NDFactories cleanup

This commit is contained in:
Alexander Nozik 2019-01-23 13:31:19 +03:00
parent f0e380304e
commit 3ea7e39ecd

View File

@ -0,0 +1,179 @@
package scientifik.kmath.structures
import scientifik.kmath.operations.RealField.power
import kotlin.math.ceil
import kotlin.math.log
import kotlin.math.min
import kotlin.math.sign
/**
* Numpy-like factories for [RealNDElement]
*/
object RealNDFactory {
/**
* Get a [RealNDElement] filled with [RealNDField.one]. Due to caching all instances with the same shape point to the same object
*/
fun ones(vararg shape: Int) = NDField.real(shape).one
/**
* Create a 2D NDArray, with ones on the diagonal and zeros elsewhere.
*
* @param offset Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
*/
fun eye(dim1: Int, dim2: Int, offset: Int = 0) =
NDElement.real2D(dim1, dim2) { i, j -> if (i == j + offset) 1.0 else 0.0 }
/**
* An array with ones at and below the given diagonal and zeros elsewhere.
* T[i,j] == 1 for i <= j + offset
*
* @param offset Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
*/
fun triangle(dim1: Int, dim2: Int, offset: Int = 0) =
NDElement.real2D(dim1, dim2) { i, j -> if (i <= j + offset) 1.0 else 0.0 }
/**
* Return evenly spaced values within a given interval.
*
* Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop).
*/
fun range(range: ClosedFloatingPointRange<Double>, step: Double = 1.0) =
NDElement.real1D(ceil((range.endInclusive - range.start) / step).toInt()) { i ->
range.start + i * step
}
/**
* Return evenly spaced numbers over a specified interval.
* @param range start is starting value, final value depend from endPoint parameter
* @param endPoint If True, right boundary of range is the last sample. Otherwise, it is not included.
*/
fun linspace(
range: ClosedFloatingPointRange<Double>,
num: Int = 100,
endPoint: Boolean = true
): RealNDElement {
val div = if (endPoint) (num - 1) else num
val delta = range.start - range.endInclusive
return if (num > 1) {
val step = delta / div
if (step == 0.0) {
error("Bad ranges: step = $step")
}
NDElement.real1D(num) {
if (endPoint and (it == num - 1)) {
range.endInclusive
}
range.start + it * step
}
} else {
NDElement.real1D(1) { range.start }
}
}
/**
* Return numbers spaced evenly on a log scale.
* @param range use it like:
* (start..stop) to number
* power(base,start) is starting value, endvalue depend from endPoint parameter
* @param endPoint If True, power(base,stop) is the last sample. Otherwise, it is not included.
* @param base - The base of the log space.
*/
fun logspace(
range: ClosedFloatingPointRange<Double>,
num: Int = 100,
endPoint: Boolean = true,
base: Double = 10.0
) = linspace(range, num, endPoint).map { power(base, it) }
/**
* Return numbers spaced evenly on a log scale (a geometric progression).
*
* This is similar to [logspace], but with endpoints specified directly. Each output sample is a constant multiple of the previous.
* @param range use it like:
* (start..stop) to number
* start is starting value, finaly value depend from endPoint parameter
* @param endPoint If True, right boundary of range is the last sample. Otherwise, it is not included.
*/
fun geomspace(range: ClosedFloatingPointRange<Double>, num : Int = 100, endPoint: Boolean = true): RealNDElement {
var start = range.start
var stop = range.endInclusive
if (start == 0.0 || stop == 0.0) {
error("Geometric sequence cannot include zero")
}
var outSign = 1.0
if (sign(start) == -1.0 && sign(stop) == -1.0) {
start = -start
stop = -stop
outSign = -outSign
}
return logspace(log(start, 10.0)..log(stop, 10.0), num, endPoint = endPoint).map {
outSign * it
}
}
/**
* Return specified diagonals of 2D NDArray.
*
* @param offset Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
*/
fun extractDiagonal(array: RealNDElement, offset: Int = 0): RealNDElement {
if (array.dimension != 2) {
error("Input must be 2D NDArray")
}
val size = min(array.shape[0], array.shape[0])
return if (offset >= 0) {
NDElement.real1D(size) { i -> array[i, i + offset] }
} else {
NDElement.real1D(size) { i -> array[i - offset, i] }
}
}
/**
* Return a 2-D array with [array] on the [offset] diagonal.
*
* @param offset Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
*/
fun fromDiagonal(array: RealNDElement, offset: Int = 0): RealNDElement {
if (array.dimension != 1) {
error("Input must be 1D NDArray")
}
val size = array.shape[0]
return if (offset < 0) {
NDElement.real2D(size - offset, size) { i, j ->
if (i - offset == j) array[j] else 0.0
}
} else {
NDElement.real2D(size, size + offset) { i, j ->
if (i == j + offset) array[i] else 0.0
}
}
}
/**
* Generate a [Vandermonde matrix](https://en.wikipedia.org/wiki/Vandermonde_matrix).
*
* @param nCols --- number of columns, as default using length of [array]
* @param increasing --- Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. FIXME: Default order like numpy
*/
fun vandermonde(array: RealNDElement, nCols: Int = 0, increasing: Boolean = false): RealNDElement {
if (array.dimension != 1) {
error("Input must be 1D NDArray")
}
val size = if (nCols == 0) array.shape[0] else nCols
return if (increasing) {
NDElement.real2D(array.shape[0], size) { i, j ->
power(array[i], j)
}
} else {
NDElement.real2D(array.shape[0], size) { i, j ->
power(array[i], size - j - 1)
}
}
}
}