forked from kscience/kmath
Merge pull request #36 from Zelenyy/dev
Create object with factory method for generating RealNDElement.
This commit is contained in:
commit
f0e380304e
@ -0,0 +1,169 @@
|
||||
package scientifik.kmath.structures
|
||||
|
||||
import scientifik.kmath.operations.RealField
|
||||
import scientifik.kmath.operations.RealField.power
|
||||
import kotlin.math.*
|
||||
|
||||
|
||||
object RealFactories{
|
||||
/**
|
||||
* Create a NDArray filled with ones
|
||||
*/
|
||||
fun ones(vararg shape: Int) = NDElement.real(shape){1.0}
|
||||
|
||||
/**
|
||||
* Create a 2D NDArray, with ones on the diagonal and zeros elsewhere.
|
||||
*
|
||||
* @param offset Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
|
||||
*/
|
||||
fun eye(dim1: Int, dim2: Int, offset : Int = 0) = NDElement.real2D(dim1, dim2){i, j -> if (i == j + offset) 1.0 else 0.0}
|
||||
|
||||
/**
|
||||
* An array with ones at and below the given diagonal and zeros elsewhere.
|
||||
* T[i,j] == 1 for i <= j + offset
|
||||
*
|
||||
* @param offset Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
|
||||
*/
|
||||
fun triangle(dim1: Int, dim2: Int, offset : Int = 0) = NDElement.real2D(dim1, dim2){i, j -> if (i <= j + offset) 1.0 else 0.0}
|
||||
|
||||
/**
|
||||
* Return evenly spaced values within a given interval.
|
||||
*
|
||||
* Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop).
|
||||
* @param range use it like:
|
||||
* (start..stop) to step
|
||||
*/
|
||||
fun range(range : Pair<ClosedFloatingPointRange<Double>,Double>) = NDElement.real1D(ceil((range.first.endInclusive - range.first.start)/range.second).toInt()){i-> range.first.start + i*range.second}
|
||||
|
||||
/**
|
||||
* Return evenly spaced numbers over a specified interval.
|
||||
* @param range use it like:
|
||||
* (start..stop) to number
|
||||
* start is starting value, finaly value depend from endPoint parameter
|
||||
* @param endPoint If True, right boundary of range is the last sample. Otherwise, it is not included.
|
||||
*/
|
||||
fun linspace(range : Pair<ClosedFloatingPointRange<Double>,Int>, endPoint: Boolean = true): Pair<RealNDElement, Double> {
|
||||
val div = if (endPoint) (range.second - 1) else range.second
|
||||
val delta = range.first.start - range.first.endInclusive
|
||||
if (range.second > 1){
|
||||
val step = delta/div
|
||||
if (step == 0.0){ error("Bad ranges: step = $step")}
|
||||
val result = NDElement.real1D(range.second){
|
||||
if ( endPoint and (it == range.second - 1) ){ range.first.endInclusive}
|
||||
range.first.start + it*step
|
||||
}
|
||||
return result to step
|
||||
}
|
||||
else{
|
||||
val step = Double.NaN
|
||||
return NDElement.real1D(1){range.first.start} to step
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Return numbers spaced evenly on a log scale.
|
||||
* @param range use it like:
|
||||
* (start..stop) to number
|
||||
* power(base,start) is starting value, endvalue depend from endPoint parameter
|
||||
* @param endPoint If True, power(base,stop) is the last sample. Otherwise, it is not included.
|
||||
* @param base - The base of the log space.
|
||||
*/
|
||||
fun logspace(range : Pair<ClosedFloatingPointRange<Double>,Int>, endPoint: Boolean = true, base : Double = 10.0) : RealNDElement {
|
||||
val lin = linspace(range, endPoint).first
|
||||
val fun_ = {x: Double -> power(base, x)}
|
||||
return fun_(lin) // FIXME: RealNDElement.map return not suitable type ( `linspace(range, endPoint).first.map{power(base, it}`)
|
||||
}
|
||||
/**
|
||||
* Return numbers spaced evenly on a log scale (a geometric progression).
|
||||
*
|
||||
* This is similar to [logspace], but with endpoints specified directly. Each output sample is a constant multiple of the previous.
|
||||
* @param range use it like:
|
||||
* (start..stop) to number
|
||||
* start is starting value, finaly value depend from endPoint parameter
|
||||
* @param endPoint If True, right boundary of range is the last sample. Otherwise, it is not included.
|
||||
*/
|
||||
fun geomspace(range : Pair<ClosedFloatingPointRange<Double>,Int>, endPoint: Boolean = true) : RealNDElement{
|
||||
var start = range.first.start
|
||||
var stop = range.first.endInclusive
|
||||
val num = range.second
|
||||
if ( start == 0.0 || stop == 0.0){
|
||||
error("Geometric sequence cannot include zero")
|
||||
}
|
||||
var outSign = 1.0
|
||||
if (sign(start) == -1.0 && sign(stop) == -1.0){
|
||||
start = -start
|
||||
stop = -stop
|
||||
outSign = -outSign
|
||||
}
|
||||
|
||||
val log_ = logspace((log(start, 10.0)..log(stop, 10.0) to num), endPoint=endPoint)
|
||||
val fun_ = {x:Double -> outSign*x}
|
||||
return fun_(log_) // FIXME: `outSign*log_` --- don't define times operator
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Return specified diagonals of 2D NDArray.
|
||||
*
|
||||
* @param offset Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
|
||||
*/
|
||||
fun extractDiagonal(array : RealNDElement, offset: Int = 0): RealNDElement{
|
||||
if (array.dimension != 2){
|
||||
error("Input must be 2D NDArray")}
|
||||
val size = min(array.shape[0], array.shape[0])
|
||||
if (offset>=0){
|
||||
return NDElement.real1D(size){i -> array[i, i+offset]}
|
||||
}
|
||||
else{
|
||||
return NDElement.real1D(size){i -> array[i-offset, i]}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a 2-D array with [array] on the [offset] diagonal.
|
||||
*
|
||||
* @param offset Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
|
||||
*/
|
||||
fun fromDiagonal(array : RealNDElement, offset: Int = 0): RealNDElement{
|
||||
if (array.dimension != 1){
|
||||
error("Input must be 1D NDArray")}
|
||||
val size = array.shape[0]
|
||||
if (offset>=0){
|
||||
return NDElement.real2D(size, size+offset){
|
||||
i, j -> if (i == j+offset) array[i] else 0.0
|
||||
}
|
||||
}
|
||||
else{
|
||||
return NDElement.real2D(size-offset, size){
|
||||
i, j -> if (i-offset == j) array[j] else 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a [Vandermonde matrix](https://en.wikipedia.org/wiki/Vandermonde_matrix).
|
||||
*
|
||||
* @param nCols --- number of columns, as default using length of [array]
|
||||
* @param increasing --- Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. FIXME: Default order like numpy
|
||||
*/
|
||||
fun vandermonde(array : RealNDElement, nCols: Int = 0, increasing: Boolean =false): RealNDElement{
|
||||
if (array.dimension != 1){
|
||||
error("Input must be 1D NDArray")}
|
||||
var size = if (nCols ==0) array.shape[0] else nCols
|
||||
if (increasing){
|
||||
return NDElement.real2D(array.shape[0], size){
|
||||
i, j -> power(array[i], j)
|
||||
}
|
||||
}else{
|
||||
return NDElement.real2D(array.shape[0], size){
|
||||
i, j -> power(array[i], size - j - 1)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user