibs") {
from("space.kscience:version-catalog:$toolsVersion")
}
}
}

View File

@ -1,13 +1,10 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import kotlinx.serialization.Serializable
@Serializable
data class JmhReport(
val jmhVersion: String,
val benchmark: String,
@ -37,7 +34,6 @@ data class JmhReport(
val scoreUnit: String
}
@Serializable
data class PrimaryMetric(
override val score: Double,
override val scoreError: Double,
@ -48,7 +44,6 @@ data class JmhReport(
val rawData: List<List<Double>>? = null,
) : Metric
@Serializable
data class SecondaryMetric(
override val score: Double,
override val scoreError: Double,

View File

@ -1,21 +1,22 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import com.fasterxml.jackson.module.kotlin.jacksonObjectMapper
import com.fasterxml.jackson.module.kotlin.readValue
import kotlinx.benchmark.gradle.BenchmarksExtension
import kotlinx.serialization.decodeFromString
import kotlinx.serialization.json.Json
import org.gradle.api.Project
import ru.mipt.npm.gradle.KScienceReadmeExtension
import space.kscience.gradle.KScienceReadmeExtension
import java.time.LocalDateTime
import java.time.ZoneId
import java.time.format.DateTimeFormatter
import java.time.format.DateTimeFormatterBuilder
import java.time.format.SignStyle
import java.time.temporal.ChronoField.*
import java.util.*
private val ISO_DATE_TIME: DateTimeFormatter = DateTimeFormatterBuilder().run {
parseCaseInsensitive()
@ -45,23 +46,25 @@ private val ISO_DATE_TIME: DateTimeFormatter = DateTimeFormatterBuilder().run {
private fun noun(number: Number, singular: String, plural: String) = if (number.toLong() == 1L) singular else plural
private val jsonMapper = jacksonObjectMapper()
fun Project.addBenchmarkProperties() {
val benchmarksProject = this
rootProject.subprojects.forEach { p ->
p.extensions.findByType(KScienceReadmeExtension::class.java)?.run {
benchmarksProject.extensions.findByType(BenchmarksExtension::class.java)?.configurations?.forEach { cfg ->
property("benchmark${cfg.name.capitalize()}") {
val launches = benchmarksProject.buildDir.resolve("reports/benchmarks/${cfg.name}")
property("benchmark${cfg.name.replaceFirstChar { if (it.isLowerCase()) it.titlecase(Locale.getDefault()) else it.toString() }}") {
val launches = benchmarksProject.layout.buildDirectory.dir("reports/benchmarks/${cfg.name}").get()
val resDirectory = launches.listFiles()?.maxByOrNull {
val resDirectory = launches.files().maxByOrNull {
LocalDateTime.parse(it.name, ISO_DATE_TIME).atZone(ZoneId.systemDefault()).toInstant()
}
if (resDirectory == null || !(resDirectory.resolve("jvm.json")).exists()) {
"> **Can't find appropriate benchmark data. Try generating readme files after running benchmarks**."
} else {
val reports =
Json.decodeFromString<List<JmhReport>>(resDirectory.resolve("jvm.json").readText())
val reports: List<JmhReport> =
jsonMapper.readValue<List<JmhReport>>(resDirectory.resolve("jvm.json"))
buildString {
appendLine("<details>")
@ -74,16 +77,20 @@ fun Project.addBenchmarkProperties() {
appendLine("* Run on ${first.vmName} (build ${first.vmVersion}) with Java process:")
appendLine()
appendLine("```")
appendLine("${first.jvm} ${
first.jvmArgs.joinToString(" ")
}")
appendLine(
"${first.jvm} ${
first.jvmArgs.joinToString(" ")
}"
)
appendLine("```")
appendLine("* JMH ${first.jmhVersion} was used in `${first.mode}` mode with ${first.warmupIterations} warmup ${
noun(first.warmupIterations, "iteration", "iterations")
} by ${first.warmupTime} and ${first.measurementIterations} measurement ${
noun(first.measurementIterations, "iteration", "iterations")
} by ${first.measurementTime}.")
appendLine(
"* JMH ${first.jmhVersion} was used in `${first.mode}` mode with ${first.warmupIterations} warmup ${
noun(first.warmupIterations, "iteration", "iterations")
} by ${first.warmupTime} and ${first.measurementIterations} measurement ${
noun(first.measurementIterations, "iteration", "iterations")
} by ${first.measurementTime}."
)
appendLine()
appendLine("| Benchmark | Score |")

View File

@ -1,427 +0,0 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:Suppress("KDocUnresolvedReference")
package space.kscience.kmath.ejml.codegen
import org.intellij.lang.annotations.Language
import java.io.File
private fun Appendable.appendEjmlVector(type: String, ejmlMatrixType: String) {
@Language("kotlin") val text = """/**
* [EjmlVector] specialization for [$type].
*/
public class Ejml${type}Vector<out M : $ejmlMatrixType>(override val origin: M) : EjmlVector<$type, M>(origin) {
init {
require(origin.numRows == 1) { "The origin matrix must have only one row to form a vector" }
}
override operator fun get(index: Int): $type = origin[0, index]
}"""
appendLine(text)
appendLine()
}
private fun Appendable.appendEjmlMatrix(type: String, ejmlMatrixType: String) {
val text = """/**
* [EjmlMatrix] specialization for [$type].
*/
public class Ejml${type}Matrix<out M : $ejmlMatrixType>(override val origin: M) : EjmlMatrix<$type, M>(origin) {
override operator fun get(i: Int, j: Int): $type = origin[i, j]
}"""
appendLine(text)
appendLine()
}
private fun Appendable.appendEjmlLinearSpace(
type: String,
kmathAlgebra: String,
ejmlMatrixParentTypeMatrix: String,
ejmlMatrixType: String,
ejmlMatrixDenseType: String,
ops: String,
denseOps: String,
isDense: Boolean,
) {
@Language("kotlin") val text = """/**
* [EjmlLinearSpace] implementation based on [CommonOps_$ops], [DecompositionFactory_${ops}] operations and
* [${ejmlMatrixType}] matrices.
*/
public object EjmlLinearSpace${ops} : EjmlLinearSpace<${type}, ${kmathAlgebra}, $ejmlMatrixType>() {
/**
* The [${kmathAlgebra}] reference.
*/
override val elementAlgebra: $kmathAlgebra get() = $kmathAlgebra
@Suppress("UNCHECKED_CAST")
override fun Matrix<${type}>.toEjml(): Ejml${type}Matrix<${ejmlMatrixType}> = when {
this is Ejml${type}Matrix<*> && origin is $ejmlMatrixType -> this as Ejml${type}Matrix<${ejmlMatrixType}>
else -> buildMatrix(rowNum, colNum) { i, j -> get(i, j) }
}
@Suppress("UNCHECKED_CAST")
override fun Point<${type}>.toEjml(): Ejml${type}Vector<${ejmlMatrixType}> = when {
this is Ejml${type}Vector<*> && origin is $ejmlMatrixType -> this as Ejml${type}Vector<${ejmlMatrixType}>
else -> Ejml${type}Vector(${ejmlMatrixType}(size, 1).also {
(0 until it.numRows).forEach { row -> it[row, 0] = get(row) }
})
}
override fun buildMatrix(
rows: Int,
columns: Int,
initializer: ${kmathAlgebra}.(i: Int, j: Int) -> ${type},
): Ejml${type}Matrix<${ejmlMatrixType}> = ${ejmlMatrixType}(rows, columns).also {
(0 until rows).forEach { row ->
(0 until columns).forEach { col -> it[row, col] = elementAlgebra.initializer(row, col) }
}
}.wrapMatrix()
override fun buildVector(
size: Int,
initializer: ${kmathAlgebra}.(Int) -> ${type},
): Ejml${type}Vector<${ejmlMatrixType}> = Ejml${type}Vector(${ejmlMatrixType}(size, 1).also {
(0 until it.numRows).forEach { row -> it[row, 0] = elementAlgebra.initializer(row) }
})
private fun <T : ${ejmlMatrixParentTypeMatrix}> T.wrapMatrix() = Ejml${type}Matrix(this)
private fun <T : ${ejmlMatrixParentTypeMatrix}> T.wrapVector() = Ejml${type}Vector(this)
override fun Matrix<${type}>.unaryMinus(): Matrix<${type}> = this * elementAlgebra { -one }
override fun Matrix<${type}>.dot(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.mult(toEjml().origin, other.toEjml().origin, out)
return out.wrapMatrix()
}
override fun Matrix<${type}>.dot(vector: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.mult(toEjml().origin, vector.toEjml().origin, out)
return out.wrapVector()
}
override operator fun Matrix<${type}>.minus(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.add(
elementAlgebra.one,
toEjml().origin,
elementAlgebra { -one },
other.toEjml().origin,
out,${
if (isDense) "" else
"""
null,
null,"""
}
)
return out.wrapMatrix()
}
override operator fun Matrix<${type}>.times(value: ${type}): Ejml${type}Matrix<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.scale(value, toEjml().origin, res)
return res.wrapMatrix()
}
override fun Point<${type}>.unaryMinus(): Ejml${type}Vector<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.changeSign(toEjml().origin, res)
return res.wrapVector()
}
override fun Matrix<${type}>.plus(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.add(
elementAlgebra.one,
toEjml().origin,
elementAlgebra.one,
other.toEjml().origin,
out,${
if (isDense) "" else
"""
null,
null,"""
}
)
return out.wrapMatrix()
}
override fun Point<${type}>.plus(other: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.add(
elementAlgebra.one,
toEjml().origin,
elementAlgebra.one,
other.toEjml().origin,
out,${
if (isDense) "" else
"""
null,
null,"""
}
)
return out.wrapVector()
}
override fun Point<${type}>.minus(other: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
val out = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.add(
elementAlgebra.one,
toEjml().origin,
elementAlgebra { -one },
other.toEjml().origin,
out,${
if (isDense) "" else
"""
null,
null,"""
}
)
return out.wrapVector()
}
override fun ${type}.times(m: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> = m * this
override fun Point<${type}>.times(value: ${type}): Ejml${type}Vector<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.scale(value, toEjml().origin, res)
return res.wrapVector()
}
override fun ${type}.times(v: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> = v * this
@UnstableKMathAPI
override fun <F : StructureFeature> computeFeature(structure: Matrix<${type}>, type: KClass<out F>): F? {
structure.getFeature(type)?.let { return it }
val origin = structure.toEjml().origin
return when (type) {
${
if (isDense)
""" InverseMatrixFeature::class -> object : InverseMatrixFeature<${type}> {
override val inverse: Matrix<${type}> by lazy {
val res = origin.copy()
CommonOps_${ops}.invert(res)
res.wrapMatrix()
}
}
DeterminantFeature::class -> object : DeterminantFeature<${type}> {
override val determinant: $type by lazy { CommonOps_${ops}.det(origin) }
}
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<${type}> {
private val svd by lazy {
DecompositionFactory_${ops}.svd(origin.numRows, origin.numCols, true, true, false)
.apply { decompose(origin.copy()) }
}
override val u: Matrix<${type}> by lazy { svd.getU(null, false).wrapMatrix() }
override val s: Matrix<${type}> by lazy { svd.getW(null).wrapMatrix() }
override val v: Matrix<${type}> by lazy { svd.getV(null, false).wrapMatrix() }
override val singularValues: Point<${type}> by lazy { ${type}Buffer(svd.singularValues) }
}
QRDecompositionFeature::class -> object : QRDecompositionFeature<${type}> {
private val qr by lazy {
DecompositionFactory_${ops}.qr().apply { decompose(origin.copy()) }
}
override val q: Matrix<${type}> by lazy {
qr.getQ(null, false).wrapMatrix().withFeature(OrthogonalFeature)
}
override val r: Matrix<${type}> by lazy { qr.getR(null, false).wrapMatrix().withFeature(UFeature) }
}
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<${type}> {
override val l: Matrix<${type}> by lazy {
val cholesky =
DecompositionFactory_${ops}.chol(structure.rowNum, true).apply { decompose(origin.copy()) }
cholesky.getT(null).wrapMatrix().withFeature(LFeature)
}
}
LupDecompositionFeature::class -> object : LupDecompositionFeature<${type}> {
private val lup by lazy {
DecompositionFactory_${ops}.lu(origin.numRows, origin.numCols).apply { decompose(origin.copy()) }
}
override val l: Matrix<${type}> by lazy {
lup.getLower(null).wrapMatrix().withFeature(LFeature)
}
override val u: Matrix<${type}> by lazy {
lup.getUpper(null).wrapMatrix().withFeature(UFeature)
}
override val p: Matrix<${type}> by lazy { lup.getRowPivot(null).wrapMatrix() }
}""" else """ QRDecompositionFeature::class -> object : QRDecompositionFeature<$type> {
private val qr by lazy {
DecompositionFactory_${ops}.qr(FillReducing.NONE).apply { decompose(origin.copy()) }
}
override val q: Matrix<${type}> by lazy {
qr.getQ(null, false).wrapMatrix().withFeature(OrthogonalFeature)
}
override val r: Matrix<${type}> by lazy { qr.getR(null, false).wrapMatrix().withFeature(UFeature) }
}
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<${type}> {
override val l: Matrix<${type}> by lazy {
val cholesky =
DecompositionFactory_${ops}.cholesky().apply { decompose(origin.copy()) }
(cholesky.getT(null) as ${ejmlMatrixParentTypeMatrix}).wrapMatrix().withFeature(LFeature)
}
}
LUDecompositionFeature::class, DeterminantFeature::class, InverseMatrixFeature::class -> object :
LUDecompositionFeature<${type}>, DeterminantFeature<${type}>, InverseMatrixFeature<${type}> {
private val lu by lazy {
DecompositionFactory_${ops}.lu(FillReducing.NONE).apply { decompose(origin.copy()) }
}
override val l: Matrix<${type}> by lazy {
lu.getLower(null).wrapMatrix().withFeature(LFeature)
}
override val u: Matrix<${type}> by lazy {
lu.getUpper(null).wrapMatrix().withFeature(UFeature)
}
override val inverse: Matrix<${type}> by lazy {
var a = origin
val inverse = ${ejmlMatrixDenseType}(1, 1)
val solver = LinearSolverFactory_${ops}.lu(FillReducing.NONE)
if (solver.modifiesA()) a = a.copy()
val i = CommonOps_${denseOps}.identity(a.numRows)
solver.solve(i, inverse)
inverse.wrapMatrix()
}
override val determinant: $type by lazy { elementAlgebra.number(lu.computeDeterminant().real) }
}"""
}
else -> null
}?.let{
type.cast(it)
}
}
/**
* Solves for *x* in the following equation: *x = [a] <sup>-1</sup> &middot; [b]*.
*
* @param a the base matrix.
* @param b n by p matrix.
* @return the solution for *x* that is n by p.
*/
public fun solve(a: Matrix<${type}>, b: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.solve(${ejmlMatrixType}(a.toEjml().origin), ${ejmlMatrixType}(b.toEjml().origin), res)
return res.wrapMatrix()
}
/**
* Solves for *x* in the following equation: *x = [a] <sup>-1</sup> &middot; [b]*.
*
* @param a the base matrix.
* @param b n by p vector.
* @return the solution for *x* that is n by p.
*/
public fun solve(a: Matrix<${type}>, b: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
val res = ${ejmlMatrixType}(1, 1)
CommonOps_${ops}.solve(${ejmlMatrixType}(a.toEjml().origin), ${ejmlMatrixType}(b.toEjml().origin), res)
return Ejml${type}Vector(res)
}
}"""
appendLine(text)
appendLine()
}
/**
* Generates routine EJML classes.
*/
fun ejmlCodegen(outputFile: String): Unit = File(outputFile).run {
parentFile.mkdirs()
writer().use {
it.appendLine("/*")
it.appendLine(" * Copyright 2018-2021 KMath contributors.")
it.appendLine(" * Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file.")
it.appendLine(" */")
it.appendLine()
it.appendLine("/* This file is generated with buildSrc/src/main/kotlin/space/kscience/kmath/ejml/codegen/ejmlCodegen.kt */")
it.appendLine()
it.appendLine("package space.kscience.kmath.ejml")
it.appendLine()
it.appendLine("""import org.ejml.data.*
import org.ejml.dense.row.CommonOps_DDRM
import org.ejml.dense.row.CommonOps_FDRM
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
import org.ejml.dense.row.factory.DecompositionFactory_FDRM
import org.ejml.sparse.FillReducing
import org.ejml.sparse.csc.CommonOps_DSCC
import org.ejml.sparse.csc.CommonOps_FSCC
import org.ejml.sparse.csc.factory.DecompositionFactory_DSCC
import org.ejml.sparse.csc.factory.DecompositionFactory_FSCC
import org.ejml.sparse.csc.factory.LinearSolverFactory_DSCC
import org.ejml.sparse.csc.factory.LinearSolverFactory_FSCC
import space.kscience.kmath.linear.*
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.StructureFeature
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.FloatField
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.FloatBuffer
import kotlin.reflect.KClass
import kotlin.reflect.cast""")
it.appendLine()
it.appendEjmlVector("Double", "DMatrix")
it.appendEjmlVector("Float", "FMatrix")
it.appendEjmlMatrix("Double", "DMatrix")
it.appendEjmlMatrix("Float", "FMatrix")
it.appendEjmlLinearSpace("Double", "DoubleField", "DMatrix", "DMatrixRMaj", "DMatrixRMaj", "DDRM", "DDRM", true)
it.appendEjmlLinearSpace("Float", "FloatField", "FMatrix", "FMatrixRMaj", "FMatrixRMaj", "FDRM", "FDRM", true)
it.appendEjmlLinearSpace(
type = "Double",
kmathAlgebra = "DoubleField",
ejmlMatrixParentTypeMatrix = "DMatrix",
ejmlMatrixType = "DMatrixSparseCSC",
ejmlMatrixDenseType = "DMatrixRMaj",
ops = "DSCC",
denseOps = "DDRM",
isDense = false,
)
it.appendEjmlLinearSpace(
type = "Float",
kmathAlgebra = "FloatField",
ejmlMatrixParentTypeMatrix = "FMatrix",
ejmlMatrixType = "FMatrixSparseCSC",
ejmlMatrixDenseType = "FMatrixRMaj",
ops = "FSCC",
denseOps = "FDRM",
isDense = false,
)
}
}

View File

@ -17,4 +17,4 @@ own `MemoryBuffer.create()` factory).
## Buffer performance
One should avoid using default boxing buffer wherever it is possible. Try to use primitive buffers or memory buffers
instead .
instead.

View File

@ -1,27 +1,35 @@
# Coding Conventions
Generally, KMath code follows general [Kotlin coding conventions](https://kotlinlang.org/docs/reference/coding-conventions.html), but with a number of small changes and clarifications.
Generally, KMath code follows
general [Kotlin coding conventions](https://kotlinlang.org/docs/reference/coding-conventions.html), but with a number of
small changes and clarifications.
## Utility Class Naming
Filename should coincide with a name of one of the classes contained in the file or start with small letter and describe its contents.
Filename should coincide with a name of one of the classes contained in the file or start with small letter and describe
its contents.
The code convention [here](https://kotlinlang.org/docs/reference/coding-conventions.html#source-file-names) says that file names should start with a capital letter even if file does not contain classes. Yet starting utility classes and aggregators with a small letter seems to be a good way to visually separate those files.
The code convention [here](https://kotlinlang.org/docs/reference/coding-conventions.html#source-file-names) says that
file names should start with a capital letter even if file does not contain classes. Yet starting utility classes and
aggregators with a small letter seems to be a good way to visually separate those files.
This convention could be changed in future in a non-breaking way.
## Private Variable Naming
Private variables' names may start with underscore `_` for of the private mutable variable is shadowed by the public read-only value with the same meaning.
Private variables' names may start with underscore `_` for of the private mutable variable is shadowed by the public
read-only value with the same meaning.
This rule does not permit underscores in names, but it is sometimes useful to "underscore" the fact that public and private versions draw up the same entity. It is allowed only for private variables.
This rule does not permit underscores in names, but it is sometimes useful to "underscore" the fact that public and
private versions draw up the same entity. It is allowed only for private variables.
This convention could be changed in future in a non-breaking way.
## Functions and Properties One-liners
Use one-liners when they occupy single code window line both for functions and properties with getters like
`val b: String get() = "fff"`. The same should be performed with multiline expressions when they could be
Use one-liners when they occupy single code window line both for functions and properties with getters like
`val b: String get() = "fff"`. The same should be performed with multiline expressions when they could be
cleanly separated.
There is no universal consensus whenever use `fun a() = ...` or `fun a() { return ... }`. Yet from reader outlook one-lines seem to better show that the property or function is easily calculated.
There is no universal consensus whenever use `fun a() = ...` or `fun a() { return ... }`. Yet from reader outlook
one-lines seem to better show that the property or function is easily calculated.

View File

@ -1,21 +1,24 @@
# Expressions
Expressions is a feature, which allows constructing lazily or immediately calculated parametric mathematical expressions.
Expressions is a feature, which allows constructing lazily or immediately calculated parametric mathematical
expressions.
The potential use-cases for it (so far) are following:
* lazy evaluation (in general simple lambda is better, but there are some border cases);
* automatic differentiation in single-dimension and in multiple dimensions;
* generation of mathematical syntax trees with subsequent code generation for other languages;
* symbolic computations, especially differentiation (and some other actions with `kmath-symja` integration with Symja's `IExpr`&mdash;integration, simplification, and more);
* symbolic computations, especially differentiation (and some other actions with `kmath-symja` integration with
Symja's `IExpr`&mdash;integration, simplification, and more);
* visualization with `kmath-jupyter`.
The workhorse of this API is `Expression` interface, which exposes single `operator fun invoke(arguments: Map<Symbol, T>): T`
The workhorse of this API is `Expression` interface, which exposes
single `operator fun invoke(arguments: Map<Symbol, T>): T`
method. `ExpressionAlgebra` is used to generate expressions and introduce variables.
Currently there are two implementations:
* Generic `ExpressionField` in `kmath-core` which allows construction of custom lazy expressions
* Auto-differentiation expression in `kmath-commons` module allows using full power of `DerivativeStructure`
from commons-math. **TODO: add example**
* Auto-differentiation expression in `kmath-commons` module allows using full power of `DerivativeStructure`
from commons-math. **TODO: add example**

View File

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--
- Copyright 2018-2021 KMath contributors.
- Copyright 2018-2024 KMath contributors.
- Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
-->

Before

Width:  |  Height:  |  Size: 249 KiB

After

Width:  |  Height:  |  Size: 249 KiB

View File

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--
- Copyright 2018-2021 KMath contributors.
- Copyright 2018-2024 KMath contributors.
- Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
-->

Before

Width:  |  Height:  |  Size: 19 KiB

After

Width:  |  Height:  |  Size: 19 KiB

View File

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--
- Copyright 2018-2021 KMath contributors.
- Copyright 2018-2024 KMath contributors.
- Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
-->

Before

Width:  |  Height:  |  Size: 278 KiB

After

Width:  |  Height:  |  Size: 278 KiB

View File

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--
- Copyright 2018-2021 KMath contributors.
- Copyright 2018-2024 KMath contributors.
- Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
-->

Before

Width:  |  Height:  |  Size: 118 KiB

After

Width:  |  Height:  |  Size: 118 KiB

View File

@ -1,8 +1,12 @@
## Basic linear algebra layout
KMath support for linear algebra organized in a context-oriented way, which means that operations are in most cases declared in context classes, and are not the members of classes that store data. This allows more flexible approach to maintain multiple back-ends. The new operations added as extensions to contexts instead of being member functions of data structures.
KMath support for linear algebra organized in a context-oriented way, which means that operations are in most cases
declared in context classes, and are not the members of classes that store data. This allows more flexible approach to
maintain multiple back-ends. The new operations added as extensions to contexts instead of being member functions of
data structures.
The main context for linear algebra over matrices and vectors is `LinearSpace`, which defines addition and dot products of matrices and vectors:
The main context for linear algebra over matrices and vectors is `LinearSpace`, which defines addition and dot products
of matrices and vectors:
```kotlin
import space.kscience.kmath.linear.*
@ -28,4 +32,5 @@ LinearSpace.Companion.real {
## Backends overview
### EJML
### Commons Math

View File

@ -8,6 +8,7 @@ One of the most sought after features of mathematical libraries is the high-perf
structures. In `kmath` performance depends on which particular context was used for operation.
Let us consider following contexts:
```kotlin
// automatically build context most suited for given type.
val autoField = NDField.auto(DoubleField, dim, dim)
@ -16,6 +17,7 @@ Let us consider following contexts:
//A generic boxing field. It should be used for objects, not primitives.
val genericField = NDField.buffered(DoubleField, dim, dim)
```
Now let us perform several tests and see, which implementation is best suited for each case:
## Test case
@ -24,7 +26,9 @@ To test performance we will take 2d-structures with `dim = 1000` and add a struc
to it `n = 1000` times.
## Specialized
The code to run this looks like:
```kotlin
specializedField.run {
var res: NDBuffer<Double> = one
@ -33,13 +37,16 @@ The code to run this looks like:
}
}
```
The performance of this code is the best of all tests since it inlines all operations and is specialized for operation
with doubles. We will measure everything else relative to this one, so time for this test will be `1x` (real time
on my computer is about 4.5 seconds). The only problem with this approach is that it requires specifying type
from the beginning. Everyone does so anyway, so it is the recommended approach.
## Automatic
Let's do the same with automatic field inference:
```kotlin
autoField.run {
var res = one
@ -48,13 +55,16 @@ Let's do the same with automatic field inference:
}
}
```
Ths speed of this operation is approximately the same as for specialized case since `NDField.auto` just
returns the same `RealNDField` in this case. Of course, it is usually better to use specialized method to be sure.
## Lazy
Lazy field does not produce a structure when asked, instead it generates an empty structure and fills it on-demand
using coroutines to parallelize computations.
When one calls
```kotlin
lazyField.run {
var res = one
@ -63,12 +73,14 @@ When one calls
}
}
```
The result will be calculated almost immediately but the result will be empty. To get the full result
structure one needs to call all its elements. In this case computation overhead will be huge. So this field never
should be used if one expects to use the full result structure. Though if one wants only small fraction, it could
save a lot of time.
This field still could be used with reasonable performance if call code is changed:
```kotlin
lazyField.run {
val res = one.map {
@ -82,10 +94,13 @@ This field still could be used with reasonable performance if call code is chang
res.elements().forEach { it.second }
}
```
In this case it completes in about `4x-5x` time due to boxing.
## Boxing
The boxing field produced by
```kotlin
genericField.run {
var res: NDBuffer<Double> = one
@ -94,18 +109,22 @@ The boxing field produced by
}
}
```
is the slowest one, because it requires boxing and unboxing the `double` on each operation. It takes about
`15x` time (**TODO: there seems to be a problem here, it should be slow, but not that slow**). This field should
never be used for primitives.
## Element operation
Let us also check the speed for direct operations on elements:
```kotlin
var res = genericField.one
repeat(n) {
res += 1.0
}
```
One would expect to be at least as slow as field operation, but in fact, this one takes only `2x` time to complete.
It happens, because in this particular case it does not use actual `NDField` but instead calculated directly
via extension function.
@ -114,6 +133,7 @@ via extension function.
Usually it is bad idea to compare the direct numerical operation performance in different languages, but it hard to
work completely without frame of reference. In this case, simple numpy code:
```python
import numpy as np
@ -121,7 +141,9 @@ res = np.ones((1000,1000))
for i in range(1000):
res = res + 1.0
```
gives the completion time of about `1.1x`, which means that specialized kotlin code in fact is working faster (I think it is
gives the completion time of about `1.1x`, which means that specialized kotlin code in fact is working faster (I think
it is
because better memory management). Of course if one writes `res += 1.0`, the performance will be different,
but it would be different case, because numpy overrides `+=` with in-place operations. In-place operations are
available in `kmath` with `MutableNDStructure` but there is no field for it (one can still work with mapping

223
docs/polynomials.md Normal file
View File

@ -0,0 +1,223 @@
# Polynomials and Rational Functions
KMath provides a way to work with uni- and multivariate polynomials and rational functions. It includes full support of
arithmetic operations of integers, **constants** (elements of ring polynomials are build over), variables (for certain
multivariate implementations), polynomials and rational functions encapsulated in so-called **polynomial space** and *
*rational function space** and some other utilities such as algebraic differentiation and substitution.
## Concrete realizations
There are 3 approaches to represent polynomials:
1. For univariate polynomials one can represent and store polynomial as a list of coefficients for each power of the
variable. I.e. polynomial $a_0 + \dots + a_n x^n $ can be represented as a finite sequence $(a_0; \dots; a_n)$. (
Compare to sequential definition of polynomials.)
2. For multivariate polynomials one can represent and store polynomial as a matching (in programming it is called "map"
or "dictionary", in math it is
called [functional relation](https://en.wikipedia.org/wiki/Binary_relation#Special_types_of_binary_relations)) of
each "**term signature**" (that describes what variables and in what powers appear in the term) with corresponding
coefficient of the term. But there are 2 possible approaches of term signature representation:
1. One can number all the variables, so term signature can be represented as a sequence describing powers of the
variables. I.e. signature of term $c \\; x_0^{d_0} \dots x_n^{d_n} $ (for natural or zero $d_i $) can be
represented as a finite sequence $(d_0; \dots; d_n)$.
2. One can represent variables as objects ("**labels**"), so term signature can be also represented as a matching of
each appeared variable with its power in the term. I.e. signature of term $c \\; x_0^{d_0} \dots x_n^{d_n} $ (for
natural non-zero $d_i $) can be represented as a finite matching $(x_0 \to d_1; \dots; x_n \to d_n)$.
All that three approaches are implemented by "list", "numbered", and "labeled" versions of polynomials and polynomial
spaces respectively. Whereas all rational functions are represented as fractions with corresponding polynomial numerator
and denominator, and rational functions' spaces are implemented in the same way as usual field of rational numbers (or
more precisely, as any field of fractions over integral domain) should be implemented.
So here are a bit of details. Let `C` by type of constants. Then:
1. `ListPolynomial`, `ListPolynomialSpace`, `ListRationalFunction` and `ListRationalFunctionSpace` implement the first
scenario. `ListPolynomial` stores polynomial $a_0 + \dots + a_n x^n $ as a coefficients
list `listOf(a_0, ..., a_n)` (of type `List<C>`).
They also have variation `ScalableListPolynomialSpace` that replaces former polynomials and
implements `ScaleOperations`.
2. `NumberedPolynomial`, `NumberedPolynomialSpace`, `NumberedRationalFunction` and `NumberedRationalFunctionSpace`
implement second scenario. `NumberedPolynomial` stores polynomials as structures of type `Map<List<UInt>, C>`.
Signatures are stored as `List<UInt>`. To prevent ambiguity signatures should not end with zeros.
3. `LabeledPolynomial`, `LabeledPolynomialSpace`, `LabeledRationalFunction` and `LabeledRationalFunctionSpace` implement
third scenario using common `Symbol` as variable type. `LabeledPolynomial` stores polynomials as structures of
type `Map<Map<Symbol, UInt>, C>`. Signatures are stored as `Map<Symbol, UInt>`. To prevent ambiguity each signature
should not map any variable to zero.
### Example: `ListPolynomial`
For example, polynomial $2 - 3x + x^2 $ (with `Int` coefficients) is represented
```kotlin
val polynomial: ListPolynomial<Int> = ListPolynomial(listOf(2, -3, 1))
// or
val polynomial: ListPolynomial<Int> = ListPolynomial(2, -3, 1)
```
All algebraic operations can be used in corresponding space:
```kotlin
val computationResult = Int.algebra.listPolynomialSpace {
ListPolynomial(2, -3, 1) + ListPolynomial(0, 6) == ListPolynomial(2, 3, 1)
}
println(computationResult) // true
```
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
### Example: `NumberedPolynomial`
For example, polynomial $3 + 5 x_1 - 7 x_0^2 x_2 $ (with `Int` coefficients) is represented
```kotlin
val polynomial: NumberedPolynomial<Int> = NumberedPolynomial(
mapOf(
listOf<UInt>() to 3,
listOf(0u, 1u) to 5,
listOf(2u, 0u, 1u) to -7,
)
)
// or
val polynomial: NumberedPolynomial<Int> = NumberedPolynomial(
listOf<UInt>() to 3,
listOf(0u, 1u) to 5,
listOf(2u, 0u, 1u) to -7,
)
```
All algebraic operations can be used in corresponding space:
```kotlin
val computationResult = Int.algebra.numberedPolynomialSpace {
NumberedPolynomial(
listOf<UInt>() to 3,
listOf(0u, 1u) to 5,
listOf(2u, 0u, 1u) to -7,
) + NumberedPolynomial(
listOf(0u, 1u) to -5,
listOf(0u, 0u, 0u, 4u) to 4,
) == NumberedPolynomial(
listOf<UInt>() to 3,
listOf(0u, 1u) to 0,
listOf(2u, 0u, 1u) to -7,
listOf(0u, 0u, 0u, 4u) to 4,
)
}
println(computationResult) // true
```
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
### Example: `LabeledPolynomial`
For example, polynomial $3 + 5 y - 7 x^2 z $ (with `Int` coefficients) is represented
```kotlin
val polynomial: LabeledPolynomial<Int> = LabeledPolynomial(
mapOf(
mapOf<Symbol, UInt>() to 3,
mapOf(y to 1u) to 5,
mapOf(x to 2u, z to 1u) to -7,
)
)
// or
val polynomial: LabeledPolynomial<Int> = LabeledPolynomial(
mapOf<Symbol, UInt>() to 3,
mapOf(y to 1u) to 5,
mapOf(x to 2u, z to 1u) to -7,
)
```
All algebraic operations can be used in corresponding space:
```kotlin
val computationResult = Int.algebra.labeledPolynomialSpace {
LabeledPolynomial(
listOf<UInt>() to 3,
listOf(0u, 1u) to 5,
listOf(2u, 0u, 1u) to -7,
) + LabeledPolynomial(
listOf(0u, 1u) to -5,
listOf(0u, 0u, 0u, 4u) to 4,
) == LabeledPolynomial(
listOf<UInt>() to 3,
listOf(0u, 1u) to 0,
listOf(2u, 0u, 1u) to -7,
listOf(0u, 0u, 0u, 4u) to 4,
)
}
println(computationResult) // true
```
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
## Abstract entities (interfaces and abstract classes)
```mermaid
classDiagram
Polynomial <|-- ListPolynomial
Polynomial <|-- NumberedPolynomial
Polynomial <|-- LabeledPolynomial
RationalFunction <|-- ListRationalFunction
RationalFunction <|-- NumberedRationalFunction
RationalFunction <|-- LabeledRationalFunction
Ring <|-- PolynomialSpace
PolynomialSpace <|-- MultivariatePolynomialSpace
PolynomialSpace <|-- PolynomialSpaceOverRing
Ring <|-- RationalFunctionSpace
RationalFunctionSpace <|-- MultivariateRationalFunctionSpace
RationalFunctionSpace <|-- RationalFunctionSpaceOverRing
RationalFunctionSpace <|-- RationalFunctionSpaceOverPolynomialSpace
RationalFunctionSpace <|-- PolynomialSpaceOfFractions
RationalFunctionSpaceOverPolynomialSpace <|-- MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace
MultivariateRationalFunctionSpace <|-- MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace
MultivariateRationalFunctionSpace <|-- MultivariatePolynomialSpaceOfFractions
PolynomialSpaceOfFractions <|-- MultivariatePolynomialSpaceOfFractions
```
There are implemented `Polynomial` and `RationalFunction` interfaces as abstractions of polynomials and rational
functions respectively (although, there is not a lot of logic in them) and `PolynomialSpace`
and `RationalFunctionSpace` (that implement `Ring` interface) as abstractions of polynomials' and rational functions'
spaces respectively. More precisely, that means they allow to declare common logic of interaction with such objects and
spaces:
- `Polynomial` does not provide any logic. It is marker interface.
- `RationalFunction` provides numerator and denominator of rational function and destructuring declaration for them.
- `PolynomialSpace` provides all possible arithmetic interactions of integers, constants (of type `C`), and
polynomials (of type `P`) like addition, subtraction, multiplication, and some others and common properties like
degree of polynomial.
- `RationalFunctionSpace` provides the same as `PolynomialSpace` but also for rational functions: all possible
arithmetic interactions of integers, constants (of type `C`), polynomials (of type `P`), and rational functions (of
type `R`) like addition, subtraction, multiplication, division (in some cases), and some others and common properties
like degree of polynomial.
Then to add abstraction of similar behaviour with variables (in multivariate case) there are
implemented `MultivariatePolynomialSpace` and `MultivariateRationalFunctionSpace`. They just include variables (of
type `V`) in the interactions of the entities.
Also, to remove boilerplates there were provided helping subinterfaces and abstract subclasses:
- `PolynomialSpaceOverRing` allows to replace implementation of interactions of integers and constants with
implementations from provided ring over constants (of type `A: Ring<C>`).
- `RationalFunctionSpaceOverRing` &mdash; the same but for `RationalFunctionSpace`.
- `RationalFunctionSpaceOverPolynomialSpace` &mdash; the same but "the inheritance" includes interactions with
polynomials from provided `PolynomialSpace`.
- `PolynomialSpaceOfFractions` is actually abstract subclass of `RationalFunctionSpace` that implements all fractions
boilerplates with provided (`protected`) constructor of rational functions by polynomial numerator and denominator.
- `MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace` and `MultivariatePolynomialSpaceOfFractions`
&mdash; the same stories of operators inheritance and fractions boilerplates respectively but in multivariate case.
## Utilities
For all kinds of polynomials there are provided (implementation details depend on kind of polynomials) such common
utilities as:
1. differentiation and anti-differentiation,
2. substitution, invocation and functional representation.

View File

@ -3,17 +3,7 @@
The Maven coordinates of this project are `${group}:${name}:${version}`.
**Gradle:**
```gradle
repositories {
maven { url 'https://repo.kotlin.link' }
mavenCentral()
}
dependencies {
implementation '${group}:${name}:${version}'
}
```
**Gradle Kotlin DSL:**
```kotlin
repositories {
maven("https://repo.kotlin.link")

View File

@ -1,6 +1,6 @@
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg)
![Gradle build](https://github.com/SciProgCentre/kmath/workflows/Gradle%20build/badge.svg)
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22)
[![Space](https://img.shields.io/badge/dynamic/xml?color=orange&label=Space&query=//metadata/versioning/latest&url=https%3A%2F%2Fmaven.pkg.jetbrains.space%2Fmipt-npm%2Fp%2Fsci%2Fmaven%2Fspace%2Fkscience%2Fkmath-core%2Fmaven-metadata.xml)](https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven/space/kscience/)
@ -11,18 +11,22 @@ analog to Python's NumPy library. Later we found that kotlin is much more flexib
architecture designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like
experience could be achieved with [kmath-for-real](/kmath-for-real) extension module.
[Documentation site (**WIP**)](https://mipt-npm.github.io/kmath/)
[Documentation site](https://SciProgCentre.github.io/kmath/)
## Publications and talks
* [A conceptual article about context-oriented design](https://proandroiddev.com/an-introduction-context-oriented-programming-in-kotlin-2e79d316b0a2)
* [Another article about context-oriented design](https://proandroiddev.com/diving-deeper-into-context-oriented-programming-in-kotlin-3ecb4ec38814)
* [ACAT 2019 conference paper](https://aip.scitation.org/doi/abs/10.1063/1.5130103)
* [A talk at KotlinConf 2019 about using kotlin for science](https://youtu.be/LI_5TZ7tnOE?si=4LknX41gl_YeUbIe)
* [A talk on architecture at Joker-2021 (in Russian)](https://youtu.be/1bZ2doHiRRM?si=9w953ro9yu98X_KJ)
* [The same talk in English](https://youtu.be/yP5DIc2fVwQ?si=louZzQ1dcXV6gP10)
* [A seminar on tensor API](https://youtu.be/0H99wUs0xTM?si=6c__04jrByFQtVpo)
# Goal
* Provide a flexible and powerful API to work with mathematics abstractions in Kotlin-multiplatform (JVM, JS and Native)
.
* Provide a flexible and powerful API to work with mathematics abstractions in Kotlin-multiplatform (JVM, JS, Native and
Wasm).
* Provide basic multiplatform implementations for those abstractions (without significant performance optimization).
* Provide bindings and wrappers with those abstractions for popular optimized platform libraries.
@ -44,7 +48,7 @@ module definitions below. The module stability could have the following levels:
* **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could
break any moment. You can still use it, but be sure to fix the specific version.
* **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked
with `@UnstableKmathAPI` or other stability warning annotations.
with `@UnstableKMathAPI` or other stability warning annotations.
* **DEVELOPMENT**. API breaking generally follows semantic versioning ideology. There could be changes in minor
versions, but not in patch versions. API is protected
with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
@ -59,23 +63,24 @@ ${modules}
KMath is developed as a multi-platform library, which means that most of the interfaces are declared in the
[common source sets](/kmath-core/src/commonMain) and implemented there wherever it is possible. In some cases, features
are delegated to platform-specific implementations even if they could be provided in the common module for performance
reasons. Currently, the Kotlin/JVM is the primary platform, however Kotlin/Native and Kotlin/JS contributions and
reasons. Currently, Kotlin/JVM is the primary platform, however, Kotlin/Native and Kotlin/JS contributions and
feedback are also welcome.
## Performance
Calculation performance is one of major goals of KMath in the future, but in some cases it is impossible to achieve both
Calculation of performance is one of the major goals of KMath in the future, but in some cases it is impossible to
achieve both
performance and flexibility.
We expect to focus on creating convenient universal API first and then work on increasing performance for specific
We expect to focus on creating a convenient universal API first and then work on increasing performance for specific
cases. We expect the worst KMath benchmarks will perform better than native Python, but worse than optimized
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be
better than SciPy.
## Requirements
KMath currently relies on JDK 11 for compilation and execution of Kotlin-JVM part. We recommend to use GraalVM-CE 11 for
execution to get better performance.
KMath currently relies on JDK 11 for compilation and execution of Kotlin-JVM part. We recommend using GraalVM-CE or
Oracle GraalVM for execution to get better performance.
### Repositories
@ -95,11 +100,10 @@ dependencies {
}
```
Gradle `6.0+` is required for multiplatform artifacts.
## Contributing
The project requires a lot of additional work. The most important thing we need is a feedback about what features are
The project requires a lot of additional work. The most important thing we need is feedback about what features are
required the most. Feel free to create feature requests. We are also welcome to code contributions, especially in issues
marked with
[waiting for a hero](https://github.com/mipt-npm/kmath/labels/waiting%20for%20a%20hero) label.
marked
with [good first issue](hhttps://github.com/SciProgCentre/kmath/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22)
label.

View File

@ -1,3 +1,5 @@
import org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile
plugins {
kotlin("jvm")
}
@ -8,6 +10,8 @@ repositories {
maven("https://maven.pkg.jetbrains.space/kotlin/p/kotlin/kotlin-js-wrappers")
}
val multikVersion: String by rootProject.extra
dependencies {
implementation(project(":kmath-ast"))
implementation(project(":kmath-kotlingrad"))
@ -15,6 +19,7 @@ dependencies {
implementation(project(":kmath-coroutines"))
implementation(project(":kmath-commons"))
implementation(project(":kmath-complex"))
implementation(project(":kmath-functions"))
implementation(project(":kmath-optimization"))
implementation(project(":kmath-stat"))
implementation(project(":kmath-viktor"))
@ -28,7 +33,10 @@ dependencies {
implementation(project(":kmath-jafama"))
//multik
implementation(project(":kmath-multik"))
implementation("org.jetbrains.kotlinx:multik-default:$multikVersion")
//datetime
implementation("org.jetbrains.kotlinx:kotlinx-datetime:0.4.0")
implementation("org.nd4j:nd4j-native:1.0.0-beta7")
@ -42,29 +50,28 @@ dependencies {
// } else
implementation("org.nd4j:nd4j-native-platform:1.0.0-beta7")
// multik implementation
implementation("org.jetbrains.kotlinx:multik-default:0.1.0")
implementation("org.slf4j:slf4j-simple:1.7.32")
// plotting
implementation("space.kscience:plotlykt-server:0.5.0")
implementation("space.kscience:plotlykt-server:0.7.0")
}
kotlin.sourceSets.all {
with(languageSettings) {
optIn("kotlin.contracts.ExperimentalContracts")
optIn("kotlin.ExperimentalUnsignedTypes")
optIn("space.kscience.kmath.misc.UnstableKMathAPI")
kotlin {
jvmToolchain(11)
sourceSets.all {
languageSettings {
optIn("kotlin.contracts.ExperimentalContracts")
optIn("kotlin.ExperimentalUnsignedTypes")
optIn("space.kscience.kmath.UnstableKMathAPI")
}
}
}
tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile> {
kotlinOptions {
jvmTarget = "11"
freeCompilerArgs = freeCompilerArgs + "-Xjvm-default=all" + "-Xopt-in=kotlin.RequiresOptIn" + "-Xlambdas=indy"
tasks.withType<KotlinJvmCompile> {
compilerOptions {
freeCompilerArgs.addAll("-Xjvm-default=all", "-Xopt-in=kotlin.RequiresOptIn", "-Xlambdas=indy")
}
}
readme {
maturity = ru.mipt.npm.gradle.Maturity.EXPERIMENTAL
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL
}

View File

@ -0,0 +1,418 @@
{
"cells": [
{
"cell_type": "code",
"source": [
"%use kmath(0.3.1-dev-5)\n",
"%use plotly(0.5.0)\n",
"@file:DependsOn(\"space.kscience:kmath-commons:0.3.1-dev-5\")"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "lQbSB87rNAn9lV6poArVWW",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"//Uncomment to work in Jupyter classic or DataLore\n",
"//Plotly.jupyter.notebook()"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "0UP158hfccGgjQtHz0wAi6",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"# The model\n",
"\n",
"Defining the input data format, the statistic abstraction and the statistic implementation based on a weighted sum of elements."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"class XYValues(val xValues: DoubleArray, val yValues: DoubleArray) {\n",
" init {\n",
" require(xValues.size == yValues.size)\n",
" }\n",
"}\n",
"\n",
"fun interface XYStatistic {\n",
" operator fun invoke(values: XYValues): Double\n",
"}\n",
"\n",
"class ConvolutionalXYStatistic(val weights: DoubleArray) : XYStatistic {\n",
" override fun invoke(values: XYValues): Double {\n",
" require(weights.size == values.yValues.size)\n",
" val norm = values.yValues.sum()\n",
" return values.yValues.zip(weights) { value, weight -> value * weight }.sum()/norm\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "Zhgz1Ui91PWz0meJiQpHol",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"# Generator\n",
"Generate sample data for parabolas and hyperbolas"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"fun generateParabolas(xValues: DoubleArray, a: Double, b: Double, c: Double): XYValues {\n",
" val yValues = xValues.map { x -> a * x * x + b * x + c }.toDoubleArray()\n",
" return XYValues(xValues, yValues)\n",
"}\n",
"\n",
"fun generateHyperbols(xValues: DoubleArray, gamma: Double, x0: Double, y0: Double): XYValues {\n",
" val yValues = xValues.map { x -> y0 + gamma / (x - x0) }.toDoubleArray()\n",
" return XYValues(xValues, yValues)\n",
"}"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"val xValues = (1.0..10.0).step(1.0).toDoubleArray()\n",
"\n",
"val xy = generateHyperbols(xValues, 1.0, 0.0, 0.0)\n",
"\n",
"Plotly.plot {\n",
" scatter {\n",
" this.x.doubles = xValues\n",
" this.y.doubles = xy.yValues\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "ZE2atNvFzQsCvpAF8KK4ch",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Create a default statistic with uniform weights"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"val statistic = ConvolutionalXYStatistic(DoubleArray(xValues.size){1.0})\n",
"statistic(xy)"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "EA5HaydTddRKYrtAUwd29h",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"import kotlin.random.Random\n",
"\n",
"val random = Random(1288)\n",
"\n",
"val parabolas = buildList{\n",
" repeat(500){\n",
" add(\n",
" generateParabolas(\n",
" xValues, \n",
" random.nextDouble(), \n",
" random.nextDouble(), \n",
" random.nextDouble()\n",
" )\n",
" )\n",
" }\n",
"}\n",
"\n",
"val hyperbolas: List<XYValues> = buildList{\n",
" repeat(500){\n",
" add(\n",
" generateHyperbols(\n",
" xValues, \n",
" random.nextDouble()*10, \n",
" random.nextDouble(), \n",
" random.nextDouble()\n",
" )\n",
" )\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "t5t6IYmD7Q1ykeo9uijFfQ",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"Plotly.plot { \n",
" scatter { \n",
" x.doubles = xValues\n",
" y.doubles = parabolas[257].yValues\n",
" }\n",
" scatter { \n",
" x.doubles = xValues\n",
" y.doubles = hyperbolas[252].yValues\n",
" }\n",
" }"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "oXB8lmju7YVYjMRXITKnhO",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"Plotly.plot { \n",
" histogram { \n",
" name = \"parabolae\"\n",
" x.numbers = parabolas.map { statistic(it) }\n",
" }\n",
" histogram { \n",
" name = \"hyperbolae\"\n",
" x.numbers = hyperbolas.map { statistic(it) }\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "8EIIecUZrt2NNrOkhxG5P0",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"val lossFunction: (XYStatistic) -> Double = { statistic ->\n",
" - abs(parabolas.sumOf { statistic(it) } - hyperbolas.sumOf { statistic(it) })\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "h7UmglJW5zXkAfKHK40oIL",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Using commons-math optimizer to optimize weights"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"import org.apache.commons.math3.optim.*\n",
"import org.apache.commons.math3.optim.nonlinear.scalar.*\n",
"import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.*\n",
"\n",
"val optimizer = SimplexOptimizer(1e-1, Double.MAX_VALUE)\n",
"\n",
"val result = optimizer.optimize(\n",
" ObjectiveFunction { point ->\n",
" lossFunction(ConvolutionalXYStatistic(point))\n",
" },\n",
" NelderMeadSimplex(xValues.size),\n",
" InitialGuess(DoubleArray(xValues.size){ 1.0 }),\n",
" GoalType.MINIMIZE,\n",
" MaxEval(100000)\n",
")"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "0EG3K4aCUciMlgGQKPvJ57",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Print resulting weights of optimization"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"result.point"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "LelUlY0ZSlJEO9yC6SLk5B",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"Plotly.plot { \n",
" scatter { \n",
" y.doubles = result.point\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "AuFOq5t9KpOIkGrOLsVXNf",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"# The resulting statistic distribution"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"val resultStatistic = ConvolutionalXYStatistic(result.point)\n",
"Plotly.plot { \n",
" histogram { \n",
" name = \"parabolae\"\n",
" x.numbers = parabolas.map { resultStatistic(it) }\n",
" }\n",
" histogram { \n",
" name = \"hyperbolae\"\n",
" x.numbers = hyperbolas.map { resultStatistic(it) }\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "zvmq42DRdM5mZ3SpzviHwI",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Kotlin",
"language": "kotlin",
"name": "kotlin"
},
"datalore": {
"version": 1,
"computation_mode": "JUPYTER",
"package_manager": "pip",
"base_environment": "default",
"packages": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -8,13 +8,13 @@ package space.kscience.kmath.ast
import space.kscience.kmath.asm.compileToExpression
import space.kscience.kmath.expressions.MstExtendedField
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.operations.invoke
fun main() {
val expr = MstExtendedField {
x * 2.0 + number(2.0) / x - number(16.0) + asinh(x) / sin(x)
}.compileToExpression(DoubleField)
}.compileToExpression(Float64Field)
val m = DoubleArray(expr.indexer.symbols.size)
val xIdx = expr.indexer.indexOf(x)

View File

@ -1,16 +1,16 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.ast
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.derivative
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.toExpression
import space.kscience.kmath.kotlingrad.toKotlingradExpression
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
/**
* In this example, *x<sup>2</sup> &minus; 4 x &minus; 44* function is differentiated with Kotlin, and the
@ -19,9 +19,9 @@ import space.kscience.kmath.operations.DoubleField
fun main() {
val actualDerivative = "x^2-4*x-44"
.parseMath()
.toKotlingradExpression(DoubleField)
.toKotlingradExpression(Float64Field)
.derivative(x)
val expectedDerivative = "2*x-4".parseMath().toExpression(DoubleField)
val expectedDerivative = "2*x-4".parseMath().toExpression(Float64Field)
check(actualDerivative(x to 123.0) == expectedDerivative(x to 123.0))
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -9,7 +9,7 @@ import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.derivative
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.expressions.toExpression
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.symja.toSymjaExpression
/**
@ -19,9 +19,9 @@ import space.kscience.kmath.symja.toSymjaExpression
fun main() {
val actualDerivative = "x^2-4*x-44"
.parseMath()
.toSymjaExpression(DoubleField)
.toSymjaExpression(Float64Field)
.derivative(x)
val expectedDerivative = "2*x-4".parseMath().toExpression(DoubleField)
val expectedDerivative = "2*x-4".parseMath().toExpression(Float64Field)
check(actualDerivative(x to 123.0) == expectedDerivative(x to 123.0))
}

View File

@ -0,0 +1,92 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.expressions
import space.kscience.kmath.UnstableKMathAPI
// Only kmath-core is needed.
// Let's declare some variables
val x by symbol
val y by symbol
val z by symbol
@OptIn(UnstableKMathAPI::class)
fun main() {
// Let's define some random expression.
val someExpression = Double.autodiff.differentiate {
// We bind variables `x` and `y` to the builder scope,
val x = bindSymbol(x)
val y = bindSymbol(y)
// Then we use the bindings to define expression `xy + x + y - 1`
x * y + x + y - 1
}
// Then we can evaluate it at any point ((-1, -1) in the case):
println(someExpression(x to -1.0, y to -1.0))
// >>> -2.0
// We can also construct its partial derivatives:
val dxExpression = someExpression.derivative(x) // ∂/∂x. Must be `y+1`
val dyExpression = someExpression.derivative(y) // ∂/∂y. Must be `x+1`
val dxdxExpression = someExpression.derivative(x, x) // ∂^2/∂x^2. Must be `0`
// We can evaluate them as well
println(dxExpression(x to 57.0, y to 6.0))
// >>> 7.0
println(dyExpression(x to -1.0, y to 179.0))
// >>> 0.0
println(dxdxExpression(x to 239.0, y to 30.0))
// >>> 0.0
// You can also provide extra arguments that obviously won't affect the result:
println(dxExpression(x to 57.0, y to 6.0, z to 42.0))
// >>> 7.0
println(dyExpression(x to -1.0, y to 179.0, z to 0.0))
// >>> 0.0
println(dxdxExpression(x to 239.0, y to 30.0, z to 100_000.0))
// >>> 0.0
// But in case you forgot to specify bound symbol's value, exception is thrown:
println(runCatching { someExpression(z to 4.0) })
// >>> Failure(java.lang.IllegalStateException: Symbol 'x' is not supported in ...)
// The reason is that the expression is evaluated lazily,
// and each `bindSymbol` operation actually substitutes the provided symbol with the corresponding value.
// For example, let there be an expression
val simpleExpression = Double.autodiff.differentiate {
val x = bindSymbol(x)
x pow 2
}
// When you evaluate it via
simpleExpression(x to 1.0, y to 57.0, z to 179.0)
// lambda above has the context of map `{x: 1.0, y: 57.0, z: 179.0}`.
// When x is bound, you can think of it as substitution `x -> 1.0`.
// Other values are unused which does not make any problem to us.
// But in the case the corresponding value is not provided,
// we cannot bind the variable. Thus, exception is thrown.
// There is also a function `bindSymbolOrNull` that fixes the problem:
val fixedExpression = Double.autodiff.differentiate {
val x = bindSymbolOrNull(x) ?: const(8.0)
x pow -2
}
println(fixedExpression())
// >>> 0.015625
// It works!
// The expression provides a bunch of operations:
// 1. Constant bindings (via `const` and `number`).
// 2. Variable bindings (via `bindVariable`, `bindVariableOrNull`).
// 3. Arithmetic operations (via `+`, `-`, `*`, and `-`).
// 4. Exponentiation (via `pow` or `power`).
// 5. `exp` and `ln`.
// 6. Trigonometrical functions (`sin`, `cos`, `tan`, `cot`).
// 7. Inverse trigonometrical functions (`asin`, `acos`, `atan`, `acot`).
// 8. Hyperbolic functions and inverse hyperbolic functions.
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -7,21 +7,18 @@ package space.kscience.kmath.fit
import kotlinx.html.br
import kotlinx.html.h3
import space.kscience.kmath.commons.expressions.DSProcessor
import space.kscience.kmath.commons.optimization.CMOptimizer
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.expressions.chiSquaredExpression
import space.kscience.kmath.expressions.autodiff
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.asIterable
import space.kscience.kmath.operations.toList
import space.kscience.kmath.optimization.FunctionOptimizationTarget
import space.kscience.kmath.optimization.optimizeWith
import space.kscience.kmath.optimization.resultPoint
import space.kscience.kmath.optimization.resultValue
import space.kscience.kmath.optimization.*
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.real.DoubleVector
import space.kscience.kmath.real.map
import space.kscience.kmath.real.step
import space.kscience.kmath.stat.RandomGenerator
import space.kscience.kmath.stat.chiSquaredExpression
import space.kscience.plotly.*
import space.kscience.plotly.models.ScatterMode
import space.kscience.plotly.models.TraceValues
@ -67,7 +64,7 @@ suspend fun main() {
val yErr = y.map { sqrt(it) }//RealVector.same(x.size, sigma)
// compute differentiable chi^2 sum for given model ax^2 + bx + c
val chi2 = DSProcessor.chiSquaredExpression(x, y, yErr) { arg ->
val chi2 = Double.autodiff.chiSquaredExpression(x, y, yErr) { arg ->
//bind variables to autodiff context
val a = bindSymbol(a)
val b = bindSymbol(b)
@ -80,8 +77,9 @@ suspend fun main() {
val result = chi2.optimizeWith(
CMOptimizer,
mapOf(a to 1.5, b to 0.9, c to 1.0),
FunctionOptimizationTarget.MINIMIZE
)
) {
FunctionOptimizationTarget(OptimizationDirection.MINIMIZE)
}
//display a page with plot and numerical results
val page = Plotly.page {
@ -98,7 +96,7 @@ suspend fun main() {
scatter {
mode = ScatterMode.lines
x(x)
y(x.map { result.resultPoint[a]!! * it.pow(2) + result.resultPoint[b]!! * it + 1 })
y(x.map { result.result[a]!! * it.pow(2) + result.result[b]!! * it + 1 })
name = "fit"
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -7,21 +7,19 @@ package space.kscience.kmath.fit
import kotlinx.html.br
import kotlinx.html.h3
import space.kscience.kmath.commons.expressions.DSProcessor
import space.kscience.attributes.Attributes
import space.kscience.kmath.data.XYErrorColumnarData
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.expressions.autodiff
import space.kscience.kmath.expressions.binding
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.asIterable
import space.kscience.kmath.operations.toList
import space.kscience.kmath.optimization.QowOptimizer
import space.kscience.kmath.optimization.chiSquaredOrNull
import space.kscience.kmath.optimization.fitWith
import space.kscience.kmath.optimization.resultPoint
import space.kscience.kmath.optimization.*
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.real.map
import space.kscience.kmath.real.step
import space.kscience.kmath.stat.RandomGenerator
import space.kscience.plotly.*
import space.kscience.plotly.models.ScatterMode
import kotlin.math.abs
@ -32,6 +30,8 @@ import kotlin.math.sqrt
private val a by symbol
private val b by symbol
private val c by symbol
private val d by symbol
private val e by symbol
/**
@ -63,17 +63,23 @@ suspend fun main() {
val result = XYErrorColumnarData.of(x, y, yErr).fitWith(
QowOptimizer,
DSProcessor,
mapOf(a to 0.9, b to 1.2, c to 2.0)
Double.autodiff,
mapOf(a to 0.9, b to 1.2, c to 2.0, e to 1.0, d to 1.0, e to 0.0),
attributes = Attributes(OptimizationParameters, listOf(a, b, c, d))
) { arg ->
//bind variables to autodiff context
val a by binding
val b by binding
//Include default value for c if it is not provided as a parameter
val c = bindSymbolOrNull(c) ?: one
a * arg.pow(2) + b * arg + c
val d by binding
val e by binding
a * arg.pow(2) + b * arg + c + d * arg.pow(3) + e / arg
}
println("Resulting chi2/dof: ${result.chiSquaredOrNull}/${result.dof}")
//display a page with plot and numerical results
val page = Plotly.page {
plot {
@ -89,16 +95,16 @@ suspend fun main() {
scatter {
mode = ScatterMode.lines
x(x)
y(x.map { result.model(result.resultPoint + (Symbol.x to it)) })
y(x.map { result.model(result.startPoint + result.result + (Symbol.x to it)) })
name = "fit"
}
}
br()
h3 {
+"Fit result: ${result.resultPoint}"
+"Fit result: ${result.result}"
}
h3 {
+"Chi2/dof = ${result.chiSquaredOrNull!! / (x.size - 3)}"
+"Chi2/dof = ${result.chiSquaredOrNull!! / result.dof}"
}
}

View File

@ -1,14 +1,19 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.ComplexField
import space.kscience.kmath.complex.ComplexField.div
import space.kscience.kmath.complex.ComplexField.minus
import space.kscience.kmath.complex.algebra
import space.kscience.kmath.integration.gaussIntegrator
import space.kscience.kmath.integration.integrate
import space.kscience.kmath.integration.value
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import kotlin.math.pow
fun main() {
@ -16,8 +21,16 @@ fun main() {
val function: Function1D<Double> = { x -> 3 * x.pow(2) + 2 * x + 1 }
//get the result of the integration
val result = DoubleField.gaussIntegrator.integrate(0.0..10.0, function = function)
val result = Float64Field.gaussIntegrator.integrate(0.0..10.0, function = function)
//the value is nullable because in some cases the integration could not succeed
println(result.value)
repeat(100000) {
Complex.algebra.gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
// sin(1 / x) + i * cos(1 / x)
1 / x - ComplexField.i / x
}.value
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -7,8 +7,7 @@ package space.kscience.kmath.functions
import space.kscience.kmath.interpolation.SplineInterpolator
import space.kscience.kmath.interpolation.interpolatePolynomials
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.operations.Float64Field
import space.kscience.plotly.Plotly
import space.kscience.plotly.UnstablePlotlyAPI
import space.kscience.plotly.makeFile
@ -24,11 +23,9 @@ fun main() {
x to sin(x)
}
val polynomial: PiecewisePolynomial<Double> = SplineInterpolator(
DoubleField, ::DoubleBuffer
).interpolatePolynomials(data)
val polynomial: PiecewisePolynomial<Double> = SplineInterpolator(Float64Field).interpolatePolynomials(data)
val function = polynomial.asFunction(DoubleField, 0.0)
val function = polynomial.asFunction(Float64Field, 0.0)
val cmInterpolate = org.apache.commons.math3.analysis.interpolation.SplineInterpolator().interpolate(
data.map { it.first }.toDoubleArray(),

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -7,7 +7,7 @@ package space.kscience.kmath.functions
import space.kscience.kmath.interpolation.interpolatePolynomials
import space.kscience.kmath.interpolation.splineInterpolator
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.real.map
import space.kscience.kmath.real.step
import space.kscience.plotly.Plotly
@ -28,9 +28,9 @@ fun main() {
val xs = 0.0..100.0 step 0.5
val ys = xs.map(function)
val polynomial: PiecewisePolynomial<Double> = DoubleField.splineInterpolator.interpolatePolynomials(xs, ys)
val polynomial: PiecewisePolynomial<Double> = Float64Field.splineInterpolator.interpolatePolynomials(xs, ys)
val polyFunction = polynomial.asFunction(DoubleField, 0.0)
val polyFunction = polynomial.asFunction(Float64Field, 0.0)
Plotly.plot {
scatter {

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -12,23 +12,21 @@ import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.structureND
import space.kscience.kmath.nd.withNdAlgebra
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.invoke
import kotlin.math.pow
fun main(): Unit = Double.algebra {
withNdAlgebra(2, 2) {
fun main(): Unit = Double.algebra.withNdAlgebra(2, 2) {
//Produce a diagonal StructureND
fun diagonal(v: Double) = structureND { (i, j) ->
if (i == j) v else 0.0
}
//Define a function in a nd space
val function: (Double) -> StructureND<Double> = { x: Double -> 3 * x.pow(2) + 2 * diagonal(x) + 1 }
//get the result of the integration
val result = gaussIntegrator.integrate(0.0..10.0, function = function)
//the value is nullable because in some cases the integration could not succeed
println(result.value)
//Produce a diagonal StructureND
fun diagonal(v: Double) = structureND { (i, j) ->
if (i == j) v else 0.0
}
}
//Define a function in a nd space
val function: (Double) -> StructureND<Double> = { x: Double -> 3 * x.pow(2) + 2 * diagonal(x) + 1 }
//get the result of the integration
val result = gaussIntegrator.integrate(0.0..10.0, function = function)
//the value is nullable because in some cases the integration could not succeed
println(result.value)
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/

View File

@ -1,31 +1,28 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.linear
import space.kscience.kmath.operations.algebra
import kotlin.random.Random
import kotlin.system.measureTimeMillis
import kotlin.time.measureTime
fun main() {
fun main() = with(Float64ParallelLinearSpace) {
val random = Random(12224)
val dim = 1000
//creating invertible matrix
val matrix1 = Double.algebra.linearSpace.buildMatrix(dim, dim) { i, j ->
val matrix1 = buildMatrix(dim, dim) { i, j ->
if (i <= j) random.nextDouble() else 0.0
}
val matrix2 = Double.algebra.linearSpace.buildMatrix(dim, dim) { i, j ->
val matrix2 = buildMatrix(dim, dim) { i, j ->
if (i <= j) random.nextDouble() else 0.0
}
val time = measureTimeMillis {
with(Double.algebra.linearSpace) {
repeat(10) {
matrix1 dot matrix2
}
val time = measureTime {
repeat(30) {
matrix1 dot matrix2
}
}

View File

@ -1,12 +1,12 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.linear
import space.kscience.kmath.real.*
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.Float64Buffer
fun main() {
val x0 = DoubleVector(0.0, 0.0, 0.0)
@ -19,9 +19,9 @@ fun main() {
fun ((Point<Double>) -> Double).grad(x: Point<Double>): Point<Double> {
require(x.size == x0.size)
return DoubleBuffer(x.size) { i ->
return Float64Buffer(x.size) { i ->
val h = sigma[i] / 5
val dVector = DoubleBuffer(x.size) { if (it == i) h else 0.0 }
val dVector = Float64Buffer(x.size) { if (it == i) h else 0.0 }
val f1 = this(x + dVector / 2)
val f0 = this(x - dVector / 2)
(f1 - f0) / h

View File

@ -0,0 +1,27 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.linear
import kotlin.random.Random
import kotlin.time.measureTime
fun main(): Unit = with(Float64LinearSpace) {
val random = Random(1224)
val dim = 500
//creating invertible matrix
val u = buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val l = buildMatrix(dim, dim) { i, j -> if (i >= j) random.nextDouble() else 0.0 }
val matrix = l dot u
val time = measureTime {
repeat(20) {
lupSolver().inverse(matrix)
}
}
println(time)
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -7,7 +7,6 @@ package space.kscience.kmath.operations
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.algebra
import space.kscience.kmath.complex.bufferAlgebra
import space.kscience.kmath.complex.ndAlgebra
import space.kscience.kmath.nd.BufferND
import space.kscience.kmath.nd.StructureND
@ -18,7 +17,7 @@ fun main() = Complex.algebra {
println(complex * 8 - 5 * i)
//flat buffer
val buffer = with(bufferAlgebra){
val buffer = with(bufferAlgebra) {
buffer(8) { Complex(it, -it) }.map { Complex(it.im, it.re) }
}
println(buffer)
@ -30,7 +29,7 @@ fun main() = Complex.algebra {
println(element)
// 1d element operation
val result: StructureND<Complex> = ndAlgebra{
val result: StructureND<Complex> = ndAlgebra {
val a = structureND(8) { (it) -> i * it - it.toDouble() }
val b = 3
val c = Complex(1.0, 1.0)

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -7,21 +7,22 @@ package space.kscience.kmath.operations
import space.kscience.kmath.commons.linear.CMLinearSpace
import space.kscience.kmath.linear.matrix
import space.kscience.kmath.nd.DoubleBufferND
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.Float64BufferND
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.nd.mutableStructureND
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.viktor.ViktorStructureND
import space.kscience.kmath.viktor.viktorAlgebra
import kotlin.collections.component1
import kotlin.collections.component2
fun main() {
val viktorStructure: ViktorStructureND = DoubleField.viktorAlgebra.structureND(Shape(2, 2)) { (i, j) ->
val viktorStructure = Float64Field.viktorAlgebra.mutableStructureND(2, 2) { (i, j) ->
if (i == j) 2.0 else 0.0
}
val cmMatrix: Structure2D<Double> = CMLinearSpace.matrix(2, 2)(0.0, 1.0, 0.0, 3.0)
val res: DoubleBufferND = DoubleField.ndAlgebra {
val res: Float64BufferND = Float64Field.ndAlgebra {
exp(viktorStructure) + 2.0 * cmMatrix
}

View File

@ -0,0 +1,17 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.series
import kotlinx.datetime.Instant
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.bufferAlgebra
import kotlin.time.Duration
fun SeriesAlgebra.Companion.time(zero: Instant, step: Duration) = MonotonicSeriesAlgebra(
bufferAlgebra = Double.algebra.bufferAlgebra,
offsetToLabel = { zero + step * it },
labelToOffset = { (it - zero) / step }
)

View File

@ -0,0 +1,64 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.series
import kotlinx.html.h1
import kotlinx.html.p
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.bufferAlgebra
import space.kscience.kmath.operations.toList
import space.kscience.kmath.stat.KMComparisonResult
import space.kscience.kmath.stat.ksComparisonStatistic
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.slice
import space.kscience.plotly.*
import kotlin.math.PI
fun Double.Companion.seriesAlgebra() = Double.algebra.bufferAlgebra.seriesAlgebra()
fun main() = with(Double.seriesAlgebra()) {
fun Plot.plotSeries(name: String, buffer: Buffer<Double>) {
scatter {
this.name = name
x.numbers = buffer.labels
y.numbers = buffer.toList()
}
}
val s1 = series(100) { sin(2 * PI * it / 100) + 1.0 }
val s2 = s1.slice(20..50).moveTo(40)
val s3: Buffer<Double> = s1.zip(s2) { l, r -> l + r } //s1 + s2
val s4 = s3.map { ln(it) }
val kmTest: KMComparisonResult<Double> = ksComparisonStatistic(s1, s2)
Plotly.page {
h1 { +"This is my plot" }
p {
+"Kolmogorov-smirnov test for s1 and s2: ${kmTest.value}"
}
plot {
plotSeries("s1", s1)
plotSeries("s2", s2)
plotSeries("s3", s3)
plotSeries("s4", s4)
layout {
xaxis {
range(0.0..100.0)
}
}
}
}.makeFile()
}

View File

@ -0,0 +1,50 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.series
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.Float64Buffer
import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.structures.toDoubleArray
import space.kscience.plotly.*
import space.kscience.plotly.models.Scatter
import space.kscience.plotly.models.ScatterMode
import kotlin.random.Random
fun main(): Unit = with(Double.seriesAlgebra()) {
val random = Random(1234)
val arrayOfRandoms = DoubleArray(20) { random.nextDouble() }
val series1: Float64Buffer = arrayOfRandoms.asBuffer()
val series2: Series<Double> = series1.moveBy(3)
val res = series2 - series1
println(res.size)
println(res)
fun Plot.series(name: String, buffer: Buffer<Double>, block: Scatter.() -> Unit = {}) {
scatter {
this.name = name
x.numbers = buffer.offsetIndices
y.doubles = buffer.toDoubleArray()
block()
}
}
Plotly.plot {
series("series1", series1)
series("series2", series2)
series("dif", res) {
mode = ScatterMode.lines
line.color("magenta")
}
}.makeFile(resourceLocation = ResourceLocation.REMOTE)
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -10,6 +10,7 @@ import kotlinx.coroutines.async
import kotlinx.coroutines.runBlocking
import org.apache.commons.rng.sampling.distribution.BoxMullerNormalizedGaussianSampler
import org.apache.commons.rng.simple.RandomSource
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.samplers.GaussianSampler
import java.time.Duration
import java.time.Instant
@ -35,7 +36,7 @@ private suspend fun runKMathChained(): Duration {
return Duration.between(startTime, Instant.now())
}
private fun runApacheDirect(): Duration {
private fun runCMDirect(): Duration {
val rng = RandomSource.create(RandomSource.MT, 123L)
val sampler = CMGaussianSampler.of(
@ -64,7 +65,7 @@ private fun runApacheDirect(): Duration {
* Comparing chain sampling performance with direct sampling performance
*/
fun main(): Unit = runBlocking(Dispatchers.Default) {
val directJob = async { runApacheDirect() }
val directJob = async { runCMDirect() }
val chainJob = async { runKMathChained() }
println("KMath Chained: ${chainJob.await()}")
println("Apache Direct: ${directJob.await()}")

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -9,6 +9,7 @@ import kotlinx.coroutines.runBlocking
import space.kscience.kmath.chains.Chain
import space.kscience.kmath.chains.combineWithState
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.random.RandomGenerator
private data class AveragingChainState(var num: Int = 0, var value: Double = 0.0)

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -8,12 +8,12 @@
package space.kscience.kmath.structures
import space.kscience.kmath.complex.*
import space.kscience.kmath.linear.transpose
import space.kscience.kmath.linear.transposed
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.nd.structureND
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.operations.invoke
import kotlin.system.measureTimeMillis
@ -21,7 +21,7 @@ fun main() {
val dim = 1000
val n = 1000
val realField = DoubleField.ndAlgebra(dim, dim)
val realField = Float64Field.ndAlgebra(dim, dim)
val complexField: ComplexFieldND = ComplexField.ndAlgebra(dim, dim)
val realTime = measureTimeMillis {
@ -60,7 +60,7 @@ fun complexExample() {
val sum = matrix + x + 1.0
//Represent the sum as 2d-structure and transpose
sum.as2D().transpose()
sum.as2D().transposed()
}
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -10,7 +10,7 @@ import kotlinx.coroutines.GlobalScope
import org.nd4j.linalg.factory.Nd4j
import space.kscience.kmath.nd.*
import space.kscience.kmath.nd4j.nd4j
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.viktor.ViktorFieldND
import kotlin.contracts.InvocationKind
@ -29,31 +29,29 @@ fun main() {
Nd4j.zeros(0)
val dim = 1000
val n = 1000
val shape = Shape(dim, dim)
val shape = ShapeND(dim, dim)
// automatically build context most suited for given type.
val autoField = BufferedFieldOpsND(DoubleField, Buffer.Companion::auto)
// specialized nd-field for Double. It works as generic Double field as well.
val realField = DoubleField.ndAlgebra
//A generic boxing field. It should be used for objects, not primitives.
val boxingField = BufferedFieldOpsND(DoubleField, Buffer.Companion::boxing)
val doubleField = Float64Field.ndAlgebra
//A generic field. It should be used for objects, not primitives.
val genericField = BufferedFieldOpsND(Float64Field)
// Nd4j specialized field.
val nd4jField = DoubleField.nd4j
val nd4jField = Float64Field.nd4j
//viktor field
val viktorField = ViktorFieldND(dim, dim)
//parallel processing based on Java Streams
val parallelField = DoubleField.ndStreaming(dim, dim)
val parallelField = Float64Field.ndStreaming(dim, dim)
measureAndPrint("Boxing addition") {
boxingField {
genericField {
var res: StructureND<Double> = one(shape)
repeat(n) { res += 1.0 }
}
}
measureAndPrint("Specialized addition") {
realField {
doubleField {
var res: StructureND<Double> = one(shape)
repeat(n) { res += 1.0 }
}
@ -80,15 +78,8 @@ fun main() {
}
}
measureAndPrint("Automatic field addition") {
autoField {
var res: StructureND<Double> = one(shape)
repeat(n) { res += 1.0 }
}
}
measureAndPrint("Lazy addition") {
val res = realField.one(shape).mapAsync(GlobalScope) {
val res = doubleField.one(shape).mapAsync(GlobalScope) {
var c = 0.0
repeat(n) {
c += 1.0

View File

@ -1,13 +1,15 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures
import space.kscience.kmath.PerformancePitfall
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.operations.NumbersAddOps
import java.util.*
import java.util.stream.IntStream
@ -16,12 +18,12 @@ import java.util.stream.IntStream
* A demonstration implementation of NDField over Real using Java [java.util.stream.DoubleStream] for parallel
* execution.
*/
class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, DoubleField>,
class StreamDoubleFieldND(override val shape: ShapeND) : FieldND<Double, Float64Field>,
NumbersAddOps<StructureND<Double>>,
ExtendedField<StructureND<Double>> {
private val strides = DefaultStrides(shape)
override val elementAlgebra: DoubleField get() = DoubleField
private val strides = ColumnStrides(shape)
override val elementAlgebra: Float64Field get() = Float64Field
override val zero: BufferND<Double> by lazy { structureND(shape) { zero } }
override val one: BufferND<Double> by lazy { structureND(shape) { one } }
@ -30,37 +32,53 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
return structureND(shape) { d }
}
private val StructureND<Double>.buffer: DoubleBuffer
@OptIn(PerformancePitfall::class)
private val StructureND<Double>.buffer: Float64Buffer
get() = when {
!shape.contentEquals(this@StreamDoubleFieldND.shape) -> throw ShapeMismatchException(
shape != this@StreamDoubleFieldND.shape -> throw ShapeMismatchException(
this@StreamDoubleFieldND.shape,
shape
)
this is BufferND && this.indices == this@StreamDoubleFieldND.strides -> this.buffer as DoubleBuffer
else -> DoubleBuffer(strides.linearSize) { offset -> get(strides.index(offset)) }
this is BufferND && indices == this@StreamDoubleFieldND.strides -> this.buffer as Float64Buffer
else -> Float64Buffer(strides.linearSize) { offset -> get(strides.index(offset)) }
}
override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): BufferND<Double> {
override fun structureND(shape: ShapeND, initializer: Float64Field.(IntArray) -> Double): BufferND<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
val index = strides.index(offset)
DoubleField.initializer(index)
Float64Field.initializer(index)
}.toArray()
return BufferND(strides, array.asBuffer())
}
override fun mutableStructureND(
shape: ShapeND,
initializer: DoubleField.(IntArray) -> Double,
): MutableBufferND<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
val index = strides.index(offset)
DoubleField.initializer(index)
}.toArray()
return MutableBufferND(strides, array.asBuffer())
}
@OptIn(PerformancePitfall::class)
override fun StructureND<Double>.map(
transform: DoubleField.(Double) -> Double,
transform: Float64Field.(Double) -> Double,
): BufferND<Double> {
val array = Arrays.stream(buffer.array).parallel().map { DoubleField.transform(it) }.toArray()
val array = Arrays.stream(buffer.array).parallel().map { Float64Field.transform(it) }.toArray()
return BufferND(strides, array.asBuffer())
}
@OptIn(PerformancePitfall::class)
override fun StructureND<Double>.mapIndexed(
transform: DoubleField.(index: IntArray, Double) -> Double,
transform: Float64Field.(index: IntArray, Double) -> Double,
): BufferND<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
DoubleField.transform(
Float64Field.transform(
strides.index(offset),
buffer.array[offset]
)
@ -69,13 +87,14 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
return BufferND(strides, array.asBuffer())
}
@OptIn(PerformancePitfall::class)
override fun zip(
left: StructureND<Double>,
right: StructureND<Double>,
transform: DoubleField.(Double, Double) -> Double,
transform: Float64Field.(Double, Double) -> Double,
): BufferND<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
DoubleField.transform(left.buffer.array[offset], right.buffer.array[offset])
Float64Field.transform(left.buffer.array[offset], right.buffer.array[offset])
}.toArray()
return BufferND(strides, array.asBuffer())
}
@ -105,4 +124,4 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
override fun atanh(arg: StructureND<Double>): BufferND<Double> = arg.map { atanh(it) }
}
fun DoubleField.ndStreaming(vararg shape: Int): StreamDoubleFieldND = StreamDoubleFieldND(shape)
fun Float64Field.ndStreaming(vararg shape: Int): StreamDoubleFieldND = StreamDoubleFieldND(ShapeND(shape))

View File

@ -1,20 +1,23 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures
import space.kscience.kmath.PerformancePitfall
import space.kscience.kmath.nd.BufferND
import space.kscience.kmath.nd.DefaultStrides
import space.kscience.kmath.nd.ColumnStrides
import space.kscience.kmath.nd.ShapeND
import kotlin.system.measureTimeMillis
@Suppress("ASSIGNED_BUT_NEVER_ACCESSED_VARIABLE")
@OptIn(PerformancePitfall::class)
fun main() {
val n = 6000
val array = DoubleArray(n * n) { 1.0 }
val buffer = DoubleBuffer(array)
val strides = DefaultStrides(intArrayOf(n, n))
val buffer = Float64Buffer(array)
val strides = ColumnStrides(ShapeND(n, n))
val structure = BufferND(strides, buffer)
measureTimeMillis {

View File

@ -1,20 +1,25 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.mapToBuffer
import space.kscience.kmath.nd.BufferND
import space.kscience.kmath.operations.mapToBuffer
import kotlin.system.measureTimeMillis
private inline fun <T, reified R : Any> BufferND<T>.mapToBufferND(
bufferFactory: BufferFactory<R> = BufferFactory(),
crossinline block: (T) -> R,
): BufferND<R> = BufferND(indices, buffer.mapToBuffer(bufferFactory, block))
@Suppress("UNUSED_VARIABLE")
fun main() {
val n = 6000
val structure = StructureND.buffered(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 }
structure.mapToBuffer { it + 1 } // warm-up
val time1 = measureTimeMillis { val res = structure.mapToBuffer { it + 1 } }
val structure = BufferND(n, n) { 1.0 }
structure.mapToBufferND { it + 1 } // warm-up
val time1 = measureTimeMillis { val res = structure.mapToBufferND { it + 1 } }
println("Structure mapping finished in $time1 millis")
val array = DoubleArray(n * n) { 1.0 }
@ -25,10 +30,10 @@ fun main() {
println("Array mapping finished in $time2 millis")
val buffer = DoubleBuffer(DoubleArray(n * n) { 1.0 })
val buffer = Float64Buffer(DoubleArray(n * n) { 1.0 })
val time3 = measureTimeMillis {
val target = DoubleBuffer(DoubleArray(n * n))
val target = Float64Buffer(DoubleArray(n * n))
val res = array.forEachIndexed { index, value ->
target[index] = value + 1
}

View File

@ -1,23 +1,23 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Float64Field
import space.kscience.kmath.operations.buffer
import space.kscience.kmath.operations.bufferAlgebra
import space.kscience.kmath.operations.withSize
inline fun <reified R : Any> MutableBuffer.Companion.same(
n: Int,
value: R
): MutableBuffer<R> = auto(n) { value }
value: R,
): MutableBuffer<R> = MutableBuffer(n) { value }
fun main() {
with(DoubleField.bufferAlgebra.withSize(5)) {
with(Float64Field.bufferAlgebra.withSize(5)) {
println(number(2.0) + buffer(1, 2, 3, 4, 5))
}
}

View File

@ -0,0 +1,26 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures
import space.kscience.kmath.PerformancePitfall
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.algebra
@OptIn(PerformancePitfall::class)
fun main(): Unit = with(Double.algebra.ndAlgebra) {
val structure: MutableStructure2D<Double> = mutableStructureND(ShapeND(2, 2)) { (i, j) ->
i.toDouble() + j.toDouble()
}.as2D()
structure[0, 1] = -2.0
val structure2 = mutableStructureND(2, 2) { (i, j) -> i.toDouble() + j.toDouble() }.as2D()
structure2[0, 1] = 2.0
println(structure + structure2)
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -15,7 +15,7 @@ private fun DMatrixContext<Double, *>.simple() {
val m2 = produce<D3, D2> { i, j -> (i + j).toDouble() }
//Dimension-safe addition
m1.transpose() + m2
m1.transposed() + m2
}
private object D5 : Dimension {

View File

@ -0,0 +1,92 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.LevenbergMarquardt.StaticLm
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.component1
import space.kscience.kmath.tensors.LevenbergMarquardt.funcDifficultForLm
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.div
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.LMInput
import space.kscience.kmath.tensors.core.levenbergMarquardt
import kotlin.math.roundToInt
fun main() {
val NData = 200
var t_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D()
for (i in 0 until NData) {
t_example[i, 0] = t_example[i, 0] * (i + 1) - 104
}
val Nparams = 15
var p_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
p_example[i, 0] = p_example[i, 0] + i - 25
}
val exampleNumber = 1
var y_hat = funcDifficultForLm(t_example, p_example, exampleNumber)
var p_init = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
p_init[i, 0] = (p_example[i, 0] + 0.9)
}
var t = t_example
val y_dat = y_hat
val weight = 1.0 / Nparams * 1.0 - 0.085
val dp = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
).as2D()
var p_min = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / -50.0)
val p_max = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / 50.0)
val opts = doubleArrayOf(3.0, 10000.0, 1e-6, 1e-6, 1e-6, 1e-6, 1e-2, 11.0, 9.0, 1.0)
// val opts = doubleArrayOf(3.0, 10000.0, 1e-6, 1e-6, 1e-6, 1e-6, 1e-3, 11.0, 9.0, 1.0)
val inputData = LMInput(
::funcDifficultForLm,
p_init.as2D(),
t,
y_dat,
weight,
dp,
p_min.as2D(),
p_max.as2D(),
opts[1].toInt(),
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
doubleArrayOf(opts[6], opts[7], opts[8]),
opts[9].toInt(),
10,
1
)
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
println("Parameters:")
for (i in 0 until result.resultParameters.shape.component1()) {
val x = (result.resultParameters[i, 0] * 10000).roundToInt() / 10000.0
print("$x ")
}
println()
println("Y true and y received:")
var y_hat_after = funcDifficultForLm(t_example, result.resultParameters, exampleNumber)
for (i in 0 until y_hat.shape.component1()) {
val x = (y_hat[i, 0] * 10000).roundToInt() / 10000.0
val y = (y_hat_after[i, 0] * 10000).roundToInt() / 10000.0
println("$x $y")
}
println("Сhi_sq:")
println(result.resultChiSq)
println("Number of iterations:")
println(result.iterations)
}

View File

@ -0,0 +1,59 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.LevenbergMarquardt.StaticLm
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.component1
import space.kscience.kmath.tensors.LevenbergMarquardt.funcDifficultForLm
import space.kscience.kmath.tensors.LevenbergMarquardt.funcEasyForLm
import space.kscience.kmath.tensors.LevenbergMarquardt.getStartDataForFuncEasy
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.LMInput
import space.kscience.kmath.tensors.core.levenbergMarquardt
import kotlin.math.roundToInt
fun main() {
val startedData = getStartDataForFuncEasy()
val inputData = LMInput(
::funcEasyForLm,
DoubleTensorAlgebra.ones(ShapeND(intArrayOf(4, 1))).as2D(),
startedData.t,
startedData.y_dat,
startedData.weight,
startedData.dp,
startedData.p_min,
startedData.p_max,
startedData.opts[1].toInt(),
doubleArrayOf(startedData.opts[2], startedData.opts[3], startedData.opts[4], startedData.opts[5]),
doubleArrayOf(startedData.opts[6], startedData.opts[7], startedData.opts[8]),
startedData.opts[9].toInt(),
10,
startedData.example_number
)
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
println("Parameters:")
for (i in 0 until result.resultParameters.shape.component1()) {
val x = (result.resultParameters[i, 0] * 10000).roundToInt() / 10000.0
print("$x ")
}
println()
println("Y true and y received:")
var y_hat_after = funcDifficultForLm(startedData.t, result.resultParameters, startedData.example_number)
for (i in 0 until startedData.y_dat.shape.component1()) {
val x = (startedData.y_dat[i, 0] * 10000).roundToInt() / 10000.0
val y = (y_hat_after[i, 0] * 10000).roundToInt() / 10000.0
println("$x $y")
}
println("Сhi_sq:")
println(result.resultChiSq)
println("Number of iterations:")
println(result.iterations)
}

View File

@ -0,0 +1,91 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.LevenbergMarquardt.StaticLm
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.component1
import space.kscience.kmath.tensors.LevenbergMarquardt.funcMiddleForLm
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.div
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.LMInput
import space.kscience.kmath.tensors.core.levenbergMarquardt
import kotlin.math.roundToInt
fun main() {
val NData = 100
var t_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D()
for (i in 0 until NData) {
t_example[i, 0] = t_example[i, 0] * (i + 1)
}
val Nparams = 20
var p_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
p_example[i, 0] = p_example[i, 0] + i - 25
}
val exampleNumber = 1
var y_hat = funcMiddleForLm(t_example, p_example, exampleNumber)
var p_init = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
p_init[i, 0] = (p_example[i, 0] + 0.9)
}
var t = t_example
val y_dat = y_hat
val weight = 1.0
val dp = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
).as2D()
var p_min = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / -50.0)
val p_max = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / 50.0)
val opts = doubleArrayOf(3.0, 7000.0, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 11.0, 9.0, 1.0)
val inputData = LMInput(
::funcMiddleForLm,
p_init.as2D(),
t,
y_dat,
weight,
dp,
p_min.as2D(),
p_max.as2D(),
opts[1].toInt(),
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
doubleArrayOf(opts[6], opts[7], opts[8]),
opts[9].toInt(),
10,
1
)
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
println("Parameters:")
for (i in 0 until result.resultParameters.shape.component1()) {
val x = (result.resultParameters[i, 0] * 10000).roundToInt() / 10000.0
print("$x ")
}
println()
var y_hat_after = funcMiddleForLm(t_example, result.resultParameters, exampleNumber)
for (i in 0 until y_hat.shape.component1()) {
val x = (y_hat[i, 0] * 10000).roundToInt() / 10000.0
val y = (y_hat_after[i, 0] * 10000).roundToInt() / 10000.0
println("$x $y")
}
println("Сhi_sq:")
println(result.resultChiSq)
println("Number of iterations:")
println(result.iterations)
}

View File

@ -0,0 +1,75 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.LevenbergMarquardt.StreamingLm
import kotlinx.coroutines.delay
import kotlinx.coroutines.flow.Flow
import kotlinx.coroutines.flow.flow
import space.kscience.kmath.nd.MutableStructure2D
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.component1
import space.kscience.kmath.tensors.LevenbergMarquardt.StartDataLm
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.zeros
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.LMInput
import space.kscience.kmath.tensors.core.levenbergMarquardt
import kotlin.random.Random
fun streamLm(
lm_func: (MutableStructure2D<Double>, MutableStructure2D<Double>, Int) -> (MutableStructure2D<Double>),
startData: StartDataLm, launchFrequencyInMs: Long, numberOfLaunches: Int,
): Flow<MutableStructure2D<Double>> = flow {
var example_number = startData.example_number
var p_init = startData.p_init
var t = startData.t
var y_dat = startData.y_dat
val weight = startData.weight
val dp = startData.dp
val p_min = startData.p_min
val p_max = startData.p_max
val opts = startData.opts
var steps = numberOfLaunches
val isEndless = (steps <= 0)
val inputData = LMInput(
lm_func,
p_init,
t,
y_dat,
weight,
dp,
p_min,
p_max,
opts[1].toInt(),
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
doubleArrayOf(opts[6], opts[7], opts[8]),
opts[9].toInt(),
10,
example_number
)
while (isEndless || steps > 0) {
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
emit(result.resultParameters)
delay(launchFrequencyInMs)
inputData.realValues = generateNewYDat(y_dat, 0.1)
inputData.startParameters = result.resultParameters
if (!isEndless) steps -= 1
}
}
fun generateNewYDat(y_dat: MutableStructure2D<Double>, delta: Double): MutableStructure2D<Double> {
val n = y_dat.shape.component1()
val y_dat_new = zeros(ShapeND(intArrayOf(n, 1))).as2D()
for (i in 0 until n) {
val randomEps = Random.nextDouble(delta + delta) - delta
y_dat_new[i, 0] = y_dat[i, 0] + randomEps
}
return y_dat_new
}

View File

@ -0,0 +1,33 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.LevenbergMarquardt.StreamingLm
import space.kscience.kmath.nd.component1
import space.kscience.kmath.tensors.LevenbergMarquardt.funcDifficultForLm
import space.kscience.kmath.tensors.LevenbergMarquardt.getStartDataForFuncDifficult
import kotlin.math.roundToInt
suspend fun main() {
val startData = getStartDataForFuncDifficult()
// Создание потока:
val lmFlow = streamLm(::funcDifficultForLm, startData, 0, 100)
var initialTime = System.currentTimeMillis()
var lastTime: Long
val launches = mutableListOf<Long>()
// Запуск потока
lmFlow.collect { parameters ->
lastTime = System.currentTimeMillis()
launches.add(lastTime - initialTime)
initialTime = lastTime
for (i in 0 until parameters.shape.component1()) {
val x = (parameters[i, 0] * 10000).roundToInt() / 10000.0
print("$x ")
if (i == parameters.shape.component1() - 1) println()
}
}
println("Average without first is: ${launches.subList(1, launches.size - 1).average()}")
}

View File

@ -0,0 +1,232 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.LevenbergMarquardt
import space.kscience.kmath.nd.MutableStructure2D
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.component1
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.div
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra.Companion.max
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra.Companion.plus
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra.Companion.pow
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra.Companion.times
import space.kscience.kmath.tensors.core.asDoubleTensor
public data class StartDataLm(
var lm_matx_y_dat: MutableStructure2D<Double>,
var example_number: Int,
var p_init: MutableStructure2D<Double>,
var t: MutableStructure2D<Double>,
var y_dat: MutableStructure2D<Double>,
var weight: Double,
var dp: MutableStructure2D<Double>,
var p_min: MutableStructure2D<Double>,
var p_max: MutableStructure2D<Double>,
var consts: MutableStructure2D<Double>,
var opts: DoubleArray,
)
fun funcEasyForLm(
t: MutableStructure2D<Double>,
p: MutableStructure2D<Double>,
exampleNumber: Int,
): MutableStructure2D<Double> {
val m = t.shape.component1()
var y_hat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(m, 1)))
if (exampleNumber == 1) {
y_hat = DoubleTensorAlgebra.exp((t.times(-1.0 / p[1, 0]))).times(p[0, 0]) + t.times(p[2, 0]).times(
DoubleTensorAlgebra.exp((t.times(-1.0 / p[3, 0])))
)
} else if (exampleNumber == 2) {
val mt = t.max()
y_hat = (t.times(1.0 / mt)).times(p[0, 0]) +
(t.times(1.0 / mt)).pow(2).times(p[1, 0]) +
(t.times(1.0 / mt)).pow(3).times(p[2, 0]) +
(t.times(1.0 / mt)).pow(4).times(p[3, 0])
} else if (exampleNumber == 3) {
y_hat = DoubleTensorAlgebra.exp((t.times(-1.0 / p[1, 0])))
.times(p[0, 0]) + DoubleTensorAlgebra.sin((t.times(1.0 / p[3, 0]))).times(p[2, 0])
}
return y_hat.as2D()
}
fun funcMiddleForLm(
t: MutableStructure2D<Double>,
p: MutableStructure2D<Double>,
exampleNumber: Int,
): MutableStructure2D<Double> {
val m = t.shape.component1()
var y_hat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(m, 1)))
val mt = t.max()
for (i in 0 until p.shape.component1()) {
y_hat += (t.times(1.0 / mt)).times(p[i, 0])
}
for (i in 0 until 5) {
y_hat = funcEasyForLm(y_hat.as2D(), p, exampleNumber).asDoubleTensor()
}
return y_hat.as2D()
}
fun funcDifficultForLm(
t: MutableStructure2D<Double>,
p: MutableStructure2D<Double>,
exampleNumber: Int,
): MutableStructure2D<Double> {
val m = t.shape.component1()
var y_hat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(m, 1)))
val mt = t.max()
for (i in 0 until p.shape.component1()) {
y_hat = y_hat.plus((t.times(1.0 / mt)).times(p[i, 0]))
}
for (i in 0 until 4) {
y_hat = funcEasyForLm((y_hat.as2D() + t).as2D(), p, exampleNumber).asDoubleTensor()
}
return y_hat.as2D()
}
fun getStartDataForFuncDifficult(): StartDataLm {
val NData = 200
var t_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D()
for (i in 0 until NData) {
t_example[i, 0] = t_example[i, 0] * (i + 1) - 104
}
val Nparams = 15
var p_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
p_example[i, 0] = p_example[i, 0] + i - 25
}
val exampleNumber = 1
var y_hat = funcDifficultForLm(t_example, p_example, exampleNumber)
var p_init = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
p_init[i, 0] = (p_example[i, 0] + 0.9)
}
var t = t_example
val y_dat = y_hat
val weight = 1.0 / Nparams * 1.0 - 0.085
val dp = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
).as2D()
var p_min = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / -50.0)
val p_max = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / 50.0)
val consts = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), doubleArrayOf(0.0)
).as2D()
val opts = doubleArrayOf(3.0, 10000.0, 1e-2, 1e-3, 1e-2, 1e-2, 1e-2, 11.0, 9.0, 1.0)
return StartDataLm(y_dat, 1, p_init, t, y_dat, weight, dp, p_min.as2D(), p_max.as2D(), consts, opts)
}
fun getStartDataForFuncMiddle(): StartDataLm {
val NData = 100
var t_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D()
for (i in 0 until NData) {
t_example[i, 0] = t_example[i, 0] * (i + 1)
}
val Nparams = 20
var p_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
p_example[i, 0] = p_example[i, 0] + i - 25
}
val exampleNumber = 1
var y_hat = funcMiddleForLm(t_example, p_example, exampleNumber)
var p_init = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
p_init[i, 0] = (p_example[i, 0] + 10.0)
}
var t = t_example
val y_dat = y_hat
val weight = 1.0
val dp = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
).as2D()
var p_min = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / -50.0)
val p_max = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / 50.0)
val consts = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), doubleArrayOf(0.0)
).as2D()
val opts = doubleArrayOf(3.0, 10000.0, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 11.0, 9.0, 1.0)
var example_number = 1
return StartDataLm(y_dat, example_number, p_init, t, y_dat, weight, dp, p_min.as2D(), p_max.as2D(), consts, opts)
}
fun getStartDataForFuncEasy(): StartDataLm {
val lm_matx_y_dat = doubleArrayOf(
19.6594, 18.6096, 17.6792, 17.2747, 16.3065, 17.1458, 16.0467, 16.7023, 15.7809, 15.9807,
14.7620, 15.1128, 16.0973, 15.1934, 15.8636, 15.4763, 15.6860, 15.1895, 15.3495, 16.6054,
16.2247, 15.9854, 16.1421, 17.0960, 16.7769, 17.1997, 17.2767, 17.5882, 17.5378, 16.7894,
17.7648, 18.2512, 18.1581, 16.7037, 17.8475, 17.9081, 18.3067, 17.9632, 18.2817, 19.1427,
18.8130, 18.5658, 18.0056, 18.4607, 18.5918, 18.2544, 18.3731, 18.7511, 19.3181, 17.3066,
17.9632, 19.0513, 18.7528, 18.2928, 18.5967, 17.8567, 17.7859, 18.4016, 18.9423, 18.4959,
17.8000, 18.4251, 17.7829, 17.4645, 17.5221, 17.3517, 17.4637, 17.7563, 16.8471, 17.4558,
17.7447, 17.1487, 17.3183, 16.8312, 17.7551, 17.0942, 15.6093, 16.4163, 15.3755, 16.6725,
16.2332, 16.2316, 16.2236, 16.5361, 15.3721, 15.3347, 15.5815, 15.6319, 14.4538, 14.6044,
14.7665, 13.3718, 15.0587, 13.8320, 14.7873, 13.6824, 14.2579, 14.2154, 13.5818, 13.8157
)
var example_number = 1
val p_init = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(4, 1)), doubleArrayOf(5.0, 2.0, 0.2, 10.0)
).as2D()
var t = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(100, 1))).as2D()
for (i in 0 until 100) {
t[i, 0] = t[i, 0] * (i + 1)
}
val y_dat = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(100, 1)), lm_matx_y_dat
).as2D()
val weight = 4.0
val dp = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
).as2D()
val p_min = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(4, 1)), doubleArrayOf(-50.0, -20.0, -2.0, -100.0)
).as2D()
val p_max = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(4, 1)), doubleArrayOf(50.0, 20.0, 2.0, 100.0)
).as2D()
val consts = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), doubleArrayOf(0.0)
).as2D()
val opts = doubleArrayOf(3.0, 100.0, 1e-3, 1e-3, 1e-1, 1e-1, 1e-2, 11.0, 9.0, 1.0)
return StartDataLm(y_dat, example_number, p_init, t, y_dat, weight, dp, p_min, p_max, consts, opts)
}

View File

@ -1,14 +1,16 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.randomNormal
import space.kscience.kmath.tensors.core.randomNormalLike
import kotlin.math.abs
// OLS estimator using SVD
@ -21,10 +23,10 @@ fun main() {
DoubleTensorAlgebra {
// take coefficient vector from normal distribution
val alpha = randomNormal(
intArrayOf(5),
ShapeND(5),
randSeed
) + fromArray(
intArrayOf(5),
ShapeND(5),
doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1)
)
@ -32,35 +34,37 @@ fun main() {
// also take sample of size 20 from normal distribution for x
val x = randomNormal(
intArrayOf(20, 5),
ShapeND(20, 5),
randSeed
)
// calculate y and add gaussian noise (N(0, 0.05))
val y = x dot alpha
y += y.randomNormalLike(randSeed) * 0.05
y += randomNormalLike(y, randSeed) * 0.05
// now restore the coefficient vector with OSL estimator with SVD
val (u, singValues, v) = x.svd()
val (u, singValues, v) = svd(x)
// we have to make sure the singular values of the matrix are not close to zero
println("Singular values:\n$singValues")
// inverse Sigma matrix can be restored from singular values with diagonalEmbedding function
val sigma = diagonalEmbedding(singValues.map{ if (abs(it) < 1e-3) 0.0 else 1.0/it })
val sigma = diagonalEmbedding(singValues.map { if (abs(it) < 1e-3) 0.0 else 1.0 / it })
val alphaOLS = v dot sigma dot u.transpose() dot y
println("Estimated alpha:\n" +
"$alphaOLS")
val alphaOLS = v dot sigma dot u.transposed() dot y
println(
"Estimated alpha:\n" +
"$alphaOLS"
)
// figure out MSE of approximation
fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double {
require(yTrue.shape.size == 1)
require(yTrue.shape contentEquals yPred.shape)
require(yTrue.shape == yPred.shape)
val diff = yTrue - yPred
return diff.dot(diff).sqrt().value()
return sqrt(diff.dot(diff)).value()
}
println("MSE: ${mse(alpha, alphaOLS)}")

View File

@ -1,12 +1,12 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.tensors.core.*
// simple PCA
@ -16,49 +16,49 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
// assume x is range from 0 until 10
val x = fromArray(
intArrayOf(10),
ShapeND(10),
DoubleArray(10) { it.toDouble() }
)
// take y dependent on x with noise
val y = 2.0 * x + (3.0 + x.randomNormalLike(seed) * 1.5)
val y = 2.0 * x + (3.0 + randomNormalLike(x, seed) * 1.5)
println("x:\n$x")
println("y:\n$y")
// stack them into single dataset
val dataset = stack(listOf(x, y)).transpose()
val dataset = stack(listOf(x, y)).transposed()
// normalize both x and y
val xMean = x.mean()
val yMean = y.mean()
val xMean = mean(x)
val yMean = mean(y)
val xStd = x.std()
val yStd = y.std()
val xStd = std(x)
val yStd = std(y)
val xScaled = (x - xMean) / xStd
val yScaled = (y - yMean) / yStd
val xScaled: DoubleTensor = (x - xMean) / xStd
val yScaled: DoubleTensor = (y - yMean) / yStd
// save means ans standard deviations for further recovery
val mean = fromArray(
intArrayOf(2),
ShapeND(2),
doubleArrayOf(xMean, yMean)
)
println("Means:\n$mean")
val std = fromArray(
intArrayOf(2),
ShapeND(2),
doubleArrayOf(xStd, yStd)
)
println("Standard deviations:\n$std")
// calculate the covariance matrix of scaled x and y
val covMatrix = cov(listOf(xScaled, yScaled))
val covMatrix = covariance(listOf(xScaled.asDoubleTensor1D(), yScaled.asDoubleTensor1D()))
println("Covariance matrix:\n$covMatrix")
// and find out eigenvector of it
val (_, evecs) = covMatrix.symEig()
val v = evecs[0]
val (_, evecs) = symEig(covMatrix)
val v = evecs.getTensor(0)
println("Eigenvector:\n$v")
// reduce dimension of dataset
@ -68,7 +68,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
// we can restore original data from reduced data;
// for example, find 7th element of dataset.
val n = 7
val restored = (datasetReduced[n] dot v.view(intArrayOf(1, 2))) * std + mean
println("Original value:\n${dataset[n]}")
val restored = (datasetReduced.getTensor(n) dot v.view(ShapeND(1, 2))) * std + mean
println("Original value:\n${dataset.getTensor(n)}")
println("Restored value:\n$restored")
}

View File

@ -1,10 +1,12 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.tensors.core.randomNormal
import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast
@ -13,17 +15,17 @@ import space.kscience.kmath.tensors.core.withBroadcast
fun main() = Double.tensorAlgebra.withBroadcast { // work in context with broadcast methods
// take dataset of 5-element vectors from normal distribution
val dataset = randomNormal(intArrayOf(100, 5)) * 1.5 // all elements from N(0, 1.5)
val dataset = randomNormal(ShapeND(100, 5)) * 1.5 // all elements from N(0, 1.5)
dataset += fromArray(
intArrayOf(5),
ShapeND(5),
doubleArrayOf(0.0, 1.0, 1.5, 3.0, 5.0) // row means
)
// find out mean and standard deviation of each column
val mean = dataset.mean(0, false)
val std = dataset.std(0, false)
val mean = mean(dataset, 0, false)
val std = std(dataset, 0, false)
println("Mean:\n$mean")
println("Standard deviation:\n$std")
@ -35,8 +37,8 @@ fun main() = Double.tensorAlgebra.withBroadcast { // work in context with broad
// now we can scale dataset with mean normalization
val datasetScaled = (dataset - mean) / std
// find out mean and std of scaled dataset
// find out mean and standardDiviation of scaled dataset
println("Mean of scaled:\n${datasetScaled.mean(0, false)}")
println("Mean of scaled:\n${datasetScaled.std(0, false)}")
println("Mean of scaled:\n${mean(datasetScaled, 0, false)}")
println("Mean of scaled:\n${std(datasetScaled, 0, false)}")
}

View File

@ -1,10 +1,11 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast
@ -15,13 +16,13 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// set true value of x
val trueX = fromArray(
intArrayOf(4),
ShapeND(4),
doubleArrayOf(-2.0, 1.5, 6.8, -2.4)
)
// and A matrix
val a = fromArray(
intArrayOf(4, 4),
ShapeND(4, 4),
doubleArrayOf(
0.5, 10.5, 4.5, 1.0,
8.5, 0.9, 12.8, 0.1,
@ -40,7 +41,7 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// solve `Ax = b` system using LUP decomposition
// get P, L, U such that PA = LU
val (p, l, u) = a.lu()
val (p, l, u) = lu(a)
// check P is permutation matrix
println("P:\n$p")
@ -64,9 +65,9 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// this function returns solution x of a system lx = b, l should be lower triangular
fun solveLT(l: DoubleTensor, b: DoubleTensor): DoubleTensor {
val n = l.shape[0]
val x = zeros(intArrayOf(n))
val x = zeros(ShapeND(n))
for (i in 0 until n) {
x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).value()) / l[intArrayOf(i, i)]
x[intArrayOf(i)] = (b[intArrayOf(i)] - l.getTensor(i).dot(x).value()) / l[intArrayOf(i, i)]
}
return x
}
@ -75,7 +76,7 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// solveLT(l, b) function can be easily adapted for upper triangular matrix by the permutation matrix revMat
// create it by placing ones on side diagonal
val revMat = u.zeroesLike()
val revMat = zeroesLike(u)
val n = revMat.shape[0]
for (i in 0 until n) {
revMat[intArrayOf(i, n - 1 - i)] = 1.0

View File

@ -1,5 +1,5 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@ -7,11 +7,14 @@ package space.kscience.kmath.tensors
import org.jetbrains.kotlinx.multik.api.Multik
import org.jetbrains.kotlinx.multik.api.ndarray
import space.kscience.kmath.multik.multikAlgebra
import org.jetbrains.kotlinx.multik.default.DefaultEngine
import space.kscience.kmath.multik.MultikDoubleAlgebra
import space.kscience.kmath.nd.one
import space.kscience.kmath.operations.DoubleField
fun main(): Unit = with(DoubleField.multikAlgebra) {
val multikAlgebra = MultikDoubleAlgebra(DefaultEngine())
fun main(): Unit = with(multikAlgebra) {
val a = Multik.ndarray(intArrayOf(1, 2, 3)).asType<Double>().wrap()
val b = Multik.ndarray(doubleArrayOf(1.0, 2.0, 3.0)).wrap()
one(a.shape) - a + b * 3.0

View File

@ -1,15 +1,14 @@
/*
* Copyright 2018-2021 KMath contributors.
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.operations.asIterable
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.copyArray
import space.kscience.kmath.tensors.core.*
import kotlin.math.sqrt
const val seed = 100500L
@ -48,7 +47,7 @@ fun reluDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
class ReLU : Activation(::relu, ::reluDer)
fun sigmoid(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
1.0 / (1.0 + (-x).exp())
1.0 / (1.0 + exp((-x)))
}
fun sigmoidDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
@ -67,22 +66,22 @@ class Dense(
private val weights: DoubleTensor = DoubleTensorAlgebra {
randomNormal(
intArrayOf(inputUnits, outputUnits),
ShapeND(inputUnits, outputUnits),
seed
) * sqrt(2.0 / (inputUnits + outputUnits))
}
private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(intArrayOf(outputUnits)) }
private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(ShapeND(outputUnits)) }
override fun forward(input: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
(input dot weights) + bias
}
override fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
val gradInput = outputError dot weights.transpose()
val gradInput = outputError dot weights.transposed()
val gradW = input.transpose() dot outputError
val gradBias = outputError.mean(dim = 0, keepDim = false) * input.shape[0].toDouble()
val gradW = input.transposed() dot outputError
val gradBias = mean(structureND = outputError, dim = 0, keepDim = false) * input.shape[0].toDouble()
weights -= learningRate * gradW
bias -= learningRate * gradBias
@ -94,7 +93,7 @@ class Dense(
// simple accuracy equal to the proportion of correct answers
fun accuracy(yPred: DoubleTensor, yTrue: DoubleTensor): Double {
check(yPred.shape contentEquals yTrue.shape)
check(yPred.shape == yTrue.shape)
val n = yPred.shape[0]
var correctCnt = 0
for (i in 0 until n) {
@ -106,17 +105,16 @@ fun accuracy(yPred: DoubleTensor, yTrue: DoubleTensor): Double {
}
// neural network class
@OptIn(ExperimentalStdlibApi::class)
class NeuralNetwork(private val layers: List<Layer>) {
private fun softMaxLoss(yPred: DoubleTensor, yTrue: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
val onesForAnswers = yPred.zeroesLike()
yTrue.copyArray().forEachIndexed { index, labelDouble ->
val onesForAnswers = zeroesLike(yPred)
yTrue.source.asIterable().forEachIndexed { index, labelDouble ->
val label = labelDouble.toInt()
onesForAnswers[intArrayOf(index, label)] = 1.0
}
val softmaxValue = yPred.exp() / yPred.exp().sum(dim = 1, keepDim = true)
val softmaxValue = exp(yPred) / exp(yPred).sum(dim = 1, keepDim = true)
(-onesForAnswers + softmaxValue) / (yPred.shape[0].toDouble())
}
@ -163,7 +161,7 @@ class NeuralNetwork(private val layers: List<Layer>) {
for ((xBatch, yBatch) in iterBatch(xTrain, yTrain)) {
train(xBatch, yBatch)
}
println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true).asDouble())}")
println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true).toDoubleTensor())}")
}
}
@ -174,7 +172,6 @@ class NeuralNetwork(private val layers: List<Layer>) {
}
@OptIn(ExperimentalStdlibApi::class)
fun main() = BroadcastDoubleTensorAlgebra {
val features = 5
val sampleSize = 250
@ -182,19 +179,19 @@ fun main() = BroadcastDoubleTensorAlgebra {
//val testSize = sampleSize - trainSize
// take sample of features from normal distribution
val x = randomNormal(intArrayOf(sampleSize, features), seed) * 2.5
val x = randomNormal(ShapeND(sampleSize, features), seed) * 2.5
x += fromArray(
intArrayOf(5),
ShapeND(5),
doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // row means
)
// define class like '1' if the sum of features > 0 and '0' otherwise
val y = fromArray(
intArrayOf(sampleSize, 1),
ShapeND(sampleSize, 1),
DoubleArray(sampleSize) { i ->
if (x[i].sum() > 0.0) {
if (x.getTensor(i).sum() > 0.0) {
1.0
} else {
0.0
@ -230,7 +227,7 @@ fun main() = BroadcastDoubleTensorAlgebra {
val prediction = model.predict(xTest)
// process raw prediction via argMax
val predictionLabels = prediction.argMax(1, true).asDouble()
val predictionLabels = prediction.argMax(1, true).toDoubleTensor()
// find out accuracy
val acc = accuracy(yTest, predictionLabels)

View File

@ -3,13 +3,12 @@
# Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
#
kotlin.code.style=official
kotlin.jupyter.add.scanner=false
kotlin.mpp.stability.nowarn=true
kotlin.native.ignoreDisabledTargets=true
//kotlin.incremental.js.ir=true
org.gradle.configureondemand=true
org.gradle.parallel=true
org.gradle.jvmargs=-Xmx4096m
toolsVersion=0.11.7-kotlin-1.7.0
org.gradle.parallel=true
org.gradle.workers.max=4
toolsVersion=0.15.2-kotlin-1.9.22
#kotlin.experimental.tryK2=true
#kscience.wasm.disabled=true

Some files were not shown because too many files have changed in this diff Show More