Merge pull request #504 from SciProgCentre/dev
Merge to update docs and contributions
3
.github/CODEOWNERS
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
@altavir
|
||||
|
||||
/kmath-trajectory @ESchouten
|
@ -1,6 +1,7 @@
|
||||
<component name="CopyrightManager">
|
||||
<copyright>
|
||||
<option name="notice" value="Copyright 2018-2021 KMath contributors. Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file." />
|
||||
<option name="myName" value="kmath" />
|
||||
</copyright>
|
||||
</component>
|
||||
<copyright>
|
||||
<option name="allowReplaceRegexp" value="Copyright \d{4}-\d{4} KMath" />
|
||||
<option name="notice" value="Copyright 2018-&#36;today.year KMath contributors. Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file." />
|
||||
<option name="myName" value="kmath" />
|
||||
</copyright>
|
||||
</component>
|
@ -1,5 +1,5 @@
|
||||
<component name="CopyrightManager">
|
||||
<settings default="kmath">
|
||||
<settings>
|
||||
<module2copyright>
|
||||
<element module="Apply copyright" copyright="kmath" />
|
||||
</module2copyright>
|
||||
|
@ -1,3 +1,3 @@
|
||||
job("Build") {
|
||||
gradlew("openjdk:11", "build")
|
||||
}
|
||||
}
|
0
.space/CODEOWNERS
Normal file
@ -2,8 +2,16 @@
|
||||
|
||||
## [Unreleased]
|
||||
### Added
|
||||
- 2D optimal trajectory computation in a separate module `kmath-trajectory`
|
||||
- Autodiff for generic algebra elements in core!
|
||||
- Algebra now has an obligatory `bufferFactory` (#477).
|
||||
|
||||
### Changed
|
||||
- Major refactor of tensors (only minor API changes)
|
||||
- Kotlin 1.7.20
|
||||
- `LazyStructure` `deffered` -> `async` to comply with coroutines code style
|
||||
- Default `dot` operation in tensor algebra no longer support broadcasting. Instead `matmul` operation is added to `DoubleTensorAlgebra`.
|
||||
- Multik went MPP
|
||||
|
||||
### Deprecated
|
||||
|
||||
|
47
README.md
@ -1,6 +1,6 @@
|
||||
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
|
||||
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
|
||||
![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg)
|
||||
![Gradle build](https://github.com/SciProgCentre/kmath/workflows/Gradle%20build/badge.svg)
|
||||
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22)
|
||||
[![Space](https://img.shields.io/badge/dynamic/xml?color=orange&label=Space&query=//metadata/versioning/latest&url=https%3A%2F%2Fmaven.pkg.jetbrains.space%2Fmipt-npm%2Fp%2Fsci%2Fmaven%2Fspace%2Fkscience%2Fkmath-core%2Fmaven-metadata.xml)](https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven/space/kscience/)
|
||||
|
||||
@ -11,7 +11,7 @@ analog to Python's NumPy library. Later we found that kotlin is much more flexib
|
||||
architecture designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like
|
||||
experience could be achieved with [kmath-for-real](/kmath-for-real) extension module.
|
||||
|
||||
[Documentation site (**WIP**)](https://mipt-npm.github.io/kmath/)
|
||||
[Documentation site (**WIP**)](https://SciProgCentre.github.io/kmath/)
|
||||
|
||||
## Publications and talks
|
||||
|
||||
@ -44,7 +44,7 @@ module definitions below. The module stability could have the following levels:
|
||||
* **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could
|
||||
break any moment. You can still use it, but be sure to fix the specific version.
|
||||
* **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked
|
||||
with `@UnstableKmathAPI` or other stability warning annotations.
|
||||
with `@UnstableKMathAPI` or other stability warning annotations.
|
||||
* **DEVELOPMENT**. API breaking generally follows semantic versioning ideology. There could be changes in minor
|
||||
versions, but not in patch versions. API is protected
|
||||
with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
|
||||
@ -86,8 +86,8 @@ module definitions below. The module stability could have the following levels:
|
||||
> **Maturity**: PROTOTYPE
|
||||
>
|
||||
> **Features:**
|
||||
> - [complex](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Complex.kt) : Complex Numbers
|
||||
> - [quaternion](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Quaternion.kt) : Quaternions
|
||||
> - [complex](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Complex.kt) : Complex numbers operations
|
||||
> - [quaternion](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Quaternion.kt) : Quaternions and their composition
|
||||
|
||||
|
||||
### [kmath-core](kmath-core)
|
||||
@ -214,6 +214,28 @@ One can still use generic algebras though.
|
||||
>
|
||||
> **Maturity**: EXPERIMENTAL
|
||||
|
||||
### [kmath-polynomial](kmath-polynomial)
|
||||
>
|
||||
>
|
||||
> **Maturity**: PROTOTYPE
|
||||
>
|
||||
> **Features:**
|
||||
> - [polynomial abstraction](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt) : Abstraction for polynomial spaces.
|
||||
> - [rational function abstraction](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt) : Abstraction for rational functions spaces.
|
||||
> - ["list" polynomials](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt) : List implementation of univariate polynomials.
|
||||
> - ["list" rational functions](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt) : List implementation of univariate rational functions.
|
||||
> - ["list" polynomials and rational functions constructors](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt) : Constructors for list polynomials and rational functions.
|
||||
> - ["list" polynomials and rational functions utilities](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt) : Utilities for list polynomials and rational functions.
|
||||
> - ["numbered" polynomials](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt) : Numbered implementation of multivariate polynomials.
|
||||
> - ["numbered" rational functions](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt) : Numbered implementation of multivariate rational functions.
|
||||
> - ["numbered" polynomials and rational functions constructors](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt) : Constructors for numbered polynomials and rational functions.
|
||||
> - ["numbered" polynomials and rational functions utilities](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/numberedUtil.kt) : Utilities for numbered polynomials and rational functions.
|
||||
> - ["labeled" polynomials](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt) : Labeled implementation of multivariate polynomials.
|
||||
> - ["labeled" rational functions](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt) : Labeled implementation of multivariate rational functions.
|
||||
> - ["labeled" polynomials and rational functions constructors](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt) : Constructors for labeled polynomials and rational functions.
|
||||
> - ["labeled" polynomials and rational functions utilities](kmath-polynomial/src/commonMain/kotlin/space/kscience/kmath/functions/labeledUtil.kt) : Utilities for labeled polynomials and rational functions.
|
||||
|
||||
|
||||
### [kmath-stat](kmath-stat)
|
||||
>
|
||||
>
|
||||
@ -240,11 +262,21 @@ One can still use generic algebras though.
|
||||
> - [linear algebra operations](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt) : Advanced linear algebra operations like LU decomposition, SVD, etc.
|
||||
|
||||
|
||||
### [kmath-trajectory](kmath-trajectory)
|
||||
> Path and trajectory optimization
|
||||
>
|
||||
> **Maturity**: PROTOTYPE
|
||||
|
||||
### [kmath-viktor](kmath-viktor)
|
||||
>
|
||||
>
|
||||
> **Maturity**: DEVELOPMENT
|
||||
|
||||
### [test-utils](test-utils)
|
||||
>
|
||||
>
|
||||
> **Maturity**: EXPERIMENTAL
|
||||
|
||||
|
||||
## Multi-platform support
|
||||
|
||||
@ -261,8 +293,7 @@ performance and flexibility.
|
||||
|
||||
We expect to focus on creating convenient universal API first and then work on increasing performance for specific
|
||||
cases. We expect the worst KMath benchmarks will perform better than native Python, but worse than optimized
|
||||
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be
|
||||
better than SciPy.
|
||||
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be better than SciPy.
|
||||
|
||||
## Requirements
|
||||
|
||||
@ -294,4 +325,4 @@ Gradle `6.0+` is required for multiplatform artifacts.
|
||||
The project requires a lot of additional work. The most important thing we need is a feedback about what features are
|
||||
required the most. Feel free to create feature requests. We are also welcome to code contributions, especially in issues
|
||||
marked with
|
||||
[waiting for a hero](https://github.com/mipt-npm/kmath/labels/waiting%20for%20a%20hero) label.
|
||||
[waiting for a hero](https://github.com/SciProgCentre/kmath/labels/waiting%20for%20a%20hero) label.
|
@ -1,5 +1,6 @@
|
||||
@file:Suppress("UNUSED_VARIABLE")
|
||||
|
||||
import org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile
|
||||
import space.kscience.kmath.benchmarks.addBenchmarkProperties
|
||||
|
||||
plugins {
|
||||
@ -15,6 +16,8 @@ repositories {
|
||||
mavenCentral()
|
||||
}
|
||||
|
||||
val multikVersion: String by rootProject.extra
|
||||
|
||||
kotlin {
|
||||
jvm()
|
||||
|
||||
@ -39,7 +42,9 @@ kotlin {
|
||||
implementation(project(":kmath-dimensions"))
|
||||
implementation(project(":kmath-for-real"))
|
||||
implementation(project(":kmath-tensors"))
|
||||
implementation("org.jetbrains.kotlinx:kotlinx-benchmark-runtime:0.4.2")
|
||||
implementation(project(":kmath-multik"))
|
||||
implementation("org.jetbrains.kotlinx:multik-default:$multikVersion")
|
||||
implementation(npmlibs.kotlinx.benchmark.runtime)
|
||||
}
|
||||
}
|
||||
|
||||
@ -51,7 +56,6 @@ kotlin {
|
||||
implementation(project(":kmath-kotlingrad"))
|
||||
implementation(project(":kmath-viktor"))
|
||||
implementation(project(":kmath-jafama"))
|
||||
implementation(project(":kmath-multik"))
|
||||
implementation(projects.kmath.kmathTensorflow)
|
||||
implementation("org.tensorflow:tensorflow-core-platform:0.4.0")
|
||||
implementation("org.nd4j:nd4j-native:1.0.0-M1")
|
||||
@ -155,7 +159,7 @@ kotlin.sourceSets.all {
|
||||
}
|
||||
}
|
||||
|
||||
tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile> {
|
||||
tasks.withType<KotlinJvmCompile> {
|
||||
kotlinOptions {
|
||||
jvmTarget = "11"
|
||||
freeCompilerArgs = freeCompilerArgs + "-Xjvm-default=all" + "-Xlambdas=indy"
|
||||
@ -163,7 +167,7 @@ tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile> {
|
||||
}
|
||||
|
||||
readme {
|
||||
maturity = ru.mipt.npm.gradle.Maturity.EXPERIMENTAL
|
||||
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL
|
||||
}
|
||||
|
||||
addBenchmarkProperties()
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -13,10 +13,8 @@ import space.kscience.kmath.commons.linear.CMLinearSpace
|
||||
import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
|
||||
import space.kscience.kmath.linear.invoke
|
||||
import space.kscience.kmath.linear.linearSpace
|
||||
import space.kscience.kmath.multik.multikAlgebra
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.tensorflow.produceWithTF
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
||||
@ -79,12 +77,12 @@ internal class DotBenchmark {
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun multikDot(blackhole: Blackhole) = with(DoubleField.multikAlgebra) {
|
||||
fun multikDot(blackhole: Blackhole) = with(multikAlgebra) {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun bufferedDot(blackhole: Blackhole) = with(DoubleField.linearSpace(Buffer.Companion::auto)) {
|
||||
fun bufferedDot(blackhole: Blackhole) = with(DoubleField.linearSpace) {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -13,14 +13,12 @@ import org.jetbrains.kotlinx.multik.api.Multik
|
||||
import org.jetbrains.kotlinx.multik.api.ones
|
||||
import org.jetbrains.kotlinx.multik.ndarray.data.DN
|
||||
import org.jetbrains.kotlinx.multik.ndarray.data.DataType
|
||||
import space.kscience.kmath.multik.multikAlgebra
|
||||
import space.kscience.kmath.nd.BufferedFieldOpsND
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.ndAlgebra
|
||||
import space.kscience.kmath.nd.one
|
||||
import space.kscience.kmath.nd4j.nd4j
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.one
|
||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
||||
@ -28,12 +26,6 @@ import space.kscience.kmath.viktor.viktorAlgebra
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class NDFieldBenchmark {
|
||||
@Benchmark
|
||||
fun autoFieldAdd(blackhole: Blackhole) = with(autoField) {
|
||||
var res: StructureND<Double> = one(shape)
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun specializedFieldAdd(blackhole: Blackhole) = with(specializedField) {
|
||||
@ -50,7 +42,7 @@ internal class NDFieldBenchmark {
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun multikAdd(blackhole: Blackhole) = with(multikField) {
|
||||
fun multikAdd(blackhole: Blackhole) = with(multikAlgebra) {
|
||||
var res: StructureND<Double> = one(shape)
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
@ -78,7 +70,7 @@ internal class NDFieldBenchmark {
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun multikInPlaceAdd(blackhole: Blackhole) = with(DoubleField.multikAlgebra) {
|
||||
fun multikInPlaceAdd(blackhole: Blackhole) = with(multikAlgebra) {
|
||||
val res = Multik.ones<Double, DN>(shape, DataType.DoubleDataType).wrap()
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
@ -95,11 +87,9 @@ internal class NDFieldBenchmark {
|
||||
private const val dim = 1000
|
||||
private const val n = 100
|
||||
private val shape = intArrayOf(dim, dim)
|
||||
private val autoField = BufferedFieldOpsND(DoubleField, Buffer.Companion::auto)
|
||||
private val specializedField = DoubleField.ndAlgebra
|
||||
private val genericField = BufferedFieldOpsND(DoubleField, Buffer.Companion::boxing)
|
||||
private val genericField = BufferedFieldOpsND(DoubleField)
|
||||
private val nd4jField = DoubleField.nd4j
|
||||
private val multikField = DoubleField.multikAlgebra
|
||||
private val viktorField = DoubleField.viktorAlgebra
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -10,25 +10,19 @@ import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import org.jetbrains.bio.viktor.F64Array
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.nd.Shape
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.ndAlgebra
|
||||
import space.kscience.kmath.nd.one
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.viktor.ViktorFieldND
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class ViktorBenchmark {
|
||||
@Benchmark
|
||||
fun automaticFieldAddition(blackhole: Blackhole) {
|
||||
with(autoField) {
|
||||
var res: StructureND<Double> = one(shape)
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun realFieldAddition(blackhole: Blackhole) {
|
||||
with(realField) {
|
||||
fun doubleFieldAddition(blackhole: Blackhole) {
|
||||
with(doubleField) {
|
||||
var res: StructureND<Double> = one(shape)
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
@ -58,8 +52,7 @@ internal class ViktorBenchmark {
|
||||
private val shape = Shape(dim, dim)
|
||||
|
||||
// automatically build context most suited for given type.
|
||||
private val autoField = BufferedFieldOpsND(DoubleField, Buffer.Companion::auto)
|
||||
private val realField = DoubleField.ndAlgebra
|
||||
private val doubleField = DoubleField.ndAlgebra
|
||||
private val viktorField = ViktorFieldND(dim, dim)
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -10,19 +10,17 @@ import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import org.jetbrains.bio.viktor.F64Array
|
||||
import space.kscience.kmath.nd.BufferedFieldOpsND
|
||||
import space.kscience.kmath.nd.Shape
|
||||
import space.kscience.kmath.nd.ndAlgebra
|
||||
import space.kscience.kmath.nd.one
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.viktor.ViktorFieldND
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class ViktorLogBenchmark {
|
||||
@Benchmark
|
||||
fun realFieldLog(blackhole: Blackhole) {
|
||||
with(realField) {
|
||||
with(doubleField) {
|
||||
val fortyTwo = structureND(shape) { 42.0 }
|
||||
var res = one(shape)
|
||||
repeat(n) { res = ln(fortyTwo) }
|
||||
@ -54,8 +52,7 @@ internal class ViktorLogBenchmark {
|
||||
private val shape = Shape(dim, dim)
|
||||
|
||||
// automatically build context most suited for given type.
|
||||
private val autoField = BufferedFieldOpsND(DoubleField, Buffer.Companion::auto)
|
||||
private val realField = DoubleField.ndAlgebra
|
||||
private val doubleField = DoubleField.ndAlgebra
|
||||
private val viktorField = ViktorFieldND(dim, dim)
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,11 @@
|
||||
/*
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import org.jetbrains.kotlinx.multik.default.DefaultEngine
|
||||
import space.kscience.kmath.multik.MultikDoubleAlgebra
|
||||
|
||||
val multikAlgebra = MultikDoubleAlgebra(DefaultEngine())
|
@ -1,6 +1,10 @@
|
||||
import space.kscience.gradle.isInDevelopment
|
||||
import space.kscience.gradle.useApache2Licence
|
||||
import space.kscience.gradle.useSPCTeam
|
||||
|
||||
plugins {
|
||||
id("ru.mipt.npm.gradle.project")
|
||||
id("org.jetbrains.kotlinx.kover") version "0.5.0"
|
||||
id("space.kscience.gradle.project")
|
||||
id("org.jetbrains.kotlinx.kover") version "0.6.0"
|
||||
}
|
||||
|
||||
allprojects {
|
||||
@ -11,13 +15,13 @@ allprojects {
|
||||
}
|
||||
|
||||
group = "space.kscience"
|
||||
version = "0.3.0"
|
||||
version = "0.3.1-dev-4"
|
||||
}
|
||||
|
||||
subprojects {
|
||||
if (name.startsWith("kmath")) apply<MavenPublishPlugin>()
|
||||
|
||||
plugins.withId("org.jetbrains.dokka"){
|
||||
plugins.withId("org.jetbrains.dokka") {
|
||||
tasks.withType<org.jetbrains.dokka.gradle.DokkaTaskPartial> {
|
||||
dependsOn(tasks["assemble"])
|
||||
|
||||
@ -31,7 +35,7 @@ subprojects {
|
||||
localDirectory.set(kotlinDir)
|
||||
|
||||
remoteUrl.set(
|
||||
java.net.URL("https://github.com/mipt-npm/kmath/tree/master/${this@subprojects.name}/$kotlinDirPath")
|
||||
java.net.URL("https://github.com/SciProgCentre/kmath/tree/master/${this@subprojects.name}/$kotlinDirPath")
|
||||
)
|
||||
}
|
||||
|
||||
@ -51,14 +55,38 @@ subprojects {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
plugins.withId("org.jetbrains.kotlin.multiplatform") {
|
||||
configure<org.jetbrains.kotlin.gradle.dsl.KotlinMultiplatformExtension> {
|
||||
sourceSets {
|
||||
val commonTest by getting {
|
||||
dependencies {
|
||||
implementation(projects.testUtils)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
readme.readmeTemplate = file("docs/templates/README-TEMPLATE.md")
|
||||
|
||||
ksciencePublish {
|
||||
github("kmath", addToRelease = false)
|
||||
space()
|
||||
pom("https://github.com/SciProgCentre/kmath") {
|
||||
useApache2Licence()
|
||||
useSPCTeam()
|
||||
}
|
||||
github("kmath", "SciProgCentre")
|
||||
space(
|
||||
if (isInDevelopment) {
|
||||
"https://maven.pkg.jetbrains.space/mipt-npm/p/sci/dev"
|
||||
} else {
|
||||
"https://maven.pkg.jetbrains.space/mipt-npm/p/sci/release"
|
||||
}
|
||||
)
|
||||
sonatype()
|
||||
}
|
||||
|
||||
apiValidation.nonPublicMarkers.add("space.kscience.kmath.misc.UnstableKMathAPI")
|
||||
|
||||
val multikVersion by extra("0.2.0")
|
||||
|
@ -1,7 +1,7 @@
|
||||
plugins {
|
||||
`kotlin-dsl`
|
||||
`version-catalog`
|
||||
alias(miptNpmLibs.plugins.kotlin.plugin.serialization)
|
||||
kotlin("plugin.serialization") version "1.6.21"
|
||||
}
|
||||
|
||||
java.targetCompatibility = JavaVersion.VERSION_11
|
||||
@ -13,17 +13,18 @@ repositories {
|
||||
gradlePluginPortal()
|
||||
}
|
||||
|
||||
val toolsVersion: String by extra
|
||||
val kotlinVersion = miptNpmLibs.versions.kotlin.asProvider().get()
|
||||
val benchmarksVersion = miptNpmLibs.versions.kotlinx.benchmark.get()
|
||||
val toolsVersion = npmlibs.versions.tools.get()
|
||||
val kotlinVersion = npmlibs.versions.kotlin.asProvider().get()
|
||||
val benchmarksVersion = npmlibs.versions.kotlinx.benchmark.get()
|
||||
|
||||
dependencies {
|
||||
api("ru.mipt.npm:gradle-tools:$toolsVersion")
|
||||
api("space.kscience:gradle-tools:$toolsVersion")
|
||||
api(npmlibs.atomicfu.gradle)
|
||||
//plugins form benchmarks
|
||||
api("org.jetbrains.kotlinx:kotlinx-benchmark-plugin:$benchmarksVersion")
|
||||
api("org.jetbrains.kotlin:kotlin-allopen:$kotlinVersion")
|
||||
//to be used inside build-script only
|
||||
implementation(miptNpmLibs.kotlinx.serialization.json)
|
||||
implementation(npmlibs.kotlinx.serialization.json)
|
||||
}
|
||||
|
||||
kotlin.sourceSets.all {
|
||||
|
@ -1,7 +0,0 @@
|
||||
#
|
||||
# Copyright 2018-2021 KMath contributors.
|
||||
# Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
#
|
||||
|
||||
kotlin.code.style=official
|
||||
toolsVersion=0.11.2-kotlin-1.6.10
|
@ -6,7 +6,17 @@
|
||||
enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS")
|
||||
|
||||
dependencyResolutionManagement {
|
||||
val toolsVersion: String by extra
|
||||
val projectProperties = java.util.Properties()
|
||||
file("../gradle.properties").inputStream().use {
|
||||
projectProperties.load(it)
|
||||
}
|
||||
|
||||
projectProperties.forEach { key, value ->
|
||||
extra.set(key.toString(), value)
|
||||
}
|
||||
|
||||
|
||||
val toolsVersion: String = projectProperties["toolsVersion"].toString()
|
||||
|
||||
repositories {
|
||||
mavenLocal()
|
||||
@ -16,8 +26,8 @@ dependencyResolutionManagement {
|
||||
}
|
||||
|
||||
versionCatalogs {
|
||||
create("miptNpmLibs") {
|
||||
from("ru.mipt.npm:version-catalog:$toolsVersion")
|
||||
create("npmlibs") {
|
||||
from("space.kscience:version-catalog:$toolsVersion")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -9,7 +9,7 @@ import kotlinx.benchmark.gradle.BenchmarksExtension
|
||||
import kotlinx.serialization.decodeFromString
|
||||
import kotlinx.serialization.json.Json
|
||||
import org.gradle.api.Project
|
||||
import ru.mipt.npm.gradle.KScienceReadmeExtension
|
||||
import space.kscience.gradle.KScienceReadmeExtension
|
||||
import java.time.LocalDateTime
|
||||
import java.time.ZoneId
|
||||
import java.time.format.DateTimeFormatter
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -319,7 +319,9 @@ public object EjmlLinearSpace${ops} : EjmlLinearSpace<${type}, ${kmathAlgebra},
|
||||
}
|
||||
|
||||
else -> null
|
||||
}?.let(type::cast)
|
||||
}?.let{
|
||||
type.cast(it)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!--
|
||||
- Copyright 2018-2021 KMath contributors.
|
||||
- Copyright 2018-2022 KMath contributors.
|
||||
- Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
-->
|
||||
|
||||
|
Before Width: | Height: | Size: 249 KiB After Width: | Height: | Size: 249 KiB |
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!--
|
||||
- Copyright 2018-2021 KMath contributors.
|
||||
- Copyright 2018-2022 KMath contributors.
|
||||
- Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
-->
|
||||
|
||||
|
Before Width: | Height: | Size: 19 KiB After Width: | Height: | Size: 19 KiB |
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!--
|
||||
- Copyright 2018-2021 KMath contributors.
|
||||
- Copyright 2018-2022 KMath contributors.
|
||||
- Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
-->
|
||||
|
||||
|
Before Width: | Height: | Size: 278 KiB After Width: | Height: | Size: 278 KiB |
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!--
|
||||
- Copyright 2018-2021 KMath contributors.
|
||||
- Copyright 2018-2022 KMath contributors.
|
||||
- Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
-->
|
||||
|
||||
|
Before Width: | Height: | Size: 118 KiB After Width: | Height: | Size: 118 KiB |
172
docs/polynomials.md
Normal file
@ -0,0 +1,172 @@
|
||||
# Polynomials and Rational Functions
|
||||
|
||||
KMath provides a way to work with uni- and multivariate polynomials and rational functions. It includes full support of arithmetic operations of integers, **constants** (elements of ring polynomials are build over), variables (for certain multivariate implementations), polynomials and rational functions encapsulated in so-called **polynomial space** and **rational function space** and some other utilities such as algebraic differentiation and substitution.
|
||||
|
||||
## Concrete realizations
|
||||
|
||||
There are 3 approaches to represent polynomials:
|
||||
1. For univariate polynomials one can represent and store polynomial as a list of coefficients for each power of the variable. I.e. polynomial $a_0 + \dots + a_n x^n $ can be represented as a finite sequence $(a_0; \dots; a_n)$. (Compare to sequential definition of polynomials.)
|
||||
2. For multivariate polynomials one can represent and store polynomial as a matching (in programming it is called "map" or "dictionary", in math it is called [functional relation](https://en.wikipedia.org/wiki/Binary_relation#Special_types_of_binary_relations)) of each "**term signature**" (that describes what variables and in what powers appear in the term) with corresponding coefficient of the term. But there are 2 possible approaches of term signature representation:
|
||||
1. One can number all the variables, so term signature can be represented as a sequence describing powers of the variables. I.e. signature of term $c \\; x_0^{d_0} \dots x_n^{d_n} $ (for natural or zero $d_i $) can be represented as a finite sequence $(d_0; \dots; d_n)$.
|
||||
2. One can represent variables as objects ("**labels**"), so term signature can be also represented as a matching of each appeared variable with its power in the term. I.e. signature of term $c \\; x_0^{d_0} \dots x_n^{d_n} $ (for natural non-zero $d_i $) can be represented as a finite matching $(x_0 \to d_1; \dots; x_n \to d_n)$.
|
||||
|
||||
All that three approaches are implemented by "list", "numbered", and "labeled" versions of polynomials and polynomial spaces respectively. Whereas all rational functions are represented as fractions with corresponding polynomial numerator and denominator, and rational functions' spaces are implemented in the same way as usual field of rational numbers (or more precisely, as any field of fractions over integral domain) should be implemented.
|
||||
|
||||
So here are a bit of details. Let `C` by type of constants. Then:
|
||||
1. `ListPolynomial`, `ListPolynomialSpace`, `ListRationalFunction` and `ListRationalFunctionSpace` implement the first scenario. `ListPolynomial` stores polynomial $a_0 + \dots + a_n x^n $ as a coefficients list `listOf(a_0, ..., a_n)` (of type `List<C>`).
|
||||
|
||||
They also have variation `ScalableListPolynomialSpace` that replaces former polynomials and implements `ScaleOperations`.
|
||||
2. `NumberedPolynomial`, `NumberedPolynomialSpace`, `NumberedRationalFunction` and `NumberedRationalFunctionSpace` implement second scenario. `NumberedPolynomial` stores polynomials as structures of type `Map<List<UInt>, C>`. Signatures are stored as `List<UInt>`. To prevent ambiguity signatures should not end with zeros.
|
||||
3. `LabeledPolynomial`, `LabeledPolynomialSpace`, `LabeledRationalFunction` and `LabeledRationalFunctionSpace` implement third scenario using common `Symbol` as variable type. `LabeledPolynomial` stores polynomials as structures of type `Map<Map<Symbol, UInt>, C>`. Signatures are stored as `Map<Symbol, UInt>`. To prevent ambiguity each signature should not map any variable to zero.
|
||||
|
||||
### Example: `ListPolynomial`
|
||||
|
||||
For example, polynomial $2 - 3x + x^2 $ (with `Int` coefficients) is represented
|
||||
```kotlin
|
||||
val polynomial: ListPolynomial<Int> = ListPolynomial(listOf(2, -3, 1))
|
||||
// or
|
||||
val polynomial: ListPolynomial<Int> = ListPolynomial(2, -3, 1)
|
||||
```
|
||||
|
||||
All algebraic operations can be used in corresponding space:
|
||||
```kotlin
|
||||
val computationResult = Int.algebra.listPolynomialSpace {
|
||||
ListPolynomial(2, -3, 1) + ListPolynomial(0, 6) == ListPolynomial(2, 3, 1)
|
||||
}
|
||||
|
||||
println(computationResult) // true
|
||||
```
|
||||
|
||||
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
|
||||
|
||||
### Example: `NumberedPolynomial`
|
||||
|
||||
For example, polynomial $3 + 5 x_1 - 7 x_0^2 x_2 $ (with `Int` coefficients) is represented
|
||||
```kotlin
|
||||
val polynomial: NumberedPolynomial<Int> = NumberedPolynomial(
|
||||
mapOf(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
)
|
||||
)
|
||||
// or
|
||||
val polynomial: NumberedPolynomial<Int> = NumberedPolynomial(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
)
|
||||
```
|
||||
|
||||
All algebraic operations can be used in corresponding space:
|
||||
```kotlin
|
||||
val computationResult = Int.algebra.numberedPolynomialSpace {
|
||||
NumberedPolynomial(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
) + NumberedPolynomial(
|
||||
listOf(0u, 1u) to -5,
|
||||
listOf(0u, 0u, 0u, 4u) to 4,
|
||||
) == NumberedPolynomial(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 0,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
listOf(0u, 0u, 0u, 4u) to 4,
|
||||
)
|
||||
}
|
||||
|
||||
println(computationResult) // true
|
||||
```
|
||||
|
||||
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
|
||||
|
||||
### Example: `LabeledPolynomial`
|
||||
|
||||
For example, polynomial $3 + 5 y - 7 x^2 z $ (with `Int` coefficients) is represented
|
||||
```kotlin
|
||||
val polynomial: LabeledPolynomial<Int> = LabeledPolynomial(
|
||||
mapOf(
|
||||
mapOf<Symbol, UInt>() to 3,
|
||||
mapOf(y to 1u) to 5,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
)
|
||||
)
|
||||
// or
|
||||
val polynomial: LabeledPolynomial<Int> = LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 3,
|
||||
mapOf(y to 1u) to 5,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
)
|
||||
```
|
||||
|
||||
All algebraic operations can be used in corresponding space:
|
||||
```kotlin
|
||||
val computationResult = Int.algebra.labeledPolynomialSpace {
|
||||
LabeledPolynomial(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
) + LabeledPolynomial(
|
||||
listOf(0u, 1u) to -5,
|
||||
listOf(0u, 0u, 0u, 4u) to 4,
|
||||
) == LabeledPolynomial(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 0,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
listOf(0u, 0u, 0u, 4u) to 4,
|
||||
)
|
||||
}
|
||||
|
||||
println(computationResult) // true
|
||||
```
|
||||
|
||||
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
|
||||
|
||||
## Abstract entities (interfaces and abstract classes)
|
||||
|
||||
```mermaid
|
||||
classDiagram
|
||||
Polynomial <|-- ListPolynomial
|
||||
Polynomial <|-- NumberedPolynomial
|
||||
Polynomial <|-- LabeledPolynomial
|
||||
|
||||
RationalFunction <|-- ListRationalFunction
|
||||
RationalFunction <|-- NumberedRationalFunction
|
||||
RationalFunction <|-- LabeledRationalFunction
|
||||
|
||||
Ring <|-- PolynomialSpace
|
||||
PolynomialSpace <|-- MultivariatePolynomialSpace
|
||||
PolynomialSpace <|-- PolynomialSpaceOverRing
|
||||
|
||||
Ring <|-- RationalFunctionSpace
|
||||
RationalFunctionSpace <|-- MultivariateRationalFunctionSpace
|
||||
RationalFunctionSpace <|-- RationalFunctionSpaceOverRing
|
||||
RationalFunctionSpace <|-- RationalFunctionSpaceOverPolynomialSpace
|
||||
RationalFunctionSpace <|-- PolynomialSpaceOfFractions
|
||||
RationalFunctionSpaceOverPolynomialSpace <|-- MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace
|
||||
MultivariateRationalFunctionSpace <|-- MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace
|
||||
MultivariateRationalFunctionSpace <|-- MultivariatePolynomialSpaceOfFractions
|
||||
PolynomialSpaceOfFractions <|-- MultivariatePolynomialSpaceOfFractions
|
||||
```
|
||||
|
||||
There are implemented `Polynomial` and `RationalFunction` interfaces as abstractions of polynomials and rational functions respectively (although, there is not a lot of logic in them) and `PolynomialSpace` and `RationalFunctionSpace` (that implement `Ring` interface) as abstractions of polynomials' and rational functions' spaces respectively. More precisely, that means they allow to declare common logic of interaction with such objects and spaces:
|
||||
- `Polynomial` does not provide any logic. It is marker interface.
|
||||
- `RationalFunction` provides numerator and denominator of rational function and destructuring declaration for them.
|
||||
- `PolynomialSpace` provides all possible arithmetic interactions of integers, constants (of type `C`), and polynomials (of type `P`) like addition, subtraction, multiplication, and some others and common properties like degree of polynomial.
|
||||
- `RationalFunctionSpace` provides the same as `PolynomialSpace` but also for rational functions: all possible arithmetic interactions of integers, constants (of type `C`), polynomials (of type `P`), and rational functions (of type `R`) like addition, subtraction, multiplication, division (in some cases), and some others and common properties like degree of polynomial.
|
||||
|
||||
Then to add abstraction of similar behaviour with variables (in multivariate case) there are implemented `MultivariatePolynomialSpace` and `MultivariateRationalFunctionSpace`. They just include variables (of type `V`) in the interactions of the entities.
|
||||
|
||||
Also, to remove boilerplates there were provided helping subinterfaces and abstract subclasses:
|
||||
- `PolynomialSpaceOverRing` allows to replace implementation of interactions of integers and constants with implementations from provided ring over constants (of type `A: Ring<C>`).
|
||||
- `RationalFunctionSpaceOverRing` — the same but for `RationalFunctionSpace`.
|
||||
- `RationalFunctionSpaceOverPolynomialSpace` — the same but "the inheritance" includes interactions with polynomials from provided `PolynomialSpace`.
|
||||
- `PolynomialSpaceOfFractions` is actually abstract subclass of `RationalFunctionSpace` that implements all fractions boilerplates with provided (`protected`) constructor of rational functions by polynomial numerator and denominator.
|
||||
- `MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace` and `MultivariatePolynomialSpaceOfFractions` — the same stories of operators inheritance and fractions boilerplates respectively but in multivariate case.
|
||||
|
||||
## Utilities
|
||||
|
||||
For all kinds of polynomials there are provided (implementation details depend on kind of polynomials) such common utilities as:
|
||||
1. differentiation and anti-differentiation,
|
||||
2. substitution, invocation and functional representation.
|
11
docs/templates/README-TEMPLATE.md
vendored
@ -1,6 +1,6 @@
|
||||
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
|
||||
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
|
||||
![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg)
|
||||
![Gradle build](https://github.com/SciProgCentre/kmath/workflows/Gradle%20build/badge.svg)
|
||||
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22)
|
||||
[![Space](https://img.shields.io/badge/dynamic/xml?color=orange&label=Space&query=//metadata/versioning/latest&url=https%3A%2F%2Fmaven.pkg.jetbrains.space%2Fmipt-npm%2Fp%2Fsci%2Fmaven%2Fspace%2Fkscience%2Fkmath-core%2Fmaven-metadata.xml)](https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven/space/kscience/)
|
||||
|
||||
@ -11,7 +11,7 @@ analog to Python's NumPy library. Later we found that kotlin is much more flexib
|
||||
architecture designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like
|
||||
experience could be achieved with [kmath-for-real](/kmath-for-real) extension module.
|
||||
|
||||
[Documentation site (**WIP**)](https://mipt-npm.github.io/kmath/)
|
||||
[Documentation site (**WIP**)](https://SciProgCentre.github.io/kmath/)
|
||||
|
||||
## Publications and talks
|
||||
|
||||
@ -44,7 +44,7 @@ module definitions below. The module stability could have the following levels:
|
||||
* **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could
|
||||
break any moment. You can still use it, but be sure to fix the specific version.
|
||||
* **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked
|
||||
with `@UnstableKmathAPI` or other stability warning annotations.
|
||||
with `@UnstableKMathAPI` or other stability warning annotations.
|
||||
* **DEVELOPMENT**. API breaking generally follows semantic versioning ideology. There could be changes in minor
|
||||
versions, but not in patch versions. API is protected
|
||||
with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
|
||||
@ -69,8 +69,7 @@ performance and flexibility.
|
||||
|
||||
We expect to focus on creating convenient universal API first and then work on increasing performance for specific
|
||||
cases. We expect the worst KMath benchmarks will perform better than native Python, but worse than optimized
|
||||
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be
|
||||
better than SciPy.
|
||||
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be better than SciPy.
|
||||
|
||||
## Requirements
|
||||
|
||||
@ -102,4 +101,4 @@ Gradle `6.0+` is required for multiplatform artifacts.
|
||||
The project requires a lot of additional work. The most important thing we need is a feedback about what features are
|
||||
required the most. Feel free to create feature requests. We are also welcome to code contributions, especially in issues
|
||||
marked with
|
||||
[waiting for a hero](https://github.com/mipt-npm/kmath/labels/waiting%20for%20a%20hero) label.
|
||||
[waiting for a hero](https://github.com/mipt-npm/kmath/labels/waiting%20for%20a%20hero) label.
|
@ -8,6 +8,8 @@ repositories {
|
||||
maven("https://maven.pkg.jetbrains.space/kotlin/p/kotlin/kotlin-js-wrappers")
|
||||
}
|
||||
|
||||
val multikVersion: String by rootProject.extra
|
||||
|
||||
dependencies {
|
||||
implementation(project(":kmath-ast"))
|
||||
implementation(project(":kmath-kotlingrad"))
|
||||
@ -15,6 +17,8 @@ dependencies {
|
||||
implementation(project(":kmath-coroutines"))
|
||||
implementation(project(":kmath-commons"))
|
||||
implementation(project(":kmath-complex"))
|
||||
implementation(project(":kmath-functions"))
|
||||
implementation(project(":kmath-polynomial"))
|
||||
implementation(project(":kmath-optimization"))
|
||||
implementation(project(":kmath-stat"))
|
||||
implementation(project(":kmath-viktor"))
|
||||
@ -28,6 +32,7 @@ dependencies {
|
||||
implementation(project(":kmath-jafama"))
|
||||
//multik
|
||||
implementation(project(":kmath-multik"))
|
||||
implementation("org.jetbrains.kotlinx:multik-default:$multikVersion")
|
||||
|
||||
|
||||
implementation("org.nd4j:nd4j-native:1.0.0-beta7")
|
||||
@ -66,5 +71,5 @@ tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile> {
|
||||
}
|
||||
|
||||
readme {
|
||||
maturity = ru.mipt.npm.gradle.Maturity.EXPERIMENTAL
|
||||
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -0,0 +1,399 @@
|
||||
/*
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@file:Suppress("LocalVariableName")
|
||||
|
||||
package space.kscience.kmath.functions
|
||||
|
||||
import space.kscience.kmath.expressions.Symbol
|
||||
import space.kscience.kmath.expressions.symbol
|
||||
import space.kscience.kmath.operations.algebra
|
||||
import space.kscience.kmath.operations.invoke
|
||||
|
||||
|
||||
/**
|
||||
* Shows [ListPolynomial]s' and [ListRationalFunction]s' capabilities.
|
||||
*/
|
||||
fun listPolynomialsExample() {
|
||||
// [ListPolynomial] is a representation of a univariate polynomial as a list of coefficients from the least term to
|
||||
// the greatest term. For example,
|
||||
val polynomial1: ListPolynomial<Int> = ListPolynomial(listOf(2, -3, 1))
|
||||
// represents polynomial 2 + (-3) x + x^2
|
||||
|
||||
// There are also shortcut fabrics:
|
||||
val polynomial2: ListPolynomial<Int> = ListPolynomial(2, -3, 1)
|
||||
println(polynomial1 == polynomial2) // true
|
||||
// and even
|
||||
val polynomial3: ListPolynomial<Int> = 57.asListPolynomial()
|
||||
val polynomial4: ListPolynomial<Int> = ListPolynomial(listOf(57))
|
||||
println(polynomial3 == polynomial4) // true
|
||||
|
||||
val polynomial5: ListPolynomial<Int> = ListPolynomial(3, -1)
|
||||
// For every ring there can be provided a polynomial ring:
|
||||
Int.algebra.listPolynomialSpace {
|
||||
println(-polynomial5 == ListPolynomial(-3, 1)) // true
|
||||
println(polynomial1 + polynomial5 == ListPolynomial(5, -4, 1)) // true
|
||||
println(polynomial1 - polynomial5 == ListPolynomial(-1, -2, 1)) // true
|
||||
println(polynomial1 * polynomial5 == ListPolynomial(6, -11, 6, -1)) // true
|
||||
}
|
||||
// You can even write
|
||||
val x: ListPolynomial<Double> = ListPolynomial(0.0, 1.0)
|
||||
val polynomial6: ListPolynomial<Double> = ListPolynomial(2.0, -3.0, 1.0)
|
||||
Double.algebra.listPolynomialSpace {
|
||||
println(2 - 3 * x + x * x == polynomial6)
|
||||
println(2.0 - 3.0 * x + x * x == polynomial6)
|
||||
}
|
||||
|
||||
// Also there are some utilities for polynomials:
|
||||
println(polynomial1.substitute(Int.algebra, 1) == 0) // true, because 2 + (-3) * 1 + 1^2 = 0
|
||||
println(polynomial1.substitute(Int.algebra, polynomial5) == polynomial1) // true, because 2 + (-3) * (3-x) + (3-x)^2 = 2 - 3x + x^2
|
||||
println(polynomial1.derivative(Int.algebra) == ListPolynomial(-3, 2)) // true, (2 - 3x + x^2)' = -3 + 2x
|
||||
println(polynomial1.nthDerivative(Int.algebra, 2) == 2.asListPolynomial()) // true, (2 - 3x + x^2)'' = 2
|
||||
|
||||
// Lastly, there are rational functions and some other utilities:
|
||||
Double.algebra.listRationalFunctionSpace {
|
||||
val rationalFunction1: ListRationalFunction<Double> = ListRationalFunction(listOf(2.0, -3.0, 1.0), listOf(3.0, -1.0))
|
||||
// It's just (2 - 3x + x^2)/(3 - x)
|
||||
|
||||
val rationalFunction2 : ListRationalFunction<Double> = ListRationalFunction(listOf(5.0, -4.0, 1.0), listOf(3.0, -1.0))
|
||||
// It's just (5 - 4x + x^2)/(3 - x)
|
||||
|
||||
println(rationalFunction1 + 1 == rationalFunction2)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Shows [NumberedPolynomial]s' and [NumberedRationalFunction]s' capabilities.
|
||||
*/
|
||||
fun numberedPolynomialsExample() {
|
||||
// Consider polynomial
|
||||
// 3 + 5 x_2 - 7 x_1^2 x_3
|
||||
// Consider, for example, its term -7 x_1^2 x_3. -7 is a coefficient of the term, whereas (2, 0, 1, 0, 0, ...) is
|
||||
// description of degrees of variables x_1, x_2, ... in the term. Such description with removed leading zeros
|
||||
// [2, 0, 1] is called "signature" of the term -7 x_1^2 x_3.
|
||||
|
||||
val polynomial1: NumberedPolynomial<Int>
|
||||
with(Int.algebra) {
|
||||
// [NumberedPolynomial] is a representation of a multivariate polynomial, that stores terms in a map with terms'
|
||||
// signatures as the map's keys and terms' coefficients as corresponding values. For example,
|
||||
polynomial1 = NumberedPolynomial(
|
||||
mapOf(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
)
|
||||
)
|
||||
// represents polynomial 3 + 5 x_2 - 7 x_1^2 x_3
|
||||
|
||||
// This `NumberedPolynomial` function needs context of either ring of constant (as `Int.algebra` in this example)
|
||||
// or space of NumberedPolynomials over it. To understand why it is like this see documentations of functions
|
||||
// NumberedPolynomial and NumberedPolynomialWithoutCheck
|
||||
|
||||
// There are also shortcut fabrics:
|
||||
val polynomial2: NumberedPolynomial<Int> = NumberedPolynomial(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
)
|
||||
println(polynomial1 == polynomial2) // true
|
||||
// and even
|
||||
val polynomial3: NumberedPolynomial<Int> = 57.asNumberedPolynomial() // This one actually does not algebraic context!
|
||||
val polynomial4: NumberedPolynomial<Int> = NumberedPolynomial(listOf<UInt>() to 57)
|
||||
println(polynomial3 == polynomial4) // true
|
||||
|
||||
numberedPolynomialSpace {
|
||||
// Also there is DSL for constructing NumberedPolynomials:
|
||||
val polynomial5: NumberedPolynomial<Int> = NumberedPolynomialDSL1 {
|
||||
3 {}
|
||||
5 { 1 inPowerOf 1u }
|
||||
-7 with { 0 pow 2u; 2 pow 1u }
|
||||
// `pow` and `inPowerOf` are the same
|
||||
// `with` is omittable
|
||||
}
|
||||
println(polynomial1 == polynomial5) // true
|
||||
|
||||
// Unfortunately the DSL does not work good in bare context of constants' ring, so for now it's disabled and
|
||||
// works only in NumberedPolynomialSpace and NumberedRationalFunctionSpace
|
||||
}
|
||||
}
|
||||
|
||||
val polynomial6: NumberedPolynomial<Int> = Int.algebra {
|
||||
NumberedPolynomial(
|
||||
listOf<UInt>() to 7,
|
||||
listOf(0u, 1u) to -5,
|
||||
listOf(2u, 0u, 1u) to 0,
|
||||
listOf(0u, 0u, 0u, 4u) to 4,
|
||||
)
|
||||
}
|
||||
// For every ring there can be provided a polynomial ring:
|
||||
Int.algebra.numberedPolynomialSpace {
|
||||
println(
|
||||
-polynomial6 == NumberedPolynomial(
|
||||
listOf<UInt>() to -7,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to 0,
|
||||
listOf(0u, 0u, 0u, 4u) to (-4),
|
||||
)
|
||||
) // true
|
||||
println(
|
||||
polynomial1 + polynomial6 == NumberedPolynomial(
|
||||
listOf<UInt>() to 10,
|
||||
listOf(0u, 1u) to 0,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
listOf(0u, 0u, 0u, 4u) to 4,
|
||||
)
|
||||
) // true
|
||||
println(
|
||||
polynomial1 - polynomial6 == NumberedPolynomial(
|
||||
listOf<UInt>() to -4,
|
||||
listOf(0u, 1u) to 10,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
listOf(0u, 0u, 0u, 4u) to -4,
|
||||
)
|
||||
) // true
|
||||
|
||||
polynomial1 * polynomial6 // Multiplication works too
|
||||
}
|
||||
|
||||
Double.algebra.numberedPolynomialSpace {
|
||||
// You can even write
|
||||
val x_1: NumberedPolynomial<Double> = NumberedPolynomial(listOf(1u) to 1.0)
|
||||
val x_2: NumberedPolynomial<Double> = NumberedPolynomial(listOf(0u, 1u) to 1.0)
|
||||
val x_3: NumberedPolynomial<Double> = NumberedPolynomial(listOf(0u, 0u, 1u) to 1.0)
|
||||
val polynomial7: NumberedPolynomial<Double> = NumberedPolynomial(
|
||||
listOf<UInt>() to 3.0,
|
||||
listOf(0u, 1u) to 5.0,
|
||||
listOf(2u, 0u, 1u) to -7.0,
|
||||
)
|
||||
Double.algebra.listPolynomialSpace {
|
||||
println(3 + 5 * x_2 - 7 * x_1 * x_1 * x_3 == polynomial7)
|
||||
println(3.0 + 5.0 * x_2 - 7.0 * x_1 * x_1 * x_3 == polynomial7)
|
||||
}
|
||||
}
|
||||
|
||||
Int.algebra.numberedPolynomialSpace {
|
||||
val x_4: NumberedPolynomial<Int> = NumberedPolynomial(listOf(0u, 0u, 0u, 4u) to 1)
|
||||
// Also there are some utilities for polynomials:
|
||||
println(polynomial1.substitute(mapOf(0 to 1, 1 to -2, 2 to -1)) == 0.asNumberedPolynomial()) // true,
|
||||
// because it's substitution x_1 -> 1, x_2 -> -2, x_3 -> -1,
|
||||
// so 3 + 5 x_2 - 7 x_1^2 x_3 = 3 + 5 * (-2) - 7 * 1^2 * (-1) = 3 - 10 + 7 = 0
|
||||
println(
|
||||
polynomial1.substitute(mapOf(1 to x_4)) == NumberedPolynomial(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
)
|
||||
) // true, because it's substitution x_2 -> x_4, so result is 3 + 5 x_4 - 7 x_1^2 x_3
|
||||
println(
|
||||
polynomial1.derivativeWithRespectTo(Int.algebra, 1) ==
|
||||
NumberedPolynomial(listOf<UInt>() to 5)
|
||||
) // true, d/dx_2 (3 + 5 x_2 - 7 x_1^2 x_3) = 5
|
||||
}
|
||||
|
||||
// Lastly, there are rational functions and some other utilities:
|
||||
Double.algebra.numberedRationalFunctionSpace {
|
||||
val rationalFunction1: NumberedRationalFunction<Double> = NumberedRationalFunction(
|
||||
NumberedPolynomial(
|
||||
listOf<UInt>() to 2.0,
|
||||
listOf(1u) to -3.0,
|
||||
listOf(2u) to 1.0,
|
||||
),
|
||||
NumberedPolynomial(
|
||||
listOf<UInt>() to 3.0,
|
||||
listOf(1u) to -1.0,
|
||||
)
|
||||
)
|
||||
// It's just (2 - 3x + x^2)/(3 - x) where x = x_1
|
||||
|
||||
val rationalFunction2: NumberedRationalFunction<Double> = NumberedRationalFunction(
|
||||
NumberedPolynomial(
|
||||
listOf<UInt>() to 5.0,
|
||||
listOf(1u) to -4.0,
|
||||
listOf(2u) to 1.0,
|
||||
),
|
||||
NumberedPolynomial(
|
||||
listOf<UInt>() to 3.0,
|
||||
listOf(1u) to -1.0,
|
||||
)
|
||||
)
|
||||
// It's just (5 - 4x + x^2)/(3 - x) where x = x_1
|
||||
|
||||
println(rationalFunction1 + 1 == rationalFunction2)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Shows [LabeledPolynomial]s' and [LabeledRationalFunction]s' capabilities.
|
||||
*/
|
||||
fun labeledPolynomialsExample() {
|
||||
val x by symbol
|
||||
val y by symbol
|
||||
val z by symbol
|
||||
val t by symbol
|
||||
|
||||
// Consider polynomial
|
||||
// 3 + 5 y - 7 x^2 z
|
||||
// Consider, for example, its term -7 x^2 z. -7 is a coefficient of the term, whereas matching (x -> 2, z -> 3) is
|
||||
// description of degrees of variables x_1, x_2, ... in the term. Such description is called "signature" of the
|
||||
// term -7 x_1^2 x_3.
|
||||
|
||||
val polynomial1: LabeledPolynomial<Int>
|
||||
with(Int.algebra) {
|
||||
// [LabeledPolynomial] is a representation of a multivariate polynomial, that stores terms in a map with terms'
|
||||
// signatures as the map's keys and terms' coefficients as corresponding values. For example,
|
||||
polynomial1 = LabeledPolynomial(
|
||||
mapOf(
|
||||
mapOf<Symbol, UInt>() to 3,
|
||||
mapOf(y to 1u) to 5,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
)
|
||||
)
|
||||
// represents polynomial 3 + 5 y - 7 x^2 z
|
||||
|
||||
// This `LabeledPolynomial` function needs context of either ring of constant (as `Int.algebra` in this example)
|
||||
// or space of LabeledPolynomials over it. To understand why it is like this see documentations of functions
|
||||
// LabeledPolynomial and LabeledPolynomialWithoutCheck
|
||||
|
||||
// There are also shortcut fabrics:
|
||||
val polynomial2: LabeledPolynomial<Int> = LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 3,
|
||||
mapOf(y to 1u) to 5,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
)
|
||||
println(polynomial1 == polynomial2) // true
|
||||
// and even
|
||||
val polynomial3: LabeledPolynomial<Int> = 57.asLabeledPolynomial() // This one actually does not algebraic context!
|
||||
val polynomial4: LabeledPolynomial<Int> = LabeledPolynomial(mapOf<Symbol, UInt>() to 57)
|
||||
println(polynomial3 == polynomial4) // true
|
||||
|
||||
labeledPolynomialSpace {
|
||||
// Also there is DSL for constructing NumberedPolynomials:
|
||||
val polynomial5: LabeledPolynomial<Int> = LabeledPolynomialDSL1 {
|
||||
3 {}
|
||||
5 { y inPowerOf 1u }
|
||||
-7 with { x pow 2u; z pow 1u }
|
||||
// `pow` and `inPowerOf` are the same
|
||||
// `with` is omittable
|
||||
}
|
||||
println(polynomial1 == polynomial5) // true
|
||||
|
||||
// Unfortunately the DSL does not work good in bare context of constants' ring, so for now it's disabled and
|
||||
// works only in NumberedPolynomialSpace and NumberedRationalFunctionSpace
|
||||
}
|
||||
}
|
||||
|
||||
val polynomial6: LabeledPolynomial<Int> = Int.algebra {
|
||||
LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 7,
|
||||
mapOf(y to 1u) to -5,
|
||||
mapOf(x to 2u, z to 1u) to 0,
|
||||
mapOf(t to 4u) to 4,
|
||||
)
|
||||
}
|
||||
// For every ring there can be provided a polynomial ring:
|
||||
Int.algebra.labeledPolynomialSpace {
|
||||
println(
|
||||
-polynomial6 == LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to -7,
|
||||
mapOf(y to 1u) to 5,
|
||||
mapOf(x to 2u, z to 1u) to 0,
|
||||
mapOf(t to 4u) to -4,
|
||||
)
|
||||
) // true
|
||||
println(
|
||||
polynomial1 + polynomial6 == LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 10,
|
||||
mapOf(y to 1u) to 0,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
mapOf(t to 4u) to 4,
|
||||
)
|
||||
) // true
|
||||
println(
|
||||
polynomial1 - polynomial6 == LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to -4,
|
||||
mapOf(y to 1u) to 10,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
mapOf(t to 4u) to -4,
|
||||
)
|
||||
) // true
|
||||
|
||||
polynomial1 * polynomial6 // Multiplication works too
|
||||
}
|
||||
|
||||
Double.algebra.labeledPolynomialSpace {
|
||||
// You can even write
|
||||
val polynomial7: LabeledPolynomial<Double> = LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 3.0,
|
||||
mapOf(y to 1u) to 5.0,
|
||||
mapOf(x to 2u, z to 1u) to -7.0,
|
||||
)
|
||||
Double.algebra.listPolynomialSpace {
|
||||
println(3 + 5 * y - 7 * x * x * z == polynomial7)
|
||||
println(3.0 + 5.0 * y - 7.0 * x * x * z == polynomial7)
|
||||
}
|
||||
}
|
||||
|
||||
Int.algebra.labeledPolynomialSpace {
|
||||
// Also there are some utilities for polynomials:
|
||||
println(polynomial1.substitute(mapOf(x to 1, y to -2, z to -1)) == 0.asLabeledPolynomial()) // true,
|
||||
// because it's substitution x -> 1, y -> -2, z -> -1,
|
||||
// so 3 + 5 y - 7 x^2 z = 3 + 5 * (-2) - 7 * 1^2 * (-1) = 3 - 10 + 7 = 0
|
||||
println(
|
||||
polynomial1.substitute(mapOf(y to t.asPolynomial())) == LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 3,
|
||||
mapOf(t to 1u) to 5,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
)
|
||||
) // true, because it's substitution y -> t, so result is 3 + 5 t - 7 x^2 z
|
||||
println(
|
||||
polynomial1.derivativeWithRespectTo(Int.algebra, y) == LabeledPolynomial(mapOf<Symbol, UInt>() to 5)
|
||||
) // true, d/dy (3 + 5 y - 7 x^2 z) = 5
|
||||
}
|
||||
|
||||
// Lastly, there are rational functions and some other utilities:
|
||||
Double.algebra.labeledRationalFunctionSpace {
|
||||
val rationalFunction1: LabeledRationalFunction<Double> = LabeledRationalFunction(
|
||||
LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 2.0,
|
||||
mapOf(x to 1u) to -3.0,
|
||||
mapOf(x to 2u) to 1.0,
|
||||
),
|
||||
LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 3.0,
|
||||
mapOf(x to 1u) to -1.0,
|
||||
)
|
||||
)
|
||||
// It's just (2 - 3x + x^2)/(3 - x)
|
||||
|
||||
val rationalFunction2: LabeledRationalFunction<Double> = LabeledRationalFunction(
|
||||
LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 5.0,
|
||||
mapOf(x to 1u) to -4.0,
|
||||
mapOf(x to 2u) to 1.0,
|
||||
),
|
||||
LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 3.0,
|
||||
mapOf(x to 1u) to -1.0,
|
||||
)
|
||||
)
|
||||
// It's just (5 - 4x + x^2)/(3 - x)
|
||||
|
||||
println(rationalFunction1 + 1 == rationalFunction2)
|
||||
}
|
||||
}
|
||||
|
||||
fun main() {
|
||||
println("ListPolynomials:")
|
||||
listPolynomialsExample()
|
||||
println()
|
||||
|
||||
println("NumberedPolynomials:")
|
||||
numberedPolynomialsExample()
|
||||
println()
|
||||
|
||||
println("ListPolynomials:")
|
||||
labeledPolynomialsExample()
|
||||
println()
|
||||
}
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -7,7 +7,6 @@ package space.kscience.kmath.operations
|
||||
|
||||
import space.kscience.kmath.complex.Complex
|
||||
import space.kscience.kmath.complex.algebra
|
||||
import space.kscience.kmath.complex.bufferAlgebra
|
||||
import space.kscience.kmath.complex.ndAlgebra
|
||||
import space.kscience.kmath.nd.BufferND
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
@ -18,7 +17,7 @@ fun main() = Complex.algebra {
|
||||
println(complex * 8 - 5 * i)
|
||||
|
||||
//flat buffer
|
||||
val buffer = with(bufferAlgebra){
|
||||
val buffer = with(bufferAlgebra) {
|
||||
buffer(8) { Complex(it, -it) }.map { Complex(it.im, it.re) }
|
||||
}
|
||||
println(buffer)
|
||||
@ -30,7 +29,7 @@ fun main() = Complex.algebra {
|
||||
println(element)
|
||||
|
||||
// 1d element operation
|
||||
val result: StructureND<Complex> = ndAlgebra{
|
||||
val result: StructureND<Complex> = ndAlgebra {
|
||||
val a = structureND(8) { (it) -> i * it - it.toDouble() }
|
||||
val b = 3
|
||||
val c = Complex(1.0, 1.0)
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -32,12 +32,10 @@ fun main() {
|
||||
val shape = Shape(dim, dim)
|
||||
|
||||
|
||||
// automatically build context most suited for given type.
|
||||
val autoField = BufferedFieldOpsND(DoubleField, Buffer.Companion::auto)
|
||||
// specialized nd-field for Double. It works as generic Double field as well.
|
||||
val realField = DoubleField.ndAlgebra
|
||||
//A generic boxing field. It should be used for objects, not primitives.
|
||||
val boxingField = BufferedFieldOpsND(DoubleField, Buffer.Companion::boxing)
|
||||
val doubleField = DoubleField.ndAlgebra
|
||||
//A generic field. It should be used for objects, not primitives.
|
||||
val genericField = BufferedFieldOpsND(DoubleField)
|
||||
// Nd4j specialized field.
|
||||
val nd4jField = DoubleField.nd4j
|
||||
//viktor field
|
||||
@ -46,14 +44,14 @@ fun main() {
|
||||
val parallelField = DoubleField.ndStreaming(dim, dim)
|
||||
|
||||
measureAndPrint("Boxing addition") {
|
||||
boxingField {
|
||||
genericField {
|
||||
var res: StructureND<Double> = one(shape)
|
||||
repeat(n) { res += 1.0 }
|
||||
}
|
||||
}
|
||||
|
||||
measureAndPrint("Specialized addition") {
|
||||
realField {
|
||||
doubleField {
|
||||
var res: StructureND<Double> = one(shape)
|
||||
repeat(n) { res += 1.0 }
|
||||
}
|
||||
@ -80,15 +78,8 @@ fun main() {
|
||||
}
|
||||
}
|
||||
|
||||
measureAndPrint("Automatic field addition") {
|
||||
autoField {
|
||||
var res: StructureND<Double> = one(shape)
|
||||
repeat(n) { res += 1.0 }
|
||||
}
|
||||
}
|
||||
|
||||
measureAndPrint("Lazy addition") {
|
||||
val res = realField.one(shape).mapAsync(GlobalScope) {
|
||||
val res = doubleField.one(shape).mapAsync(GlobalScope) {
|
||||
var c = 0.0
|
||||
repeat(n) {
|
||||
c += 1.0
|
||||
|
@ -1,10 +1,11 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.structures
|
||||
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.ExtendedField
|
||||
@ -49,6 +50,7 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
|
||||
return BufferND(strides, array.asBuffer())
|
||||
}
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
override fun StructureND<Double>.map(
|
||||
transform: DoubleField.(Double) -> Double,
|
||||
): BufferND<Double> {
|
||||
@ -56,6 +58,7 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
|
||||
return BufferND(strides, array.asBuffer())
|
||||
}
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
override fun StructureND<Double>.mapIndexed(
|
||||
transform: DoubleField.(index: IntArray, Double) -> Double,
|
||||
): BufferND<Double> {
|
||||
@ -69,6 +72,7 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
|
||||
return BufferND(strides, array.asBuffer())
|
||||
}
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
override fun zip(
|
||||
left: StructureND<Double>,
|
||||
right: StructureND<Double>,
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,10 +1,11 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors
|
||||
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
@ -13,6 +14,7 @@ import kotlin.math.abs
|
||||
|
||||
// OLS estimator using SVD
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
fun main() {
|
||||
//seed for random
|
||||
val randSeed = 100500L
|
||||
@ -50,7 +52,7 @@ fun main() {
|
||||
// inverse Sigma matrix can be restored from singular values with diagonalEmbedding function
|
||||
val sigma = diagonalEmbedding(singValues.map{ if (abs(it) < 1e-3) 0.0 else 1.0/it })
|
||||
|
||||
val alphaOLS = v dot sigma dot u.transpose() dot y
|
||||
val alphaOLS = v dot sigma dot u.transposed() dot y
|
||||
println("Estimated alpha:\n" +
|
||||
"$alphaOLS")
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -27,7 +27,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
|
||||
println("y:\n$y")
|
||||
|
||||
// stack them into single dataset
|
||||
val dataset = stack(listOf(x, y)).transpose()
|
||||
val dataset = stack(listOf(x, y)).transposed()
|
||||
|
||||
// normalize both x and y
|
||||
val xMean = x.mean()
|
||||
@ -58,7 +58,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
|
||||
|
||||
// and find out eigenvector of it
|
||||
val (_, evecs) = covMatrix.symEig()
|
||||
val v = evecs[0]
|
||||
val v = evecs.getTensor(0)
|
||||
println("Eigenvector:\n$v")
|
||||
|
||||
// reduce dimension of dataset
|
||||
@ -68,7 +68,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
|
||||
// we can restore original data from reduced data;
|
||||
// for example, find 7th element of dataset.
|
||||
val n = 7
|
||||
val restored = (datasetReduced[n] dot v.view(intArrayOf(1, 2))) * std + mean
|
||||
println("Original value:\n${dataset[n]}")
|
||||
val restored = (datasetReduced.getTensor(n) dot v.view(intArrayOf(1, 2))) * std + mean
|
||||
println("Original value:\n${dataset.getTensor(n)}")
|
||||
println("Restored value:\n$restored")
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -66,7 +66,7 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
|
||||
val n = l.shape[0]
|
||||
val x = zeros(intArrayOf(n))
|
||||
for (i in 0 until n) {
|
||||
x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).value()) / l[intArrayOf(i, i)]
|
||||
x[intArrayOf(i)] = (b[intArrayOf(i)] - l.getTensor(i).dot(x).value()) / l[intArrayOf(i, i)]
|
||||
}
|
||||
return x
|
||||
}
|
||||
@ -75,7 +75,7 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
|
||||
|
||||
// solveLT(l, b) function can be easily adapted for upper triangular matrix by the permutation matrix revMat
|
||||
// create it by placing ones on side diagonal
|
||||
val revMat = u.zeroesLike()
|
||||
val revMat = zeroesLike(u)
|
||||
val n = revMat.shape[0]
|
||||
for (i in 0 until n) {
|
||||
revMat[intArrayOf(i, n - 1 - i)] = 1.0
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -7,11 +7,14 @@ package space.kscience.kmath.tensors
|
||||
|
||||
import org.jetbrains.kotlinx.multik.api.Multik
|
||||
import org.jetbrains.kotlinx.multik.api.ndarray
|
||||
import space.kscience.kmath.multik.multikAlgebra
|
||||
import org.jetbrains.kotlinx.multik.default.DefaultEngine
|
||||
import space.kscience.kmath.multik.MultikDoubleAlgebra
|
||||
import space.kscience.kmath.nd.one
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
|
||||
fun main(): Unit = with(DoubleField.multikAlgebra) {
|
||||
|
||||
val multikAlgebra = MultikDoubleAlgebra(DefaultEngine())
|
||||
|
||||
fun main(): Unit = with(multikAlgebra) {
|
||||
val a = Multik.ndarray(intArrayOf(1, 2, 3)).asType<Double>().wrap()
|
||||
val b = Multik.ndarray(doubleArrayOf(1.0, 2.0, 3.0)).wrap()
|
||||
one(a.shape) - a + b * 3.0
|
||||
|
@ -1,15 +1,16 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors
|
||||
|
||||
import space.kscience.kmath.operations.asIterable
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.copyArray
|
||||
import space.kscience.kmath.tensors.core.toDoubleTensor
|
||||
import kotlin.math.sqrt
|
||||
|
||||
const val seed = 100500L
|
||||
@ -79,9 +80,9 @@ class Dense(
|
||||
}
|
||||
|
||||
override fun backward(input: DoubleTensor, outputError: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
|
||||
val gradInput = outputError dot weights.transpose()
|
||||
val gradInput = outputError dot weights.transposed()
|
||||
|
||||
val gradW = input.transpose() dot outputError
|
||||
val gradW = input.transposed() dot outputError
|
||||
val gradBias = outputError.mean(dim = 0, keepDim = false) * input.shape[0].toDouble()
|
||||
|
||||
weights -= learningRate * gradW
|
||||
@ -106,12 +107,11 @@ fun accuracy(yPred: DoubleTensor, yTrue: DoubleTensor): Double {
|
||||
}
|
||||
|
||||
// neural network class
|
||||
@OptIn(ExperimentalStdlibApi::class)
|
||||
class NeuralNetwork(private val layers: List<Layer>) {
|
||||
private fun softMaxLoss(yPred: DoubleTensor, yTrue: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
|
||||
|
||||
val onesForAnswers = yPred.zeroesLike()
|
||||
yTrue.copyArray().forEachIndexed { index, labelDouble ->
|
||||
val onesForAnswers = zeroesLike(yPred)
|
||||
yTrue.source.asIterable().forEachIndexed { index, labelDouble ->
|
||||
val label = labelDouble.toInt()
|
||||
onesForAnswers[intArrayOf(index, label)] = 1.0
|
||||
}
|
||||
@ -163,7 +163,7 @@ class NeuralNetwork(private val layers: List<Layer>) {
|
||||
for ((xBatch, yBatch) in iterBatch(xTrain, yTrain)) {
|
||||
train(xBatch, yBatch)
|
||||
}
|
||||
println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true).asDouble())}")
|
||||
println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true).toDoubleTensor())}")
|
||||
}
|
||||
}
|
||||
|
||||
@ -194,7 +194,7 @@ fun main() = BroadcastDoubleTensorAlgebra {
|
||||
val y = fromArray(
|
||||
intArrayOf(sampleSize, 1),
|
||||
DoubleArray(sampleSize) { i ->
|
||||
if (x[i].sum() > 0.0) {
|
||||
if (x.getTensor(i).sum() > 0.0) {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
@ -230,7 +230,7 @@ fun main() = BroadcastDoubleTensorAlgebra {
|
||||
val prediction = model.predict(xTest)
|
||||
|
||||
// process raw prediction via argMax
|
||||
val predictionLabels = prediction.argMax(1, true).asDouble()
|
||||
val predictionLabels = prediction.argMax(1, true).toDoubleTensor()
|
||||
|
||||
// find out accuracy
|
||||
val acc = accuracy(yTest, predictionLabels)
|
||||
|
@ -6,8 +6,10 @@ kotlin.code.style=official
|
||||
kotlin.jupyter.add.scanner=false
|
||||
kotlin.mpp.stability.nowarn=true
|
||||
kotlin.native.ignoreDisabledTargets=true
|
||||
#kotlin.incremental.js.ir=true
|
||||
kotlin.incremental.js.ir=true
|
||||
|
||||
org.gradle.configureondemand=true
|
||||
org.gradle.jvmargs=-XX:MaxMetaspaceSize=1G
|
||||
org.gradle.parallel=true
|
||||
org.gradle.jvmargs=-Xmx4096m
|
||||
|
||||
toolsVersion=0.13.0-kotlin-1.7.20-Beta
|
||||
|
2
gradle/wrapper/gradle-wrapper.properties
vendored
@ -1,5 +1,5 @@
|
||||
distributionBase=GRADLE_USER_HOME
|
||||
distributionPath=wrapper/dists
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-7.4.2-bin.zip
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-7.5-bin.zip
|
||||
zipStoreBase=GRADLE_USER_HOME
|
||||
zipStorePath=wrapper/dists
|
||||
|
@ -10,7 +10,7 @@ Extensions to MST API: transformations, dynamic compilation and visualization.
|
||||
|
||||
## Artifact:
|
||||
|
||||
The Maven coordinates of this project are `space.kscience:kmath-ast:0.3.0`.
|
||||
The Maven coordinates of this project are `space.kscience:kmath-ast:0.3.1-dev-1`.
|
||||
|
||||
**Gradle Groovy:**
|
||||
```groovy
|
||||
@ -20,7 +20,7 @@ repositories {
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation 'space.kscience:kmath-ast:0.3.0'
|
||||
implementation 'space.kscience:kmath-ast:0.3.1-dev-1'
|
||||
}
|
||||
```
|
||||
**Gradle Kotlin DSL:**
|
||||
@ -31,7 +31,7 @@ repositories {
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation("space.kscience:kmath-ast:0.3.0")
|
||||
implementation("space.kscience:kmath-ast:0.3.1-dev-1")
|
||||
}
|
||||
```
|
||||
|
||||
@ -199,10 +199,7 @@ public fun main() {
|
||||
|
||||
Result LaTeX:
|
||||
|
||||
<div style="background-color:white;">
|
||||
|
||||
![](https://latex.codecogs.com/gif.latex?%5Coperatorname{exp}%5C,%5Cleft(%5Csqrt{x}%5Cright)-%5Cfrac{%5Cfrac{%5Coperatorname{arcsin}%5C,%5Cleft(2%5C,x%5Cright)}{2%5Ctimes10^{10}%2Bx^{3}}}{12}+x^{2/3})
|
||||
</div>
|
||||
$$\operatorname{exp}\\,\left(\sqrt{x}\right)-\frac{\frac{\operatorname{arcsin}\\,\left(2\\,x\right)}{2\times10^{10}+x^{3}}}{12}+x^{2/3}$$
|
||||
|
||||
Result MathML (can be used with MathJax or other renderers):
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
plugins {
|
||||
kotlin("multiplatform")
|
||||
id("ru.mipt.npm.gradle.common")
|
||||
id("space.kscience.gradle.mpp")
|
||||
}
|
||||
|
||||
kscience{
|
||||
native()
|
||||
}
|
||||
|
||||
kotlin.js {
|
||||
@ -24,7 +27,7 @@ kotlin.sourceSets {
|
||||
|
||||
commonMain {
|
||||
dependencies {
|
||||
api("com.github.h0tk3y.betterParse:better-parse:0.4.2")
|
||||
api("com.github.h0tk3y.betterParse:better-parse:0.4.4")
|
||||
api(project(":kmath-core"))
|
||||
}
|
||||
}
|
||||
@ -57,11 +60,11 @@ tasks.dokkaHtml {
|
||||
|
||||
if (System.getProperty("space.kscience.kmath.ast.dump.generated.classes") == "1")
|
||||
tasks.jvmTest {
|
||||
jvmArgs = (jvmArgs ?: emptyList()) + listOf("-Dspace.kscience.kmath.ast.dump.generated.classes=1")
|
||||
jvmArgs("-Dspace.kscience.kmath.ast.dump.generated.classes=1")
|
||||
}
|
||||
|
||||
readme {
|
||||
maturity = ru.mipt.npm.gradle.Maturity.EXPERIMENTAL
|
||||
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL
|
||||
propertyByTemplate("artifact", rootProject.file("docs/templates/ARTIFACT-TEMPLATE.md"))
|
||||
|
||||
feature(
|
||||
|
@ -170,10 +170,7 @@ public fun main() {
|
||||
|
||||
Result LaTeX:
|
||||
|
||||
<div style="background-color:white;">
|
||||
|
||||
![](https://latex.codecogs.com/gif.latex?%5Coperatorname{exp}%5C,%5Cleft(%5Csqrt{x}%5Cright)-%5Cfrac{%5Cfrac{%5Coperatorname{arcsin}%5C,%5Cleft(2%5C,x%5Cright)}{2%5Ctimes10^{10}%2Bx^{3}}}{12}+x^{2/3})
|
||||
</div>
|
||||
$$\operatorname{exp}\\,\left(\sqrt{x}\right)-\frac{\frac{\operatorname{arcsin}\\,\left(2\\,x\right)}{2\times10^{10}+x^{3}}}{12}+x^{2/3}$$
|
||||
|
||||
Result MathML (can be used with MathJax or other renderers):
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -36,7 +36,7 @@ public fun <T : Any> MST.compileToExpression(algebra: Algebra<T>): Expression<T>
|
||||
)
|
||||
}
|
||||
|
||||
return ESTreeBuilder<T> { visit(typed) }.instance
|
||||
return ESTreeBuilder { visit(typed) }.instance
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
@ -22,28 +22,20 @@ internal class ESTreeBuilder<T>(val bodyCallback: ESTreeBuilder<T>.() -> BaseExp
|
||||
}
|
||||
}
|
||||
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
val instance: Expression<T> by lazy {
|
||||
val node = Program(
|
||||
sourceType = "script",
|
||||
VariableDeclaration(
|
||||
kind = "var",
|
||||
VariableDeclarator(
|
||||
id = Identifier("executable"),
|
||||
init = FunctionExpression(
|
||||
params = arrayOf(Identifier("constants"), Identifier("arguments")),
|
||||
body = BlockStatement(ReturnStatement(bodyCallback())),
|
||||
),
|
||||
),
|
||||
),
|
||||
ReturnStatement(bodyCallback())
|
||||
)
|
||||
|
||||
eval(generate(node))
|
||||
GeneratedExpression(js("executable"), constants.toTypedArray())
|
||||
val code = generate(node)
|
||||
GeneratedExpression(js("new Function('constants', 'arguments_0', code)"), constants.toTypedArray())
|
||||
}
|
||||
|
||||
private val constants = mutableListOf<Any>()
|
||||
|
||||
fun constant(value: Any?) = when {
|
||||
fun constant(value: Any?): BaseExpression = when {
|
||||
value == null || jsTypeOf(value) == "number" || jsTypeOf(value) == "string" || jsTypeOf(value) == "boolean" ->
|
||||
SimpleLiteral(value)
|
||||
|
||||
@ -61,7 +53,8 @@ internal class ESTreeBuilder<T>(val bodyCallback: ESTreeBuilder<T>.() -> BaseExp
|
||||
}
|
||||
}
|
||||
|
||||
fun variable(name: Symbol): BaseExpression = call(getOrFail, Identifier("arguments"), SimpleLiteral(name.identity))
|
||||
fun variable(name: Symbol): BaseExpression =
|
||||
call(getOrFail, Identifier("arguments_0"), SimpleLiteral(name.identity))
|
||||
|
||||
fun call(function: Function<T>, vararg args: BaseExpression): BaseExpression = SimpleCallExpression(
|
||||
optional = false,
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|