forked from kscience/kmath
266 lines
8.1 KiB
Markdown
266 lines
8.1 KiB
Markdown
# Module kmath-ast
|
|
|
|
Extensions to MST API: transformations, dynamic compilation and visualization.
|
|
|
|
- [expression-language](src/commonMain/kotlin/space/kscience/kmath/ast/parser.kt) : Expression language and its parser
|
|
- [mst-jvm-codegen](src/jvmMain/kotlin/space/kscience/kmath/asm/asm.kt) : Dynamic MST to JVM bytecode compiler
|
|
- [mst-js-codegen](src/jsMain/kotlin/space/kscience/kmath/estree/estree.kt) : Dynamic MST to JS compiler
|
|
- [rendering](src/commonMain/kotlin/space/kscience/kmath/ast/rendering/MathRenderer.kt) : Extendable MST rendering
|
|
|
|
|
|
## Artifact:
|
|
|
|
The Maven coordinates of this project are `space.kscience:kmath-ast:0.4.0-dev-3`.
|
|
|
|
**Gradle Kotlin DSL:**
|
|
```kotlin
|
|
repositories {
|
|
maven("https://repo.kotlin.link")
|
|
mavenCentral()
|
|
}
|
|
|
|
dependencies {
|
|
implementation("space.kscience:kmath-ast:0.4.0-dev-3")
|
|
}
|
|
```
|
|
|
|
## Parsing expressions
|
|
|
|
In this module there is a parser from human-readable strings like `"x^3-x+3"` (in the more specific [grammar](reference/ArithmeticsEvaluator.g4)) to MST instances.
|
|
|
|
Supported literals:
|
|
1. Constants and variables (consist of latin letters, digits and underscores, can't start with digit): `x`, `_Abc2`.
|
|
2. Numbers: `123`, `1.02`, `1e10`, `1e-10`, `1.0e+3`—all parsed either as `kotlin.Long` or `kotlin.Double`.
|
|
|
|
Supported binary operators (from the highest precedence to the lowest one):
|
|
1. `^`
|
|
2. `*`, `/`
|
|
3. `+`, `-`
|
|
|
|
Supported unary operator:
|
|
1. `-`, e. g. `-x`
|
|
|
|
Arbitrary unary and binary functions are also supported: names consist of latin letters, digits and underscores, can't start with digit. Examples:
|
|
1. `sin(x)`
|
|
2. `add(x, y)`
|
|
|
|
## Dynamic expression code generation
|
|
|
|
### On JVM
|
|
|
|
`kmath-ast` JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds a
|
|
special implementation of `Expression<T>` with implemented `invoke` function.
|
|
|
|
For example, the following code:
|
|
|
|
```kotlin
|
|
import space.kscience.kmath.asm.compileToExpression
|
|
import space.kscience.kmath.operations.DoubleField
|
|
|
|
"x^3-x+3".parseMath().compileToExpression(DoubleField)
|
|
```
|
|
|
|
… leads to generation of bytecode, which can be decompiled to the following Java class:
|
|
|
|
```java
|
|
import java.util.*;
|
|
import kotlin.jvm.functions.*;
|
|
import space.kscience.kmath.asm.internal.*;
|
|
import space.kscience.kmath.complex.*;
|
|
import space.kscience.kmath.expressions.*;
|
|
|
|
public final class CompiledExpression_45045_0 implements Expression<Complex> {
|
|
private final Object[] constants;
|
|
|
|
public Complex invoke(Map<Symbol, ? extends Complex> arguments) {
|
|
Complex var2 = (Complex)MapIntrinsics.getOrFail(arguments, "x");
|
|
return (Complex)((Function2)this.constants[0]).invoke(var2, (Complex)this.constants[1]);
|
|
}
|
|
}
|
|
```
|
|
|
|
For `LongRing`, `IntRing`, and `DoubleField` specialization is supported for better performance:
|
|
|
|
```java
|
|
import java.util.*;
|
|
import space.kscience.kmath.asm.internal.*;
|
|
import space.kscience.kmath.expressions.*;
|
|
|
|
public final class CompiledExpression_-386104628_0 implements DoubleExpression {
|
|
private final SymbolIndexer indexer;
|
|
|
|
public SymbolIndexer getIndexer() {
|
|
return this.indexer;
|
|
}
|
|
|
|
public double invoke(double[] arguments) {
|
|
double var2 = arguments[0];
|
|
return Math.pow(var2, 3.0D) - var2 + 3.0D;
|
|
}
|
|
|
|
public final Double invoke(Map<Symbol, ? extends Double> arguments) {
|
|
double var2 = ((Double)MapIntrinsics.getOrFail(arguments, "x")).doubleValue();
|
|
return Math.pow(var2, 3.0D) - var2 + 3.0D;
|
|
}
|
|
}
|
|
```
|
|
|
|
Setting JVM system property `space.kscience.kmath.ast.dump.generated.classes` to `1` makes the translator dump class files to program's working directory, so they can be reviewed manually.
|
|
|
|
#### Limitations
|
|
|
|
- The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid class loading overhead.
|
|
- This API is not supported by non-dynamic JVM implementations like TeaVM or GraalVM Native Image because they may not support class loaders.
|
|
|
|
### On JS
|
|
|
|
A similar feature is also available on JS.
|
|
|
|
```kotlin
|
|
import space.kscience.kmath.expressions.Symbol.Companion.x
|
|
import space.kscience.kmath.expressions.*
|
|
import space.kscience.kmath.operations.*
|
|
import space.kscience.kmath.estree.*
|
|
|
|
MstField { x + 2 }.compileToExpression(DoubleField)
|
|
```
|
|
|
|
The code above returns expression implemented with such a JS function:
|
|
|
|
```js
|
|
var executable = function (constants, arguments) {
|
|
return constants[1](constants[0](arguments, "x"), 2);
|
|
};
|
|
```
|
|
|
|
JS also supports experimental expression optimization with [WebAssembly](https://webassembly.org/) IR generation.
|
|
Currently, only expressions inside `DoubleField` and `IntRing` are supported.
|
|
|
|
```kotlin
|
|
import space.kscience.kmath.expressions.Symbol.Companion.x
|
|
import space.kscience.kmath.expressions.*
|
|
import space.kscience.kmath.operations.*
|
|
import space.kscience.kmath.wasm.*
|
|
|
|
MstField { x + 2 }.compileToExpression(DoubleField)
|
|
```
|
|
|
|
An example of emitted Wasm IR in the form of WAT:
|
|
|
|
```lisp
|
|
(func \$executable (param \$0 f64) (result f64)
|
|
(f64.add
|
|
(local.get \$0)
|
|
(f64.const 2)
|
|
)
|
|
)
|
|
```
|
|
|
|
#### Limitations
|
|
|
|
- ESTree expression compilation uses `eval` which can be unavailable in several environments.
|
|
- WebAssembly isn't supported by old versions of browsers (see https://webassembly.org/roadmap/).
|
|
|
|
## Rendering expressions
|
|
|
|
kmath-ast also includes an extensible engine to display expressions in LaTeX or MathML syntax.
|
|
|
|
Example usage:
|
|
|
|
```kotlin
|
|
import space.kscience.kmath.ast.*
|
|
import space.kscience.kmath.ast.rendering.*
|
|
import space.kscience.kmath.misc.*
|
|
|
|
@OptIn(UnstableKMathAPI::class)
|
|
public fun main() {
|
|
val mst = "exp(sqrt(x))-asin(2*x)/(2e10+x^3)/(12)+x^(2/3)".parseMath()
|
|
val syntax = FeaturedMathRendererWithPostProcess.Default.render(mst)
|
|
val latex = LatexSyntaxRenderer.renderWithStringBuilder(syntax)
|
|
println("LaTeX:")
|
|
println(latex)
|
|
println()
|
|
val mathML = MathMLSyntaxRenderer.renderWithStringBuilder(syntax)
|
|
println("MathML:")
|
|
println(mathML)
|
|
}
|
|
```
|
|
|
|
Result LaTeX:
|
|
|
|
$$\operatorname{exp}\\,\left(\sqrt{x}\right)-\frac{\frac{\operatorname{arcsin}\\,\left(2\\,x\right)}{2\times10^{10}+x^{3}}}{12}+x^{2/3}$$
|
|
|
|
Result MathML (can be used with MathJax or other renderers):
|
|
|
|
<details>
|
|
|
|
```html
|
|
<math xmlns="https://www.w3.org/1998/Math/MathML">
|
|
<mrow>
|
|
<mo>exp</mo>
|
|
<mspace width="0.167em"></mspace>
|
|
<mfenced open="(" close=")" separators="">
|
|
<msqrt>
|
|
<mi>x</mi>
|
|
</msqrt>
|
|
</mfenced>
|
|
<mo>-</mo>
|
|
<mfrac>
|
|
<mrow>
|
|
<mfrac>
|
|
<mrow>
|
|
<mo>arcsin</mo>
|
|
<mspace width="0.167em"></mspace>
|
|
<mfenced open="(" close=")" separators="">
|
|
<mn>2</mn>
|
|
<mspace width="0.167em"></mspace>
|
|
<mi>x</mi>
|
|
</mfenced>
|
|
</mrow>
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>×</mo>
|
|
<msup>
|
|
<mrow>
|
|
<mn>10</mn>
|
|
</mrow>
|
|
<mrow>
|
|
<mn>10</mn>
|
|
</mrow>
|
|
</msup>
|
|
<mo>+</mo>
|
|
<msup>
|
|
<mrow>
|
|
<mi>x</mi>
|
|
</mrow>
|
|
<mrow>
|
|
<mn>3</mn>
|
|
</mrow>
|
|
</msup>
|
|
</mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
<mrow>
|
|
<mn>12</mn>
|
|
</mrow>
|
|
</mfrac>
|
|
<mo>+</mo>
|
|
<msup>
|
|
<mrow>
|
|
<mi>x</mi>
|
|
</mrow>
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>/</mo>
|
|
<mn>3</mn>
|
|
</mrow>
|
|
</msup>
|
|
</mrow>
|
|
</math>
|
|
```
|
|
|
|
</details>
|
|
|
|
It is also possible to create custom algorithms of render, and even add support of other markup languages
|
|
(see API reference).
|