Add TensorFlow prototype

This commit is contained in:
Alexander Nozik 2022-01-29 15:02:46 +03:00
parent 41fc6b4dd9
commit 7bb66f6a00
No known key found for this signature in database
GPG Key ID: F7FCF2DD25C71357
9 changed files with 114 additions and 103 deletions

View File

@ -18,6 +18,7 @@
- Integration between `MST` and Symja `IExpr` - Integration between `MST` and Symja `IExpr`
- Complex power - Complex power
- Separate methods for UInt, Int and Number powers. NaN safety. - Separate methods for UInt, Int and Number powers. NaN safety.
- Tensorflow prototype
### Changed ### Changed
- Exponential operations merged with hyperbolic functions - Exponential operations merged with hyperbolic functions

View File

@ -50,35 +50,6 @@ module definitions below. The module stability could have the following levels:
with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool. with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
* **STABLE**. The API stabilized. Breaking changes are allowed only in major releases. * **STABLE**. The API stabilized. Breaking changes are allowed only in major releases.
<!--Current feature list is [here](/docs/features.md)-->
<!--* **Array-like structures** Full support of many-dimensional array-like structures -->
<!--including mixed arithmetic operations and function operations over arrays and numbers (with the added benefit of static type checking).-->
<!--* **Histograms** Fast multi-dimensional histograms.-->
<!--* **Streaming** Streaming operations on mathematical objects and objects buffers.-->
<!--* **Type-safe dimensions** Type-safe dimensions for matrix operations.-->
<!--* **Commons-math wrapper** It is planned to gradually wrap most parts of -->
<!--[Apache commons-math](http://commons.apache.org/proper/commons-math/) library in Kotlin code and maybe rewrite some -->
<!--parts to better suit the Kotlin programming paradigm, however there is no established roadmap for that. Feel free to -->
<!--submit a feature request if you want something to be implemented first.-->
<!-- -->
<!--## Planned features-->
<!--* **Messaging** A mathematical notation to support multi-language and multi-node communication for mathematical tasks.-->
<!--* **Array statistics** -->
<!--* **Integration** Univariate and multivariate integration framework.-->
<!--* **Probability and distributions**-->
<!--* **Fitting** Non-linear curve fitting facilities-->
## Modules ## Modules
<hr/> <hr/>

View File

@ -50,35 +50,6 @@ module definitions below. The module stability could have the following levels:
with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool. with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
* **STABLE**. The API stabilized. Breaking changes are allowed only in major releases. * **STABLE**. The API stabilized. Breaking changes are allowed only in major releases.
<!--Current feature list is [here](/docs/features.md)-->
<!--* **Array-like structures** Full support of many-dimensional array-like structures -->
<!--including mixed arithmetic operations and function operations over arrays and numbers (with the added benefit of static type checking).-->
<!--* **Histograms** Fast multi-dimensional histograms.-->
<!--* **Streaming** Streaming operations on mathematical objects and objects buffers.-->
<!--* **Type-safe dimensions** Type-safe dimensions for matrix operations.-->
<!--* **Commons-math wrapper** It is planned to gradually wrap most parts of -->
<!--[Apache commons-math](http://commons.apache.org/proper/commons-math/) library in Kotlin code and maybe rewrite some -->
<!--parts to better suit the Kotlin programming paradigm, however there is no established roadmap for that. Feel free to -->
<!--submit a feature request if you want something to be implemented first.-->
<!-- -->
<!--## Planned features-->
<!--* **Messaging** A mathematical notation to support multi-language and multi-node communication for mathematical tasks.-->
<!--* **Array statistics** -->
<!--* **Integration** Univariate and multivariate integration framework.-->
<!--* **Probability and distributions**-->
<!--* **Fitting** Non-linear curve fitting facilities-->
## Modules ## Modules
$modules $modules

View File

@ -12,4 +12,4 @@ org.gradle.configureondemand=true
org.gradle.parallel=true org.gradle.parallel=true
org.gradle.jvmargs=-XX:MaxMetaspaceSize=1G org.gradle.jvmargs=-XX:MaxMetaspaceSize=1G
toolsVersion=0.10.9-kotlin-1.6.10 toolsVersion=0.11.1-kotlin-1.6.10

View File

@ -6,8 +6,8 @@ description = "Google tensorflow connector"
dependencies { dependencies {
api(project(":kmath-tensors")) api(project(":kmath-tensors"))
api("org.tensorflow:tensorflow-core-api:0.3.3") api("org.tensorflow:tensorflow-core-api:0.4.0")
testImplementation("org.tensorflow:tensorflow-core-platform:0.3.3") testImplementation("org.tensorflow:tensorflow-core-platform:0.4.0")
} }
readme { readme {

View File

@ -11,6 +11,7 @@ import space.kscience.kmath.nd.DefaultStrides
import space.kscience.kmath.nd.Shape import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.PowerOperations
public class DoubleTensorFlowOutput( public class DoubleTensorFlowOutput(
graph: Graph, graph: Graph,
@ -23,7 +24,7 @@ public class DoubleTensorFlowOutput(
public class DoubleTensorFlowAlgebra internal constructor( public class DoubleTensorFlowAlgebra internal constructor(
graph: Graph, graph: Graph,
) : TensorFlowAlgebra<Double, TFloat64, DoubleField>(graph) { ) : TensorFlowAlgebra<Double, TFloat64, DoubleField>(graph), PowerOperations<StructureND<Double>> {
override val elementAlgebra: DoubleField get() = DoubleField override val elementAlgebra: DoubleField get() = DoubleField
@ -57,9 +58,22 @@ public class DoubleTensorFlowAlgebra internal constructor(
override fun const(value: Double): Constant<TFloat64> = ops.constant(value) override fun const(value: Double): Constant<TFloat64> = ops.constant(value)
override fun divide(
left: StructureND<Double>,
right: StructureND<Double>,
): TensorFlowOutput<Double, TFloat64> = left.operate(right) { l, r ->
ops.math.div(l, r)
} }
override fun power(arg: StructureND<Double>, pow: Number): TensorFlowOutput<Double, TFloat64> =
arg.operate { ops.math.pow(it, const(pow.toDouble())) }
}
/**
* Compute a tensor with TensorFlow in a single run.
*
* The resulting tensor is available outside of scope
*/
public fun DoubleField.produceWithTF( public fun DoubleField.produceWithTF(
block: DoubleTensorFlowAlgebra.() -> StructureND<Double>, block: DoubleTensorFlowAlgebra.() -> StructureND<Double>,
): StructureND<Double> = Graph().use { graph -> ): StructureND<Double> = Graph().use { graph ->
@ -67,6 +81,11 @@ public fun DoubleField.produceWithTF(
scope.export(scope.block()) scope.export(scope.block())
} }
/**
* Compute several outputs with TensorFlow in a single run.
*
* The resulting tensors are available outside of scope
*/
public fun DoubleField.produceMapWithTF( public fun DoubleField.produceMapWithTF(
block: DoubleTensorFlowAlgebra.() -> Map<Symbol, StructureND<Double>>, block: DoubleTensorFlowAlgebra.() -> Map<Symbol, StructureND<Double>>,
): Map<Symbol, StructureND<Double>> = Graph().use { graph -> ): Map<Symbol, StructureND<Double>> = Graph().use { graph ->

View File

@ -12,6 +12,7 @@ import org.tensorflow.op.core.Max
import org.tensorflow.op.core.Min import org.tensorflow.op.core.Min
import org.tensorflow.op.core.Sum import org.tensorflow.op.core.Sum
import org.tensorflow.types.TInt32 import org.tensorflow.types.TInt32
import org.tensorflow.types.family.TNumber
import org.tensorflow.types.family.TType import org.tensorflow.types.family.TType
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
@ -29,6 +30,9 @@ internal val <T> NdArray<T>.scalar: T get() = getObject()
public sealed interface TensorFlowTensor<T> : Tensor<T> public sealed interface TensorFlowTensor<T> : Tensor<T>
/**
* Static (eager) in-memory TensorFlow tensor
*/
@JvmInline @JvmInline
public value class TensorFlowArray<T>(public val tensor: NdArray<T>) : Tensor<T> { public value class TensorFlowArray<T>(public val tensor: NdArray<T>) : Tensor<T> {
override val shape: Shape get() = tensor.shape().asArray().toIntArray() override val shape: Shape get() = tensor.shape().asArray().toIntArray()
@ -42,6 +46,11 @@ public value class TensorFlowArray<T>(public val tensor: NdArray<T>) : Tensor<T>
} }
} }
/**
* Lazy graph-based TensorFlow tensor. The tensor is actualized on call.
*
* If the tensor is used for intermediate operations, actualizing it could impact performance.
*/
public abstract class TensorFlowOutput<T, TT : TType>( public abstract class TensorFlowOutput<T, TT : TType>(
protected val graph: Graph, protected val graph: Graph,
output: Output<TT>, output: Output<TT>,
@ -72,11 +81,11 @@ public abstract class TensorFlowOutput<T, TT : TType>(
} }
public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal constructor( public abstract class TensorFlowAlgebra<T, TT : TNumber, A : Ring<T>> internal constructor(
protected val graph: Graph, protected val graph: Graph,
) : TensorAlgebra<T, A> { ) : TensorAlgebra<T, A> {
protected val ops: Ops by lazy { Ops.create(graph) } public val ops: Ops by lazy { Ops.create(graph) }
protected abstract fun StructureND<T>.asTensorFlow(): TensorFlowOutput<T, TT> protected abstract fun StructureND<T>.asTensorFlow(): TensorFlowOutput<T, TT>
@ -87,7 +96,10 @@ public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal con
override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals intArrayOf(1)) override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals intArrayOf(1))
get(Shape(0)) else null get(Shape(0)) else null
private inline fun StructureND<T>.biOp( /**
* Perform binary lazy operation on tensor. Both arguments are implicitly converted
*/
public fun StructureND<T>.operate(
other: StructureND<T>, other: StructureND<T>,
operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>, operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>,
): TensorFlowOutput<T, TT> { ): TensorFlowOutput<T, TT> {
@ -96,7 +108,7 @@ public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal con
return operation(left, right).asOutput().wrap() return operation(left, right).asOutput().wrap()
} }
private inline fun T.biOp( public fun T.operate(
other: StructureND<T>, other: StructureND<T>,
operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>, operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>,
): TensorFlowOutput<T, TT> { ): TensorFlowOutput<T, TT> {
@ -105,7 +117,7 @@ public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal con
return operation(left, right).asOutput().wrap() return operation(left, right).asOutput().wrap()
} }
private inline fun StructureND<T>.biOp( public fun StructureND<T>.operate(
value: T, value: T,
operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>, operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>,
): TensorFlowOutput<T, TT> { ): TensorFlowOutput<T, TT> {
@ -114,7 +126,7 @@ public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal con
return operation(left, right).asOutput().wrap() return operation(left, right).asOutput().wrap()
} }
private inline fun Tensor<T>.inPlaceOp( public fun Tensor<T>.operateInPlace(
other: StructureND<T>, other: StructureND<T>,
operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>, operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>,
): Unit { ): Unit {
@ -124,7 +136,7 @@ public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal con
origin.output = operation(left, right).asOutput() origin.output = operation(left, right).asOutput()
} }
private inline fun Tensor<T>.inPlaceOp( public fun Tensor<T>.operateInPlace(
value: T, value: T,
operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>, operation: (left: Operand<TT>, right: Operand<TT>) -> Operand<TT>,
): Unit { ): Unit {
@ -134,58 +146,58 @@ public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal con
origin.output = operation(left, right).asOutput() origin.output = operation(left, right).asOutput()
} }
private inline fun StructureND<T>.unOp(operation: (Operand<TT>) -> Operand<TT>): TensorFlowOutput<T, TT> = public fun StructureND<T>.operate(operation: (Operand<TT>) -> Operand<TT>): TensorFlowOutput<T, TT> =
operation(asTensorFlow().output).asOutput().wrap() operation(asTensorFlow().output).asOutput().wrap()
override fun T.plus(arg: StructureND<T>): TensorFlowOutput<T, TT> = biOp(arg, ops.math::add) override fun T.plus(arg: StructureND<T>): TensorFlowOutput<T, TT> = operate(arg, ops.math::add)
override fun StructureND<T>.plus(arg: T): TensorFlowOutput<T, TT> = biOp(arg, ops.math::add) override fun StructureND<T>.plus(arg: T): TensorFlowOutput<T, TT> = operate(arg, ops.math::add)
override fun StructureND<T>.plus(arg: StructureND<T>): TensorFlowOutput<T, TT> = biOp(arg, ops.math::add) override fun StructureND<T>.plus(arg: StructureND<T>): TensorFlowOutput<T, TT> = operate(arg, ops.math::add)
override fun Tensor<T>.plusAssign(value: T): Unit = inPlaceOp(value, ops.math::add) override fun Tensor<T>.plusAssign(value: T): Unit = operateInPlace(value, ops.math::add)
override fun Tensor<T>.plusAssign(arg: StructureND<T>): Unit = inPlaceOp(arg, ops.math::add) override fun Tensor<T>.plusAssign(arg: StructureND<T>): Unit = operateInPlace(arg, ops.math::add)
override fun StructureND<T>.minus(arg: T): TensorFlowOutput<T, TT> = biOp(arg, ops.math::sub) override fun StructureND<T>.minus(arg: T): TensorFlowOutput<T, TT> = operate(arg, ops.math::sub)
override fun StructureND<T>.minus(arg: StructureND<T>): TensorFlowOutput<T, TT> = biOp(arg, ops.math::sub) override fun StructureND<T>.minus(arg: StructureND<T>): TensorFlowOutput<T, TT> = operate(arg, ops.math::sub)
override fun T.minus(arg: StructureND<T>): Tensor<T> = biOp(arg, ops.math::sub) override fun T.minus(arg: StructureND<T>): Tensor<T> = operate(arg, ops.math::sub)
override fun Tensor<T>.minusAssign(value: T): Unit = inPlaceOp(value, ops.math::sub) override fun Tensor<T>.minusAssign(value: T): Unit = operateInPlace(value, ops.math::sub)
override fun Tensor<T>.minusAssign(arg: StructureND<T>): Unit = inPlaceOp(arg, ops.math::sub) override fun Tensor<T>.minusAssign(arg: StructureND<T>): Unit = operateInPlace(arg, ops.math::sub)
override fun T.times(arg: StructureND<T>): TensorFlowOutput<T, TT> = biOp(arg, ops.math::mul) override fun T.times(arg: StructureND<T>): TensorFlowOutput<T, TT> = operate(arg, ops.math::mul)
override fun StructureND<T>.times(arg: T): TensorFlowOutput<T, TT> = biOp(arg, ops.math::mul) override fun StructureND<T>.times(arg: T): TensorFlowOutput<T, TT> = operate(arg, ops.math::mul)
override fun StructureND<T>.times(arg: StructureND<T>): TensorFlowOutput<T, TT> = biOp(arg, ops.math::mul) override fun StructureND<T>.times(arg: StructureND<T>): TensorFlowOutput<T, TT> = operate(arg, ops.math::mul)
override fun Tensor<T>.timesAssign(value: T): Unit = inPlaceOp(value, ops.math::mul) override fun Tensor<T>.timesAssign(value: T): Unit = operateInPlace(value, ops.math::mul)
override fun Tensor<T>.timesAssign(arg: StructureND<T>): Unit = inPlaceOp(arg, ops.math::mul) override fun Tensor<T>.timesAssign(arg: StructureND<T>): Unit = operateInPlace(arg, ops.math::mul)
override fun StructureND<T>.unaryMinus(): TensorFlowOutput<T, TT> = unOp(ops.math::neg) override fun StructureND<T>.unaryMinus(): TensorFlowOutput<T, TT> = operate(ops.math::neg)
override fun Tensor<T>.get(i: Int): Tensor<T> = unOp { override fun Tensor<T>.get(i: Int): Tensor<T> = operate {
TODO("Not yet implemented") TODO("Not yet implemented")
} }
override fun Tensor<T>.transpose(i: Int, j: Int): Tensor<T> = unOp { override fun Tensor<T>.transpose(i: Int, j: Int): Tensor<T> = operate {
ops.linalg.transpose(it, ops.constant(intArrayOf(i, j))) ops.linalg.transpose(it, ops.constant(intArrayOf(i, j)))
} }
override fun Tensor<T>.view(shape: IntArray): Tensor<T> = unOp { override fun Tensor<T>.view(shape: IntArray): Tensor<T> = operate {
ops.reshape(it, ops.constant(shape)) ops.reshape(it, ops.constant(shape))
} }
override fun Tensor<T>.viewAs(other: StructureND<T>): Tensor<T> = biOp(other) { l, r -> override fun Tensor<T>.viewAs(other: StructureND<T>): Tensor<T> = operate(other) { l, r ->
ops.reshape(l, ops.shape(r)) ops.reshape(l, ops.shape(r))
} }
override fun StructureND<T>.dot(other: StructureND<T>): TensorFlowOutput<T, TT> = biOp(other) { l, r -> override fun StructureND<T>.dot(other: StructureND<T>): TensorFlowOutput<T, TT> = operate(other) { l, r ->
ops.linalg.matMul( ops.linalg.matMul(
if (l.asTensor().shape().numDimensions() == 1) ops.expandDims(l, ops.constant(0)) else l, if (l.asTensor().shape().numDimensions() == 1) ops.expandDims(l, ops.constant(0)) else l,
if (r.asTensor().shape().numDimensions() == 1) ops.expandDims(r, ops.constant(-1)) else r) if (r.asTensor().shape().numDimensions() == 1) ops.expandDims(r, ops.constant(-1)) else r)
@ -196,31 +208,31 @@ public abstract class TensorFlowAlgebra<T, TT : TType, A : Ring<T>> internal con
offset: Int, offset: Int,
dim1: Int, dim1: Int,
dim2: Int, dim2: Int,
): TensorFlowOutput<T, TT> = diagonalEntries.unOp { ): TensorFlowOutput<T, TT> = diagonalEntries.operate {
TODO() TODO("Not yet implemented")
} }
override fun StructureND<T>.sum(): T = unOp { override fun StructureND<T>.sum(): T = operate {
ops.sum(it, ops.constant(intArrayOf())) ops.sum(it, ops.constant(intArrayOf()))
}.value() }.value()
override fun StructureND<T>.sum(dim: Int, keepDim: Boolean): TensorFlowOutput<T, TT> = unOp { override fun StructureND<T>.sum(dim: Int, keepDim: Boolean): TensorFlowOutput<T, TT> = operate {
ops.sum(it, ops.constant(dim), Sum.keepDims(keepDim)) ops.sum(it, ops.constant(dim), Sum.keepDims(keepDim))
} }
override fun StructureND<T>.min(): T = unOp { override fun StructureND<T>.min(): T = operate {
ops.min(it, ops.constant(intArrayOf())) ops.min(it, ops.constant(intArrayOf()))
}.value() }.value()
override fun StructureND<T>.min(dim: Int, keepDim: Boolean): Tensor<T> = unOp { override fun StructureND<T>.min(dim: Int, keepDim: Boolean): Tensor<T> = operate {
ops.min(it, ops.constant(dim), Min.keepDims(keepDim)) ops.min(it, ops.constant(dim), Min.keepDims(keepDim))
} }
override fun StructureND<T>.max(): T = unOp { override fun StructureND<T>.max(): T = operate {
ops.max(it, ops.constant(intArrayOf())) ops.max(it, ops.constant(intArrayOf()))
}.value() }.value()
override fun StructureND<T>.max(dim: Int, keepDim: Boolean): Tensor<T> = unOp { override fun StructureND<T>.max(dim: Int, keepDim: Boolean): Tensor<T> = operate {
ops.max(it, ops.constant(dim), Max.keepDims(keepDim)) ops.max(it, ops.constant(dim), Max.keepDims(keepDim))
} }

View File

@ -0,0 +1,23 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensorflow
import org.tensorflow.types.family.TNumber
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.TrigonometricOperations
//
// TODO add other operations
public fun <T, TT : TNumber, A> TensorFlowAlgebra<T, TT, A>.sin(
arg: StructureND<T>,
): TensorFlowOutput<T, TT> where A : TrigonometricOperations<T>, A : Ring<T> = arg.operate { ops.math.sin(it) }
public fun <T, TT : TNumber, A> TensorFlowAlgebra<T, TT, A>.cos(
arg: StructureND<T>,
): TensorFlowOutput<T, TT> where A : TrigonometricOperations<T>, A : Ring<T> = arg.operate { ops.math.cos(it) }

View File

@ -1,9 +1,10 @@
package space.kscience.kmath.tensorflow package space.kscience.kmath.tensorflow
import org.junit.jupiter.api.Test import org.junit.jupiter.api.Test
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.get
import space.kscience.kmath.nd.structureND import space.kscience.kmath.nd.structureND
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import kotlin.test.assertEquals
class DoubleTensorFlowOps { class DoubleTensorFlowOps {
@Test @Test
@ -13,7 +14,20 @@ class DoubleTensorFlowOps {
initial + (initial * 2.0) initial + (initial * 2.0)
} }
println(StructureND.toString(res)) //println(StructureND.toString(res))
assertEquals(3.0, res[0, 0])
} }
@Test
fun extensionOps(){
val res = DoubleField.produceWithTF {
val i = structureND(2, 2) { 0.5 }
sin(i).pow(2) + cos(i).pow(2)
}
assertEquals(1.0, res[0,0],0.01)
}
} }