Merge pull request #510 from SciProgCentre/dev

0.3.1-dev-11
This commit is contained in:
SPC-code 2023-04-05 18:46:35 +03:00 committed by GitHub
commit 115736e98a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
264 changed files with 4419 additions and 37993 deletions

View File

@ -7,26 +7,18 @@ on:
jobs:
build:
strategy:
matrix:
os: [ macOS-latest, windows-latest ]
runs-on: ${{matrix.os}}
timeout-minutes: 40
runs-on: windows-latest
timeout-minutes: 20
steps:
- uses: actions/checkout@v3.0.0
- uses: actions/setup-java@v3.0.0
- uses: actions/checkout@v3
- uses: actions/setup-java@v3.5.1
with:
java-version: 11
distribution: liberica
- name: Cache konan
uses: actions/cache@v3.0.1
with:
path: ~/.konan
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
java-version: '11'
distribution: 'liberica'
cache: 'gradle'
- name: Gradle Wrapper Validation
uses: gradle/wrapper-validation-action@v1.0.4
- uses: gradle/gradle-build-action@v2.1.5
- name: Gradle Build
uses: gradle/gradle-build-action@v2.3.2
with:
arguments: build
arguments: test jvmTest

View File

@ -15,7 +15,7 @@ jobs:
runs-on: ${{matrix.os}}
steps:
- uses: actions/checkout@v3.0.0
- uses: actions/setup-java@v3.0.0
- uses: actions/setup-java@v3.10.0
with:
java-version: 11
distribution: liberica
@ -26,26 +26,25 @@ jobs:
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- uses: gradle/wrapper-validation-action@v1.0.4
- name: Publish Windows Artifacts
if: matrix.os == 'windows-latest'
uses: gradle/gradle-build-action@v2.1.5
uses: gradle/gradle-build-action@v2.4.0
with:
arguments: |
releaseAll
-Ppublishing.enabled=true
-Ppublishing.sonatype=false
publishAllPublicationsToSpaceRepository
-Ppublishing.targets=all
-Ppublishing.space.user=${{ secrets.SPACE_APP_ID }}
-Ppublishing.space.token=${{ secrets.SPACE_APP_SECRET }}
- name: Publish Mac Artifacts
if: matrix.os == 'macOS-latest'
uses: gradle/gradle-build-action@v2.1.5
uses: gradle/gradle-build-action@v2.4.0
with:
arguments: |
releaseMacosX64
releaseIosArm64
releaseIosX64
-Ppublishing.enabled=true
-Ppublishing.sonatype=false
publishMacosX64PublicationToSpaceRepository
publishMacosArm64PublicationToSpaceRepository
publishIosX64PublicationToSpaceRepository
publishIosArm64PublicationToSpaceRepository
publishIosSimulatorArm64PublicationToSpaceRepository
-Ppublishing.targets=all
-Ppublishing.space.user=${{ secrets.SPACE_APP_ID }}
-Ppublishing.space.token=${{ secrets.SPACE_APP_SECRET }}

6
.gitignore vendored
View File

@ -3,10 +3,9 @@ build/
out/
.idea/
.vscode/
# Avoid ignoring Gradle wrapper jar file (.jar files are usually ignored)
!gradle-wrapper.jar
@ -19,4 +18,5 @@ out/
!/.idea/copyright/
!/.idea/scopes/
/kotlin-js-store/yarn.lock
/gradle/yarn.lock

View File

@ -2,11 +2,19 @@
## [Unreleased]
### Added
- Generic builders for `BufferND` and `MutableBufferND`
- `NamedMatrix` - matrix with symbol-based indexing
- `Expression` with default arguments
- Type-aliases for numbers like `Float64`
- 2D optimal trajectory computation in a separate module `kmath-trajectory`
- Autodiff for generic algebra elements in core!
- Algebra now has an obligatory `bufferFactory` (#477).
### Changed
- Trajectory use type-safe angles
- Tensor operations switched to prefix notation
- Row-wise and column-wise ND shapes in the core
- Shape is read-only
- Major refactor of tensors (only minor API changes)
- Kotlin 1.7.20
- `LazyStructure` `deffered` -> `async` to comply with coroutines code style
@ -16,6 +24,8 @@
### Deprecated
### Removed
- Trajectory moved to https://github.com/SciProgCentre/maps-kt
- Polynomials moved to https://github.com/SciProgCentre/kmath-polynomial
### Fixed

View File

@ -5,7 +5,7 @@ import space.kscience.kmath.benchmarks.addBenchmarkProperties
plugins {
kotlin("multiplatform")
kotlin("plugin.allopen")
alias(spclibs.plugins.kotlin.plugin.allopen)
id("org.jetbrains.kotlinx.benchmark")
}
@ -44,7 +44,7 @@ kotlin {
implementation(project(":kmath-tensors"))
implementation(project(":kmath-multik"))
implementation("org.jetbrains.kotlinx:multik-default:$multikVersion")
implementation(npmlibs.kotlinx.benchmark.runtime)
implementation(spclibs.kotlinx.benchmark.runtime)
}
}
@ -142,12 +142,10 @@ benchmark {
commonConfiguration()
include("ViktorLogBenchmark")
}
}
// Fix kotlinx-benchmarks bug
afterEvaluate {
val jvmBenchmarkJar by tasks.getting(org.gradle.jvm.tasks.Jar::class) {
duplicatesStrategy = DuplicatesStrategy.EXCLUDE
configurations.register("integration") {
commonConfiguration()
include("IntegrationBenchmark")
}
}

View File

@ -6,34 +6,75 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.ComplexField
import space.kscience.kmath.complex.complex
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.getDouble
import space.kscience.kmath.structures.permute
@State(Scope.Benchmark)
internal class BufferBenchmark {
@Benchmark
fun genericDoubleBufferReadWrite() {
val buffer = DoubleBuffer(size) { it.toDouble() }
@Benchmark
fun doubleArrayReadWrite(blackhole: Blackhole) {
val buffer = DoubleArray(size) { it.toDouble() }
var res = 0.0
(0 until size).forEach {
buffer[it]
res += buffer[it]
}
blackhole.consume(res)
}
@Benchmark
fun complexBufferReadWrite() {
val buffer = MutableBuffer.complex(size / 2) { Complex(it.toDouble(), -it.toDouble()) }
(0 until size / 2).forEach {
buffer[it]
fun doubleBufferReadWrite(blackhole: Blackhole) {
val buffer = DoubleBuffer(size) { it.toDouble() }
var res = 0.0
(0 until size).forEach {
res += buffer[it]
}
blackhole.consume(res)
}
@Benchmark
fun bufferViewReadWrite(blackhole: Blackhole) {
val buffer = DoubleBuffer(size) { it.toDouble() }.permute(reversedIndices)
var res = 0.0
(0 until size).forEach {
res += buffer[it]
}
blackhole.consume(res)
}
@Benchmark
fun bufferViewReadWriteSpecialized(blackhole: Blackhole) {
val buffer = DoubleBuffer(size) { it.toDouble() }.permute(reversedIndices)
var res = 0.0
(0 until size).forEach {
res += buffer.getDouble(it)
}
blackhole.consume(res)
}
@Benchmark
fun complexBufferReadWrite(blackhole: Blackhole) = ComplexField {
val buffer = Buffer.complex(size / 2) { Complex(it.toDouble(), -it.toDouble()) }
var res = zero
(0 until size / 2).forEach {
res += buffer[it]
}
blackhole.consume(res)
}
private companion object {
private const val size = 100
private val reversedIndices = IntArray(size){it}.apply { reverse() }
}
}

View File

@ -0,0 +1,40 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import org.openjdk.jmh.infra.Blackhole
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.algebra
import space.kscience.kmath.integration.gaussIntegrator
import space.kscience.kmath.integration.integrate
import space.kscience.kmath.integration.value
import space.kscience.kmath.operations.algebra
@State(Scope.Benchmark)
internal class IntegrationBenchmark {
@Benchmark
fun doubleIntegration(blackhole: Blackhole) {
val res = Double.algebra.gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
//sin(1 / x)
1/x
}.value
blackhole.consume(res)
}
@Benchmark
fun complexIntegration(blackhole: Blackhole) = with(Complex.algebra) {
val res = gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
// sin(1 / x) + i * cos(1 / x)
1/x - i/x
}.value
blackhole.consume(res)
}
}

View File

@ -13,10 +13,8 @@ import org.jetbrains.kotlinx.multik.api.Multik
import org.jetbrains.kotlinx.multik.api.ones
import org.jetbrains.kotlinx.multik.ndarray.data.DN
import org.jetbrains.kotlinx.multik.ndarray.data.DataType
import space.kscience.kmath.nd.BufferedFieldOpsND
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.nd.one
import space.kscience.kmath.misc.UnsafeKMathAPI
import space.kscience.kmath.nd.*
import space.kscience.kmath.nd4j.nd4j
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.tensors.core.DoubleTensor
@ -69,9 +67,10 @@ internal class NDFieldBenchmark {
blackhole.consume(res)
}
@OptIn(UnsafeKMathAPI::class)
@Benchmark
fun multikInPlaceAdd(blackhole: Blackhole) = with(multikAlgebra) {
val res = Multik.ones<Double, DN>(shape, DataType.DoubleDataType).wrap()
val res = Multik.ones<Double, DN>(shape.asArray(), DataType.DoubleDataType).wrap()
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
@ -86,7 +85,7 @@ internal class NDFieldBenchmark {
private companion object {
private const val dim = 1000
private const val n = 100
private val shape = intArrayOf(dim, dim)
private val shape = ShapeND(dim, dim)
private val specializedField = DoubleField.ndAlgebra
private val genericField = BufferedFieldOpsND(DoubleField)
private val nd4jField = DoubleField.nd4j

View File

@ -13,6 +13,8 @@ import space.kscience.kmath.linear.linearSpace
import space.kscience.kmath.linear.matrix
import space.kscience.kmath.linear.symmetric
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.tensors.core.symEigJacobi
import space.kscience.kmath.tensors.core.symEigSvd
import space.kscience.kmath.tensors.core.tensorAlgebra
import kotlin.random.Random
@ -27,11 +29,11 @@ internal class TensorAlgebraBenchmark {
@Benchmark
fun tensorSymEigSvd(blackhole: Blackhole) = with(Double.tensorAlgebra) {
blackhole.consume(matrix.symEigSvd(1e-10))
blackhole.consume(symEigSvd(matrix, 1e-10))
}
@Benchmark
fun tensorSymEigJacobi(blackhole: Blackhole) = with(Double.tensorAlgebra) {
blackhole.consume(matrix.symEigJacobi(50, 1e-10))
blackhole.consume(symEigJacobi(matrix, 50, 1e-10))
}
}

View File

@ -10,7 +10,7 @@ import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.nd.one
@ -49,7 +49,7 @@ internal class ViktorBenchmark {
private companion object {
private const val dim = 1000
private const val n = 100
private val shape = Shape(dim, dim)
private val shape = ShapeND(dim, dim)
// automatically build context most suited for given type.
private val doubleField = DoubleField.ndAlgebra

View File

@ -10,7 +10,7 @@ import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.nd.one
import space.kscience.kmath.operations.DoubleField
@ -49,7 +49,7 @@ internal class ViktorLogBenchmark {
private companion object {
private const val dim = 1000
private const val n = 100
private val shape = Shape(dim, dim)
private val shape = ShapeND(dim, dim)
// automatically build context most suited for given type.
private val doubleField = DoubleField.ndAlgebra

View File

@ -15,7 +15,7 @@ allprojects {
}
group = "space.kscience"
version = "0.3.1-dev-4"
version = "0.3.1-dev-11"
}
subprojects {
@ -79,9 +79,9 @@ ksciencePublish {
github("kmath", "SciProgCentre")
space(
if (isInDevelopment) {
"https://maven.pkg.jetbrains.space/mipt-npm/p/sci/dev"
"https://maven.pkg.jetbrains.space/spc/p/sci/dev"
} else {
"https://maven.pkg.jetbrains.space/mipt-npm/p/sci/release"
"https://maven.pkg.jetbrains.space/spc/p/sci/maven"
}
)
sonatype()

View File

@ -1,7 +1,6 @@
plugins {
`kotlin-dsl`
`version-catalog`
kotlin("plugin.serialization") version "1.6.21"
}
java.targetCompatibility = JavaVersion.VERSION_11
@ -13,18 +12,18 @@ repositories {
gradlePluginPortal()
}
val toolsVersion = npmlibs.versions.tools.get()
val kotlinVersion = npmlibs.versions.kotlin.asProvider().get()
val benchmarksVersion = npmlibs.versions.kotlinx.benchmark.get()
val toolsVersion = spclibs.versions.tools.get()
val kotlinVersion = spclibs.versions.kotlin.asProvider().get()
val benchmarksVersion = spclibs.versions.kotlinx.benchmark.get()
dependencies {
api("space.kscience:gradle-tools:$toolsVersion")
api(npmlibs.atomicfu.gradle)
//plugins form benchmarks
api("org.jetbrains.kotlinx:kotlinx-benchmark-plugin:$benchmarksVersion")
api("org.jetbrains.kotlin:kotlin-allopen:$kotlinVersion")
api("org.jetbrains.kotlinx:kotlinx-benchmark-plugin:0.4.7")
//api("org.jetbrains.kotlin:kotlin-allopen:$kotlinVersion")
//to be used inside build-script only
implementation(npmlibs.kotlinx.serialization.json)
//implementation(spclibs.kotlinx.serialization.json)
implementation("com.fasterxml.jackson.module:jackson-module-kotlin:2.14.+")
}
kotlin.sourceSets.all {

View File

@ -26,7 +26,7 @@ dependencyResolutionManagement {
}
versionCatalogs {
create("npmlibs") {
create("spclibs") {
from("space.kscience:version-catalog:$toolsVersion")
}
}

View File

@ -5,9 +5,6 @@
package space.kscience.kmath.benchmarks
import kotlinx.serialization.Serializable
@Serializable
data class JmhReport(
val jmhVersion: String,
val benchmark: String,
@ -37,7 +34,6 @@ data class JmhReport(
val scoreUnit: String
}
@Serializable
data class PrimaryMetric(
override val score: Double,
override val scoreError: Double,
@ -48,7 +44,6 @@ data class JmhReport(
val rawData: List<List<Double>>? = null,
) : Metric
@Serializable
data class SecondaryMetric(
override val score: Double,
override val scoreError: Double,

View File

@ -6,8 +6,8 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.gradle.BenchmarksExtension
import kotlinx.serialization.decodeFromString
import kotlinx.serialization.json.Json
import com.fasterxml.jackson.module.kotlin.jacksonObjectMapper
import com.fasterxml.jackson.module.kotlin.readValue
import org.gradle.api.Project
import space.kscience.gradle.KScienceReadmeExtension
import java.time.LocalDateTime
@ -45,6 +45,8 @@ private val ISO_DATE_TIME: DateTimeFormatter = DateTimeFormatterBuilder().run {
private fun noun(number: Number, singular: String, plural: String) = if (number.toLong() == 1L) singular else plural
private val jsonMapper = jacksonObjectMapper()
fun Project.addBenchmarkProperties() {
val benchmarksProject = this
rootProject.subprojects.forEach { p ->
@ -60,8 +62,7 @@ fun Project.addBenchmarkProperties() {
if (resDirectory == null || !(resDirectory.resolve("jvm.json")).exists()) {
"> **Can't find appropriate benchmark data. Try generating readme files after running benchmarks**."
} else {
val reports =
Json.decodeFromString<List<JmhReport>>(resDirectory.resolve("jvm.json").readText())
val reports: List<JmhReport> = jsonMapper.readValue<List<JmhReport>>(resDirectory.resolve("jvm.json"))
buildString {
appendLine("<details>")

View File

@ -3,10 +3,12 @@
The Maven coordinates of this project are `${group}:${name}:${version}`.
**Gradle:**
```gradle
```groovy
repositories {
maven { url 'https://repo.kotlin.link' }
mavenCentral()
// development and snapshot versions
maven { url 'https://maven.pkg.jetbrains.space/spc/p/sci/dev' }
}
dependencies {
@ -18,6 +20,8 @@ dependencies {
repositories {
maven("https://repo.kotlin.link")
mavenCentral()
// development and snapshot versions
maven("https://maven.pkg.jetbrains.space/spc/p/sci/dev")
}
dependencies {

View File

@ -1,3 +1,5 @@
import org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile
plugins {
kotlin("jvm")
}
@ -18,7 +20,6 @@ dependencies {
implementation(project(":kmath-commons"))
implementation(project(":kmath-complex"))
implementation(project(":kmath-functions"))
implementation(project(":kmath-polynomial"))
implementation(project(":kmath-optimization"))
implementation(project(":kmath-stat"))
implementation(project(":kmath-viktor"))
@ -34,6 +35,8 @@ dependencies {
implementation(project(":kmath-multik"))
implementation("org.jetbrains.kotlinx:multik-default:$multikVersion")
//datetime
implementation("org.jetbrains.kotlinx:kotlinx-datetime:0.4.0")
implementation("org.nd4j:nd4j-native:1.0.0-beta7")
@ -47,25 +50,24 @@ dependencies {
// } else
implementation("org.nd4j:nd4j-native-platform:1.0.0-beta7")
// multik implementation
implementation("org.jetbrains.kotlinx:multik-default:0.1.0")
implementation("org.slf4j:slf4j-simple:1.7.32")
// plotting
implementation("space.kscience:plotlykt-server:0.5.0")
}
kotlin.sourceSets.all {
with(languageSettings) {
optIn("kotlin.contracts.ExperimentalContracts")
optIn("kotlin.ExperimentalUnsignedTypes")
optIn("space.kscience.kmath.misc.UnstableKMathAPI")
kotlin {
jvmToolchain(11)
sourceSets.all {
with(languageSettings) {
optIn("kotlin.contracts.ExperimentalContracts")
optIn("kotlin.ExperimentalUnsignedTypes")
optIn("space.kscience.kmath.misc.UnstableKMathAPI")
}
}
}
tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile> {
tasks.withType<KotlinJvmCompile> {
kotlinOptions {
jvmTarget = "11"
freeCompilerArgs = freeCompilerArgs + "-Xjvm-default=all" + "-Xopt-in=kotlin.RequiresOptIn" + "-Xlambdas=indy"
}
}

View File

@ -0,0 +1,418 @@
{
"cells": [
{
"cell_type": "code",
"source": [
"%use kmath(0.3.1-dev-5)\n",
"%use plotly(0.5.0)\n",
"@file:DependsOn(\"space.kscience:kmath-commons:0.3.1-dev-5\")"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "lQbSB87rNAn9lV6poArVWW",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"//Uncomment to work in Jupyter classic or DataLore\n",
"//Plotly.jupyter.notebook()"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "0UP158hfccGgjQtHz0wAi6",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"# The model\n",
"\n",
"Defining the input data format, the statistic abstraction and the statistic implementation based on a weighted sum of elements."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"class XYValues(val xValues: DoubleArray, val yValues: DoubleArray) {\n",
" init {\n",
" require(xValues.size == yValues.size)\n",
" }\n",
"}\n",
"\n",
"fun interface XYStatistic {\n",
" operator fun invoke(values: XYValues): Double\n",
"}\n",
"\n",
"class ConvolutionalXYStatistic(val weights: DoubleArray) : XYStatistic {\n",
" override fun invoke(values: XYValues): Double {\n",
" require(weights.size == values.yValues.size)\n",
" val norm = values.yValues.sum()\n",
" return values.yValues.zip(weights) { value, weight -> value * weight }.sum()/norm\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "Zhgz1Ui91PWz0meJiQpHol",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"# Generator\n",
"Generate sample data for parabolas and hyperbolas"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"fun generateParabolas(xValues: DoubleArray, a: Double, b: Double, c: Double): XYValues {\n",
" val yValues = xValues.map { x -> a * x * x + b * x + c }.toDoubleArray()\n",
" return XYValues(xValues, yValues)\n",
"}\n",
"\n",
"fun generateHyperbols(xValues: DoubleArray, gamma: Double, x0: Double, y0: Double): XYValues {\n",
" val yValues = xValues.map { x -> y0 + gamma / (x - x0) }.toDoubleArray()\n",
" return XYValues(xValues, yValues)\n",
"}"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"val xValues = (1.0..10.0).step(1.0).toDoubleArray()\n",
"\n",
"val xy = generateHyperbols(xValues, 1.0, 0.0, 0.0)\n",
"\n",
"Plotly.plot {\n",
" scatter {\n",
" this.x.doubles = xValues\n",
" this.y.doubles = xy.yValues\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "ZE2atNvFzQsCvpAF8KK4ch",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Create a default statistic with uniform weights"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"val statistic = ConvolutionalXYStatistic(DoubleArray(xValues.size){1.0})\n",
"statistic(xy)"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "EA5HaydTddRKYrtAUwd29h",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"import kotlin.random.Random\n",
"\n",
"val random = Random(1288)\n",
"\n",
"val parabolas = buildList{\n",
" repeat(500){\n",
" add(\n",
" generateParabolas(\n",
" xValues, \n",
" random.nextDouble(), \n",
" random.nextDouble(), \n",
" random.nextDouble()\n",
" )\n",
" )\n",
" }\n",
"}\n",
"\n",
"val hyperbolas: List<XYValues> = buildList{\n",
" repeat(500){\n",
" add(\n",
" generateHyperbols(\n",
" xValues, \n",
" random.nextDouble()*10, \n",
" random.nextDouble(), \n",
" random.nextDouble()\n",
" )\n",
" )\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "t5t6IYmD7Q1ykeo9uijFfQ",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"Plotly.plot { \n",
" scatter { \n",
" x.doubles = xValues\n",
" y.doubles = parabolas[257].yValues\n",
" }\n",
" scatter { \n",
" x.doubles = xValues\n",
" y.doubles = hyperbolas[252].yValues\n",
" }\n",
" }"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "oXB8lmju7YVYjMRXITKnhO",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"Plotly.plot { \n",
" histogram { \n",
" name = \"parabolae\"\n",
" x.numbers = parabolas.map { statistic(it) }\n",
" }\n",
" histogram { \n",
" name = \"hyperbolae\"\n",
" x.numbers = hyperbolas.map { statistic(it) }\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "8EIIecUZrt2NNrOkhxG5P0",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"val lossFunction: (XYStatistic) -> Double = { statistic ->\n",
" - abs(parabolas.sumOf { statistic(it) } - hyperbolas.sumOf { statistic(it) })\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "h7UmglJW5zXkAfKHK40oIL",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Using commons-math optimizer to optimize weights"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"import org.apache.commons.math3.optim.*\n",
"import org.apache.commons.math3.optim.nonlinear.scalar.*\n",
"import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.*\n",
"\n",
"val optimizer = SimplexOptimizer(1e-1, Double.MAX_VALUE)\n",
"\n",
"val result = optimizer.optimize(\n",
" ObjectiveFunction { point ->\n",
" lossFunction(ConvolutionalXYStatistic(point))\n",
" },\n",
" NelderMeadSimplex(xValues.size),\n",
" InitialGuess(DoubleArray(xValues.size){ 1.0 }),\n",
" GoalType.MINIMIZE,\n",
" MaxEval(100000)\n",
")"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "0EG3K4aCUciMlgGQKPvJ57",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"Print resulting weights of optimization"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"result.point"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "LelUlY0ZSlJEO9yC6SLk5B",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"source": [
"Plotly.plot { \n",
" scatter { \n",
" y.doubles = result.point\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "AuFOq5t9KpOIkGrOLsVXNf",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "markdown",
"source": [
"# The resulting statistic distribution"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"source": [
"val resultStatistic = ConvolutionalXYStatistic(result.point)\n",
"Plotly.plot { \n",
" histogram { \n",
" name = \"parabolae\"\n",
" x.numbers = parabolas.map { resultStatistic(it) }\n",
" }\n",
" histogram { \n",
" name = \"hyperbolae\"\n",
" x.numbers = hyperbolas.map { resultStatistic(it) }\n",
" }\n",
"}"
],
"execution_count": null,
"outputs": [],
"metadata": {
"datalore": {
"node_id": "zvmq42DRdM5mZ3SpzviHwI",
"type": "CODE",
"hide_input_from_viewers": false,
"hide_output_from_viewers": false
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Kotlin",
"language": "kotlin",
"name": "kotlin"
},
"datalore": {
"version": 1,
"computation_mode": "JUPYTER",
"package_manager": "pip",
"base_environment": "default",
"packages": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -7,10 +7,9 @@ package space.kscience.kmath.fit
import kotlinx.html.br
import kotlinx.html.h3
import space.kscience.kmath.commons.expressions.DSProcessor
import space.kscience.kmath.commons.optimization.CMOptimizer
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.expressions.chiSquaredExpression
import space.kscience.kmath.expressions.autodiff
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.asIterable
import space.kscience.kmath.operations.toList
@ -18,10 +17,11 @@ import space.kscience.kmath.optimization.FunctionOptimizationTarget
import space.kscience.kmath.optimization.optimizeWith
import space.kscience.kmath.optimization.resultPoint
import space.kscience.kmath.optimization.resultValue
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.real.DoubleVector
import space.kscience.kmath.real.map
import space.kscience.kmath.real.step
import space.kscience.kmath.stat.RandomGenerator
import space.kscience.kmath.stat.chiSquaredExpression
import space.kscience.plotly.*
import space.kscience.plotly.models.ScatterMode
import space.kscience.plotly.models.TraceValues
@ -67,7 +67,7 @@ suspend fun main() {
val yErr = y.map { sqrt(it) }//RealVector.same(x.size, sigma)
// compute differentiable chi^2 sum for given model ax^2 + bx + c
val chi2 = DSProcessor.chiSquaredExpression(x, y, yErr) { arg ->
val chi2 = Double.autodiff.chiSquaredExpression(x, y, yErr) { arg ->
//bind variables to autodiff context
val a = bindSymbol(a)
val b = bindSymbol(b)

View File

@ -7,21 +7,18 @@ package space.kscience.kmath.fit
import kotlinx.html.br
import kotlinx.html.h3
import space.kscience.kmath.commons.expressions.DSProcessor
import space.kscience.kmath.data.XYErrorColumnarData
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.expressions.autodiff
import space.kscience.kmath.expressions.binding
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.asIterable
import space.kscience.kmath.operations.toList
import space.kscience.kmath.optimization.QowOptimizer
import space.kscience.kmath.optimization.chiSquaredOrNull
import space.kscience.kmath.optimization.fitWith
import space.kscience.kmath.optimization.resultPoint
import space.kscience.kmath.optimization.*
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.real.map
import space.kscience.kmath.real.step
import space.kscience.kmath.stat.RandomGenerator
import space.kscience.plotly.*
import space.kscience.plotly.models.ScatterMode
import kotlin.math.abs
@ -32,6 +29,8 @@ import kotlin.math.sqrt
private val a by symbol
private val b by symbol
private val c by symbol
private val d by symbol
private val e by symbol
/**
@ -63,17 +62,23 @@ suspend fun main() {
val result = XYErrorColumnarData.of(x, y, yErr).fitWith(
QowOptimizer,
DSProcessor,
mapOf(a to 0.9, b to 1.2, c to 2.0)
Double.autodiff,
mapOf(a to 0.9, b to 1.2, c to 2.0, e to 1.0, d to 1.0, e to 0.0),
OptimizationParameters(a, b, c, d)
) { arg ->
//bind variables to autodiff context
val a by binding
val b by binding
//Include default value for c if it is not provided as a parameter
val c = bindSymbolOrNull(c) ?: one
a * arg.pow(2) + b * arg + c
val d by binding
val e by binding
a * arg.pow(2) + b * arg + c + d * arg.pow(3) + e / arg
}
println("Resulting chi2/dof: ${result.chiSquaredOrNull}/${result.dof}")
//display a page with plot and numerical results
val page = Plotly.page {
plot {
@ -89,7 +94,7 @@ suspend fun main() {
scatter {
mode = ScatterMode.lines
x(x)
y(x.map { result.model(result.resultPoint + (Symbol.x to it)) })
y(x.map { result.model(result.startPoint + result.resultPoint + (Symbol.x to it)) })
name = "fit"
}
}
@ -98,7 +103,7 @@ suspend fun main() {
+"Fit result: ${result.resultPoint}"
}
h3 {
+"Chi2/dof = ${result.chiSquaredOrNull!! / (x.size - 3)}"
+"Chi2/dof = ${result.chiSquaredOrNull!! / result.dof}"
}
}

View File

@ -5,6 +5,11 @@
package space.kscience.kmath.functions
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.ComplexField
import space.kscience.kmath.complex.ComplexField.div
import space.kscience.kmath.complex.ComplexField.minus
import space.kscience.kmath.complex.algebra
import space.kscience.kmath.integration.gaussIntegrator
import space.kscience.kmath.integration.integrate
import space.kscience.kmath.integration.value
@ -20,4 +25,12 @@ fun main() {
//the value is nullable because in some cases the integration could not succeed
println(result.value)
repeat(100000) {
Complex.algebra.gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
// sin(1 / x) + i * cos(1 / x)
1 / x - ComplexField.i / x
}.value
}
}

View File

@ -12,23 +12,21 @@ import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.structureND
import space.kscience.kmath.nd.withNdAlgebra
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.invoke
import kotlin.math.pow
fun main(): Unit = Double.algebra {
withNdAlgebra(2, 2) {
fun main(): Unit = Double.algebra.withNdAlgebra(2, 2) {
//Produce a diagonal StructureND
fun diagonal(v: Double) = structureND { (i, j) ->
if (i == j) v else 0.0
}
//Define a function in a nd space
val function: (Double) -> StructureND<Double> = { x: Double -> 3 * x.pow(2) + 2 * diagonal(x) + 1 }
//get the result of the integration
val result = gaussIntegrator.integrate(0.0..10.0, function = function)
//the value is nullable because in some cases the integration could not succeed
println(result.value)
//Produce a diagonal StructureND
fun diagonal(v: Double) = structureND { (i, j) ->
if (i == j) v else 0.0
}
//Define a function in a nd space
val function: (Double) -> StructureND<Double> = { x: Double -> 3 * x.pow(2) + 2 * diagonal(x) + 1 }
//get the result of the integration
val result = gaussIntegrator.integrate(0.0..10.0, function = function)
//the value is nullable because in some cases the integration could not succeed
println(result.value)
}

View File

@ -1,399 +0,0 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:Suppress("LocalVariableName")
package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.invoke
/**
* Shows [ListPolynomial]s' and [ListRationalFunction]s' capabilities.
*/
fun listPolynomialsExample() {
// [ListPolynomial] is a representation of a univariate polynomial as a list of coefficients from the least term to
// the greatest term. For example,
val polynomial1: ListPolynomial<Int> = ListPolynomial(listOf(2, -3, 1))
// represents polynomial 2 + (-3) x + x^2
// There are also shortcut fabrics:
val polynomial2: ListPolynomial<Int> = ListPolynomial(2, -3, 1)
println(polynomial1 == polynomial2) // true
// and even
val polynomial3: ListPolynomial<Int> = 57.asListPolynomial()
val polynomial4: ListPolynomial<Int> = ListPolynomial(listOf(57))
println(polynomial3 == polynomial4) // true
val polynomial5: ListPolynomial<Int> = ListPolynomial(3, -1)
// For every ring there can be provided a polynomial ring:
Int.algebra.listPolynomialSpace {
println(-polynomial5 == ListPolynomial(-3, 1)) // true
println(polynomial1 + polynomial5 == ListPolynomial(5, -4, 1)) // true
println(polynomial1 - polynomial5 == ListPolynomial(-1, -2, 1)) // true
println(polynomial1 * polynomial5 == ListPolynomial(6, -11, 6, -1)) // true
}
// You can even write
val x: ListPolynomial<Double> = ListPolynomial(0.0, 1.0)
val polynomial6: ListPolynomial<Double> = ListPolynomial(2.0, -3.0, 1.0)
Double.algebra.listPolynomialSpace {
println(2 - 3 * x + x * x == polynomial6)
println(2.0 - 3.0 * x + x * x == polynomial6)
}
// Also there are some utilities for polynomials:
println(polynomial1.substitute(Int.algebra, 1) == 0) // true, because 2 + (-3) * 1 + 1^2 = 0
println(polynomial1.substitute(Int.algebra, polynomial5) == polynomial1) // true, because 2 + (-3) * (3-x) + (3-x)^2 = 2 - 3x + x^2
println(polynomial1.derivative(Int.algebra) == ListPolynomial(-3, 2)) // true, (2 - 3x + x^2)' = -3 + 2x
println(polynomial1.nthDerivative(Int.algebra, 2) == 2.asListPolynomial()) // true, (2 - 3x + x^2)'' = 2
// Lastly, there are rational functions and some other utilities:
Double.algebra.listRationalFunctionSpace {
val rationalFunction1: ListRationalFunction<Double> = ListRationalFunction(listOf(2.0, -3.0, 1.0), listOf(3.0, -1.0))
// It's just (2 - 3x + x^2)/(3 - x)
val rationalFunction2 : ListRationalFunction<Double> = ListRationalFunction(listOf(5.0, -4.0, 1.0), listOf(3.0, -1.0))
// It's just (5 - 4x + x^2)/(3 - x)
println(rationalFunction1 + 1 == rationalFunction2)
}
}
/**
* Shows [NumberedPolynomial]s' and [NumberedRationalFunction]s' capabilities.
*/
fun numberedPolynomialsExample() {
// Consider polynomial
// 3 + 5 x_2 - 7 x_1^2 x_3
// Consider, for example, its term -7 x_1^2 x_3. -7 is a coefficient of the term, whereas (2, 0, 1, 0, 0, ...) is
// description of degrees of variables x_1, x_2, ... in the term. Such description with removed leading zeros
// [2, 0, 1] is called "signature" of the term -7 x_1^2 x_3.
val polynomial1: NumberedPolynomial<Int>
with(Int.algebra) {
// [NumberedPolynomial] is a representation of a multivariate polynomial, that stores terms in a map with terms'
// signatures as the map's keys and terms' coefficients as corresponding values. For example,
polynomial1 = NumberedPolynomial(
mapOf(
listOf<UInt>() to 3,
listOf(0u, 1u) to 5,
listOf(2u, 0u, 1u) to -7,
)
)
// represents polynomial 3 + 5 x_2 - 7 x_1^2 x_3
// This `NumberedPolynomial` function needs context of either ring of constant (as `Int.algebra` in this example)
// or space of NumberedPolynomials over it. To understand why it is like this see documentations of functions
// NumberedPolynomial and NumberedPolynomialWithoutCheck
// There are also shortcut fabrics:
val polynomial2: NumberedPolynomial<Int> = NumberedPolynomial(
listOf<UInt>() to 3,
listOf(0u, 1u) to 5,
listOf(2u, 0u, 1u) to -7,
)
println(polynomial1 == polynomial2) // true
// and even
val polynomial3: NumberedPolynomial<Int> = 57.asNumberedPolynomial() // This one actually does not algebraic context!
val polynomial4: NumberedPolynomial<Int> = NumberedPolynomial(listOf<UInt>() to 57)
println(polynomial3 == polynomial4) // true
numberedPolynomialSpace {
// Also there is DSL for constructing NumberedPolynomials:
val polynomial5: NumberedPolynomial<Int> = NumberedPolynomialDSL1 {
3 {}
5 { 1 inPowerOf 1u }
-7 with { 0 pow 2u; 2 pow 1u }
// `pow` and `inPowerOf` are the same
// `with` is omittable
}
println(polynomial1 == polynomial5) // true
// Unfortunately the DSL does not work good in bare context of constants' ring, so for now it's disabled and
// works only in NumberedPolynomialSpace and NumberedRationalFunctionSpace
}
}
val polynomial6: NumberedPolynomial<Int> = Int.algebra {
NumberedPolynomial(
listOf<UInt>() to 7,
listOf(0u, 1u) to -5,
listOf(2u, 0u, 1u) to 0,
listOf(0u, 0u, 0u, 4u) to 4,
)
}
// For every ring there can be provided a polynomial ring:
Int.algebra.numberedPolynomialSpace {
println(
-polynomial6 == NumberedPolynomial(
listOf<UInt>() to -7,
listOf(0u, 1u) to 5,
listOf(2u, 0u, 1u) to 0,
listOf(0u, 0u, 0u, 4u) to (-4),
)
) // true
println(
polynomial1 + polynomial6 == NumberedPolynomial(
listOf<UInt>() to 10,
listOf(0u, 1u) to 0,
listOf(2u, 0u, 1u) to -7,
listOf(0u, 0u, 0u, 4u) to 4,
)
) // true
println(
polynomial1 - polynomial6 == NumberedPolynomial(
listOf<UInt>() to -4,
listOf(0u, 1u) to 10,
listOf(2u, 0u, 1u) to -7,
listOf(0u, 0u, 0u, 4u) to -4,
)
) // true
polynomial1 * polynomial6 // Multiplication works too
}
Double.algebra.numberedPolynomialSpace {
// You can even write
val x_1: NumberedPolynomial<Double> = NumberedPolynomial(listOf(1u) to 1.0)
val x_2: NumberedPolynomial<Double> = NumberedPolynomial(listOf(0u, 1u) to 1.0)
val x_3: NumberedPolynomial<Double> = NumberedPolynomial(listOf(0u, 0u, 1u) to 1.0)
val polynomial7: NumberedPolynomial<Double> = NumberedPolynomial(
listOf<UInt>() to 3.0,
listOf(0u, 1u) to 5.0,
listOf(2u, 0u, 1u) to -7.0,
)
Double.algebra.listPolynomialSpace {
println(3 + 5 * x_2 - 7 * x_1 * x_1 * x_3 == polynomial7)
println(3.0 + 5.0 * x_2 - 7.0 * x_1 * x_1 * x_3 == polynomial7)
}
}
Int.algebra.numberedPolynomialSpace {
val x_4: NumberedPolynomial<Int> = NumberedPolynomial(listOf(0u, 0u, 0u, 4u) to 1)
// Also there are some utilities for polynomials:
println(polynomial1.substitute(mapOf(0 to 1, 1 to -2, 2 to -1)) == 0.asNumberedPolynomial()) // true,
// because it's substitution x_1 -> 1, x_2 -> -2, x_3 -> -1,
// so 3 + 5 x_2 - 7 x_1^2 x_3 = 3 + 5 * (-2) - 7 * 1^2 * (-1) = 3 - 10 + 7 = 0
println(
polynomial1.substitute(mapOf(1 to x_4)) == NumberedPolynomial(
listOf<UInt>() to 3,
listOf(0u, 1u) to 5,
listOf(2u, 0u, 1u) to -7,
)
) // true, because it's substitution x_2 -> x_4, so result is 3 + 5 x_4 - 7 x_1^2 x_3
println(
polynomial1.derivativeWithRespectTo(Int.algebra, 1) ==
NumberedPolynomial(listOf<UInt>() to 5)
) // true, d/dx_2 (3 + 5 x_2 - 7 x_1^2 x_3) = 5
}
// Lastly, there are rational functions and some other utilities:
Double.algebra.numberedRationalFunctionSpace {
val rationalFunction1: NumberedRationalFunction<Double> = NumberedRationalFunction(
NumberedPolynomial(
listOf<UInt>() to 2.0,
listOf(1u) to -3.0,
listOf(2u) to 1.0,
),
NumberedPolynomial(
listOf<UInt>() to 3.0,
listOf(1u) to -1.0,
)
)
// It's just (2 - 3x + x^2)/(3 - x) where x = x_1
val rationalFunction2: NumberedRationalFunction<Double> = NumberedRationalFunction(
NumberedPolynomial(
listOf<UInt>() to 5.0,
listOf(1u) to -4.0,
listOf(2u) to 1.0,
),
NumberedPolynomial(
listOf<UInt>() to 3.0,
listOf(1u) to -1.0,
)
)
// It's just (5 - 4x + x^2)/(3 - x) where x = x_1
println(rationalFunction1 + 1 == rationalFunction2)
}
}
/**
* Shows [LabeledPolynomial]s' and [LabeledRationalFunction]s' capabilities.
*/
fun labeledPolynomialsExample() {
val x by symbol
val y by symbol
val z by symbol
val t by symbol
// Consider polynomial
// 3 + 5 y - 7 x^2 z
// Consider, for example, its term -7 x^2 z. -7 is a coefficient of the term, whereas matching (x -> 2, z -> 3) is
// description of degrees of variables x_1, x_2, ... in the term. Such description is called "signature" of the
// term -7 x_1^2 x_3.
val polynomial1: LabeledPolynomial<Int>
with(Int.algebra) {
// [LabeledPolynomial] is a representation of a multivariate polynomial, that stores terms in a map with terms'
// signatures as the map's keys and terms' coefficients as corresponding values. For example,
polynomial1 = LabeledPolynomial(
mapOf(
mapOf<Symbol, UInt>() to 3,
mapOf(y to 1u) to 5,
mapOf(x to 2u, z to 1u) to -7,
)
)
// represents polynomial 3 + 5 y - 7 x^2 z
// This `LabeledPolynomial` function needs context of either ring of constant (as `Int.algebra` in this example)
// or space of LabeledPolynomials over it. To understand why it is like this see documentations of functions
// LabeledPolynomial and LabeledPolynomialWithoutCheck
// There are also shortcut fabrics:
val polynomial2: LabeledPolynomial<Int> = LabeledPolynomial(
mapOf<Symbol, UInt>() to 3,
mapOf(y to 1u) to 5,
mapOf(x to 2u, z to 1u) to -7,
)
println(polynomial1 == polynomial2) // true
// and even
val polynomial3: LabeledPolynomial<Int> = 57.asLabeledPolynomial() // This one actually does not algebraic context!
val polynomial4: LabeledPolynomial<Int> = LabeledPolynomial(mapOf<Symbol, UInt>() to 57)
println(polynomial3 == polynomial4) // true
labeledPolynomialSpace {
// Also there is DSL for constructing NumberedPolynomials:
val polynomial5: LabeledPolynomial<Int> = LabeledPolynomialDSL1 {
3 {}
5 { y inPowerOf 1u }
-7 with { x pow 2u; z pow 1u }
// `pow` and `inPowerOf` are the same
// `with` is omittable
}
println(polynomial1 == polynomial5) // true
// Unfortunately the DSL does not work good in bare context of constants' ring, so for now it's disabled and
// works only in NumberedPolynomialSpace and NumberedRationalFunctionSpace
}
}
val polynomial6: LabeledPolynomial<Int> = Int.algebra {
LabeledPolynomial(
mapOf<Symbol, UInt>() to 7,
mapOf(y to 1u) to -5,
mapOf(x to 2u, z to 1u) to 0,
mapOf(t to 4u) to 4,
)
}
// For every ring there can be provided a polynomial ring:
Int.algebra.labeledPolynomialSpace {
println(
-polynomial6 == LabeledPolynomial(
mapOf<Symbol, UInt>() to -7,
mapOf(y to 1u) to 5,
mapOf(x to 2u, z to 1u) to 0,
mapOf(t to 4u) to -4,
)
) // true
println(
polynomial1 + polynomial6 == LabeledPolynomial(
mapOf<Symbol, UInt>() to 10,
mapOf(y to 1u) to 0,
mapOf(x to 2u, z to 1u) to -7,
mapOf(t to 4u) to 4,
)
) // true
println(
polynomial1 - polynomial6 == LabeledPolynomial(
mapOf<Symbol, UInt>() to -4,
mapOf(y to 1u) to 10,
mapOf(x to 2u, z to 1u) to -7,
mapOf(t to 4u) to -4,
)
) // true
polynomial1 * polynomial6 // Multiplication works too
}
Double.algebra.labeledPolynomialSpace {
// You can even write
val polynomial7: LabeledPolynomial<Double> = LabeledPolynomial(
mapOf<Symbol, UInt>() to 3.0,
mapOf(y to 1u) to 5.0,
mapOf(x to 2u, z to 1u) to -7.0,
)
Double.algebra.listPolynomialSpace {
println(3 + 5 * y - 7 * x * x * z == polynomial7)
println(3.0 + 5.0 * y - 7.0 * x * x * z == polynomial7)
}
}
Int.algebra.labeledPolynomialSpace {
// Also there are some utilities for polynomials:
println(polynomial1.substitute(mapOf(x to 1, y to -2, z to -1)) == 0.asLabeledPolynomial()) // true,
// because it's substitution x -> 1, y -> -2, z -> -1,
// so 3 + 5 y - 7 x^2 z = 3 + 5 * (-2) - 7 * 1^2 * (-1) = 3 - 10 + 7 = 0
println(
polynomial1.substitute(mapOf(y to t.asPolynomial())) == LabeledPolynomial(
mapOf<Symbol, UInt>() to 3,
mapOf(t to 1u) to 5,
mapOf(x to 2u, z to 1u) to -7,
)
) // true, because it's substitution y -> t, so result is 3 + 5 t - 7 x^2 z
println(
polynomial1.derivativeWithRespectTo(Int.algebra, y) == LabeledPolynomial(mapOf<Symbol, UInt>() to 5)
) // true, d/dy (3 + 5 y - 7 x^2 z) = 5
}
// Lastly, there are rational functions and some other utilities:
Double.algebra.labeledRationalFunctionSpace {
val rationalFunction1: LabeledRationalFunction<Double> = LabeledRationalFunction(
LabeledPolynomial(
mapOf<Symbol, UInt>() to 2.0,
mapOf(x to 1u) to -3.0,
mapOf(x to 2u) to 1.0,
),
LabeledPolynomial(
mapOf<Symbol, UInt>() to 3.0,
mapOf(x to 1u) to -1.0,
)
)
// It's just (2 - 3x + x^2)/(3 - x)
val rationalFunction2: LabeledRationalFunction<Double> = LabeledRationalFunction(
LabeledPolynomial(
mapOf<Symbol, UInt>() to 5.0,
mapOf(x to 1u) to -4.0,
mapOf(x to 2u) to 1.0,
),
LabeledPolynomial(
mapOf<Symbol, UInt>() to 3.0,
mapOf(x to 1u) to -1.0,
)
)
// It's just (5 - 4x + x^2)/(3 - x)
println(rationalFunction1 + 1 == rationalFunction2)
}
}
fun main() {
println("ListPolynomials:")
listPolynomialsExample()
println()
println("NumberedPolynomials:")
numberedPolynomialsExample()
println()
println("ListPolynomials:")
labeledPolynomialsExample()
println()
}

View File

@ -7,8 +7,10 @@ package space.kscience.kmath.linear
import space.kscience.kmath.operations.algebra
import kotlin.random.Random
import kotlin.system.measureTimeMillis
import kotlin.time.ExperimentalTime
import kotlin.time.measureTime
@OptIn(ExperimentalTime::class)
fun main() {
val random = Random(12224)
val dim = 1000
@ -21,7 +23,7 @@ fun main() {
if (i <= j) random.nextDouble() else 0.0
}
val time = measureTimeMillis {
val time = measureTime {
with(Double.algebra.linearSpace) {
repeat(10) {
matrix1 dot matrix2

View File

@ -8,14 +8,14 @@ package space.kscience.kmath.operations
import space.kscience.kmath.commons.linear.CMLinearSpace
import space.kscience.kmath.linear.matrix
import space.kscience.kmath.nd.DoubleBufferND
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.viktor.ViktorStructureND
import space.kscience.kmath.viktor.viktorAlgebra
fun main() {
val viktorStructure: ViktorStructureND = DoubleField.viktorAlgebra.structureND(Shape(2, 2)) { (i, j) ->
val viktorStructure: ViktorStructureND = DoubleField.viktorAlgebra.structureND(ShapeND(2, 2)) { (i, j) ->
if (i == j) 2.0 else 0.0
}

View File

@ -0,0 +1,49 @@
package space.kscience.kmath.series
import kotlinx.html.FlowContent
import kotlinx.html.h1
import space.kscience.kmath.operations.DoubleBufferOps
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.bufferAlgebra
import space.kscience.kmath.operations.toList
import space.kscience.kmath.stat.KMComparisonResult
import space.kscience.kmath.stat.ksComparisonStatistic
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.slice
import space.kscience.plotly.*
import kotlin.math.PI
fun main() = with(Double.algebra.bufferAlgebra.seriesAlgebra()) {
fun FlowContent.plotSeries(buffer: Buffer<Double>) {
val ls = buffer.labels
plot {
scatter {
x.numbers = ls
y.numbers = buffer.toList()
}
layout {
xaxis {
range(0.0..100.0)
}
}
}
}
val s1 = series(100) { sin(2 * PI * it / 100) + 1.0 }
val s2 = s1.slice(20..50).moveTo(40)
val s3: Buffer<Double> = s1.zip(s2) { l, r -> l + r } //s1 + s2
val s4 = DoubleBufferOps.ln(s3)
@Suppress("UNUSED_VARIABLE") val kmTest: KMComparisonResult<Double> = ksComparisonStatistic(s1, s2)
Plotly.page {
h1 { +"This is my plot" }
plotSeries(s1)
plotSeries(s2)
plotSeries(s4)
}.makeFile()
}

View File

@ -0,0 +1,19 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.stat
import kotlinx.datetime.Instant
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.bufferAlgebra
import space.kscience.kmath.series.MonotonicSeriesAlgebra
import space.kscience.kmath.series.SeriesAlgebra
import kotlin.time.Duration
fun SeriesAlgebra.Companion.time(zero: Instant, step: Duration) = MonotonicSeriesAlgebra(
bufferAlgebra = Double.algebra.bufferAlgebra,
offsetToLabel = { zero + step * it },
labelToOffset = { (it - zero) / step }
)

View File

@ -10,6 +10,7 @@ import kotlinx.coroutines.async
import kotlinx.coroutines.runBlocking
import org.apache.commons.rng.sampling.distribution.BoxMullerNormalizedGaussianSampler
import org.apache.commons.rng.simple.RandomSource
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.samplers.GaussianSampler
import java.time.Duration
import java.time.Instant
@ -35,7 +36,7 @@ private suspend fun runKMathChained(): Duration {
return Duration.between(startTime, Instant.now())
}
private fun runApacheDirect(): Duration {
private fun runCMDirect(): Duration {
val rng = RandomSource.create(RandomSource.MT, 123L)
val sampler = CMGaussianSampler.of(
@ -64,7 +65,7 @@ private fun runApacheDirect(): Duration {
* Comparing chain sampling performance with direct sampling performance
*/
fun main(): Unit = runBlocking(Dispatchers.Default) {
val directJob = async { runApacheDirect() }
val directJob = async { runCMDirect() }
val chainJob = async { runKMathChained() }
println("KMath Chained: ${chainJob.await()}")
println("Apache Direct: ${directJob.await()}")

View File

@ -9,6 +9,7 @@ import kotlinx.coroutines.runBlocking
import space.kscience.kmath.chains.Chain
import space.kscience.kmath.chains.combineWithState
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.random.RandomGenerator
private data class AveragingChainState(var num: Int = 0, var value: Double = 0.0)

View File

@ -29,7 +29,7 @@ fun main() {
Nd4j.zeros(0)
val dim = 1000
val n = 1000
val shape = Shape(dim, dim)
val shape = ShapeND(dim, dim)
// specialized nd-field for Double. It works as generic Double field as well.

View File

@ -17,11 +17,11 @@ import java.util.stream.IntStream
* A demonstration implementation of NDField over Real using Java [java.util.stream.DoubleStream] for parallel
* execution.
*/
class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, DoubleField>,
class StreamDoubleFieldND(override val shape: ShapeND) : FieldND<Double, DoubleField>,
NumbersAddOps<StructureND<Double>>,
ExtendedField<StructureND<Double>> {
private val strides = DefaultStrides(shape)
private val strides = ColumnStrides(shape)
override val elementAlgebra: DoubleField get() = DoubleField
override val zero: BufferND<Double> by lazy { structureND(shape) { zero } }
override val one: BufferND<Double> by lazy { structureND(shape) { one } }
@ -31,17 +31,19 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
return structureND(shape) { d }
}
@OptIn(PerformancePitfall::class)
private val StructureND<Double>.buffer: DoubleBuffer
get() = when {
!shape.contentEquals(this@StreamDoubleFieldND.shape) -> throw ShapeMismatchException(
this@StreamDoubleFieldND.shape,
shape
)
this is BufferND && this.indices == this@StreamDoubleFieldND.strides -> this.buffer as DoubleBuffer
this is BufferND && indices == this@StreamDoubleFieldND.strides -> this.buffer as DoubleBuffer
else -> DoubleBuffer(strides.linearSize) { offset -> get(strides.index(offset)) }
}
override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): BufferND<Double> {
override fun structureND(shape: ShapeND, initializer: DoubleField.(IntArray) -> Double): BufferND<Double> {
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
val index = strides.index(offset)
DoubleField.initializer(index)
@ -109,4 +111,4 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
override fun atanh(arg: StructureND<Double>): BufferND<Double> = arg.map { atanh(it) }
}
fun DoubleField.ndStreaming(vararg shape: Int): StreamDoubleFieldND = StreamDoubleFieldND(shape)
fun DoubleField.ndStreaming(vararg shape: Int): StreamDoubleFieldND = StreamDoubleFieldND(ShapeND(shape))

View File

@ -5,16 +5,19 @@
package space.kscience.kmath.structures
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.BufferND
import space.kscience.kmath.nd.DefaultStrides
import space.kscience.kmath.nd.ColumnStrides
import space.kscience.kmath.nd.ShapeND
import kotlin.system.measureTimeMillis
@Suppress("ASSIGNED_BUT_NEVER_ACCESSED_VARIABLE")
@OptIn(PerformancePitfall::class)
fun main() {
val n = 6000
val array = DoubleArray(n * n) { 1.0 }
val buffer = DoubleBuffer(array)
val strides = DefaultStrides(intArrayOf(n, n))
val strides = ColumnStrides(ShapeND(n, n))
val structure = BufferND(strides, buffer)
measureTimeMillis {

View File

@ -5,16 +5,23 @@
package space.kscience.kmath.structures
import space.kscience.kmath.nd.BufferND
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.mapToBuffer
import space.kscience.kmath.operations.mapToBuffer
import kotlin.system.measureTimeMillis
private inline fun <T, reified R : Any> BufferND<T>.mapToBufferND(
bufferFactory: BufferFactory<R> = BufferFactory.auto(),
crossinline block: (T) -> R,
): BufferND<R> = BufferND(indices, buffer.mapToBuffer(bufferFactory, block))
@Suppress("UNUSED_VARIABLE")
fun main() {
val n = 6000
val structure = StructureND.buffered(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 }
structure.mapToBuffer { it + 1 } // warm-up
val time1 = measureTimeMillis { val res = structure.mapToBuffer { it + 1 } }
val structure = StructureND.buffered(ShapeND(n, n), Buffer.Companion::auto) { 1.0 }
structure.mapToBufferND { it + 1 } // warm-up
val time1 = measureTimeMillis { val res = structure.mapToBufferND { it + 1 } }
println("Structure mapping finished in $time1 millis")
val array = DoubleArray(n * n) { 1.0 }

View File

@ -5,16 +5,17 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.randomNormal
import space.kscience.kmath.tensors.core.randomNormalLike
import kotlin.math.abs
// OLS estimator using SVD
@OptIn(PerformancePitfall::class)
fun main() {
//seed for random
val randSeed = 100500L
@ -23,10 +24,10 @@ fun main() {
DoubleTensorAlgebra {
// take coefficient vector from normal distribution
val alpha = randomNormal(
intArrayOf(5),
ShapeND(5),
randSeed
) + fromArray(
intArrayOf(5),
ShapeND(5),
doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1)
)
@ -34,27 +35,29 @@ fun main() {
// also take sample of size 20 from normal distribution for x
val x = randomNormal(
intArrayOf(20, 5),
ShapeND(20, 5),
randSeed
)
// calculate y and add gaussian noise (N(0, 0.05))
val y = x dot alpha
y += y.randomNormalLike(randSeed) * 0.05
y += randomNormalLike(y, randSeed) * 0.05
// now restore the coefficient vector with OSL estimator with SVD
val (u, singValues, v) = x.svd()
val (u, singValues, v) = svd(x)
// we have to make sure the singular values of the matrix are not close to zero
println("Singular values:\n$singValues")
// inverse Sigma matrix can be restored from singular values with diagonalEmbedding function
val sigma = diagonalEmbedding(singValues.map{ if (abs(it) < 1e-3) 0.0 else 1.0/it })
val sigma = diagonalEmbedding(singValues.map { if (abs(it) < 1e-3) 0.0 else 1.0 / it })
val alphaOLS = v dot sigma dot u.transposed() dot y
println("Estimated alpha:\n" +
"$alphaOLS")
println(
"Estimated alpha:\n" +
"$alphaOLS"
)
// figure out MSE of approximation
fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double {
@ -62,7 +65,7 @@ fun main() {
require(yTrue.shape contentEquals yPred.shape)
val diff = yTrue - yPred
return diff.dot(diff).sqrt().value()
return sqrt(diff.dot(diff)).value()
}
println("MSE: ${mse(alpha, alphaOLS)}")

View File

@ -5,8 +5,8 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.tensors.core.*
// simple PCA
@ -16,12 +16,12 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
// assume x is range from 0 until 10
val x = fromArray(
intArrayOf(10),
ShapeND(10),
DoubleArray(10) { it.toDouble() }
)
// take y dependent on x with noise
val y = 2.0 * x + (3.0 + x.randomNormalLike(seed) * 1.5)
val y = 2.0 * x + (3.0 + randomNormalLike(x, seed) * 1.5)
println("x:\n$x")
println("y:\n$y")
@ -30,34 +30,34 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
val dataset = stack(listOf(x, y)).transposed()
// normalize both x and y
val xMean = x.mean()
val yMean = y.mean()
val xMean = mean(x)
val yMean = mean(y)
val xStd = x.std()
val yStd = y.std()
val xStd = std(x)
val yStd = std(y)
val xScaled = (x - xMean) / xStd
val yScaled = (y - yMean) / yStd
val xScaled: DoubleTensor = (x - xMean) / xStd
val yScaled: DoubleTensor = (y - yMean) / yStd
// save means ans standard deviations for further recovery
val mean = fromArray(
intArrayOf(2),
ShapeND(2),
doubleArrayOf(xMean, yMean)
)
println("Means:\n$mean")
val std = fromArray(
intArrayOf(2),
ShapeND(2),
doubleArrayOf(xStd, yStd)
)
println("Standard deviations:\n$std")
// calculate the covariance matrix of scaled x and y
val covMatrix = cov(listOf(xScaled, yScaled))
val covMatrix = covariance(listOf(xScaled.asDoubleTensor1D(), yScaled.asDoubleTensor1D()))
println("Covariance matrix:\n$covMatrix")
// and find out eigenvector of it
val (_, evecs) = covMatrix.symEig()
val (_, evecs) = symEig(covMatrix)
val v = evecs.getTensor(0)
println("Eigenvector:\n$v")
@ -68,7 +68,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
// we can restore original data from reduced data;
// for example, find 7th element of dataset.
val n = 7
val restored = (datasetReduced.getTensor(n) dot v.view(intArrayOf(1, 2))) * std + mean
val restored = (datasetReduced.getTensor(n) dot v.view(ShapeND(1, 2))) * std + mean
println("Original value:\n${dataset.getTensor(n)}")
println("Restored value:\n$restored")
}

View File

@ -5,6 +5,8 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.tensors.core.randomNormal
import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast
@ -13,17 +15,17 @@ import space.kscience.kmath.tensors.core.withBroadcast
fun main() = Double.tensorAlgebra.withBroadcast { // work in context with broadcast methods
// take dataset of 5-element vectors from normal distribution
val dataset = randomNormal(intArrayOf(100, 5)) * 1.5 // all elements from N(0, 1.5)
val dataset = randomNormal(ShapeND(100, 5)) * 1.5 // all elements from N(0, 1.5)
dataset += fromArray(
intArrayOf(5),
ShapeND(5),
doubleArrayOf(0.0, 1.0, 1.5, 3.0, 5.0) // row means
)
// find out mean and standard deviation of each column
val mean = dataset.mean(0, false)
val std = dataset.std(0, false)
val mean = mean(dataset, 0, false)
val std = std(dataset, 0, false)
println("Mean:\n$mean")
println("Standard deviation:\n$std")
@ -35,8 +37,8 @@ fun main() = Double.tensorAlgebra.withBroadcast { // work in context with broad
// now we can scale dataset with mean normalization
val datasetScaled = (dataset - mean) / std
// find out mean and std of scaled dataset
// find out mean and standardDiviation of scaled dataset
println("Mean of scaled:\n${datasetScaled.mean(0, false)}")
println("Mean of scaled:\n${datasetScaled.std(0, false)}")
println("Mean of scaled:\n${mean(datasetScaled, 0, false)}")
println("Mean of scaled:\n${std(datasetScaled, 0, false)}")
}

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast
@ -15,13 +16,13 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// set true value of x
val trueX = fromArray(
intArrayOf(4),
ShapeND(4),
doubleArrayOf(-2.0, 1.5, 6.8, -2.4)
)
// and A matrix
val a = fromArray(
intArrayOf(4, 4),
ShapeND(4, 4),
doubleArrayOf(
0.5, 10.5, 4.5, 1.0,
8.5, 0.9, 12.8, 0.1,
@ -40,7 +41,7 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// solve `Ax = b` system using LUP decomposition
// get P, L, U such that PA = LU
val (p, l, u) = a.lu()
val (p, l, u) = lu(a)
// check P is permutation matrix
println("P:\n$p")
@ -64,7 +65,7 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// this function returns solution x of a system lx = b, l should be lower triangular
fun solveLT(l: DoubleTensor, b: DoubleTensor): DoubleTensor {
val n = l.shape[0]
val x = zeros(intArrayOf(n))
val x = zeros(ShapeND(n))
for (i in 0 until n) {
x[intArrayOf(i)] = (b[intArrayOf(i)] - l.getTensor(i).dot(x).value()) / l[intArrayOf(i, i)]
}

View File

@ -5,12 +5,11 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.ShapeND
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.operations.asIterable
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.toDoubleTensor
import space.kscience.kmath.tensors.core.*
import kotlin.math.sqrt
const val seed = 100500L
@ -49,7 +48,7 @@ fun reluDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
class ReLU : Activation(::relu, ::reluDer)
fun sigmoid(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
1.0 / (1.0 + (-x).exp())
1.0 / (1.0 + exp((-x)))
}
fun sigmoidDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
@ -68,12 +67,12 @@ class Dense(
private val weights: DoubleTensor = DoubleTensorAlgebra {
randomNormal(
intArrayOf(inputUnits, outputUnits),
ShapeND(inputUnits, outputUnits),
seed
) * sqrt(2.0 / (inputUnits + outputUnits))
}
private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(intArrayOf(outputUnits)) }
private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(ShapeND(outputUnits)) }
override fun forward(input: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
(input dot weights) + bias
@ -83,7 +82,7 @@ class Dense(
val gradInput = outputError dot weights.transposed()
val gradW = input.transposed() dot outputError
val gradBias = outputError.mean(dim = 0, keepDim = false) * input.shape[0].toDouble()
val gradBias = mean(structureND = outputError, dim = 0, keepDim = false) * input.shape[0].toDouble()
weights -= learningRate * gradW
bias -= learningRate * gradBias
@ -116,7 +115,7 @@ class NeuralNetwork(private val layers: List<Layer>) {
onesForAnswers[intArrayOf(index, label)] = 1.0
}
val softmaxValue = yPred.exp() / yPred.exp().sum(dim = 1, keepDim = true)
val softmaxValue = exp(yPred) / exp(yPred).sum(dim = 1, keepDim = true)
(-onesForAnswers + softmaxValue) / (yPred.shape[0].toDouble())
}
@ -174,7 +173,6 @@ class NeuralNetwork(private val layers: List<Layer>) {
}
@OptIn(ExperimentalStdlibApi::class)
fun main() = BroadcastDoubleTensorAlgebra {
val features = 5
val sampleSize = 250
@ -182,17 +180,17 @@ fun main() = BroadcastDoubleTensorAlgebra {
//val testSize = sampleSize - trainSize
// take sample of features from normal distribution
val x = randomNormal(intArrayOf(sampleSize, features), seed) * 2.5
val x = randomNormal(ShapeND(sampleSize, features), seed) * 2.5
x += fromArray(
intArrayOf(5),
ShapeND(5),
doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // row means
)
// define class like '1' if the sum of features > 0 and '0' otherwise
val y = fromArray(
intArrayOf(sampleSize, 1),
ShapeND(sampleSize, 1),
DoubleArray(sampleSize) { i ->
if (x.getTensor(i).sum() > 0.0) {
1.0

View File

@ -3,13 +3,14 @@
# Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
#
kotlin.code.style=official
kotlin.jupyter.add.scanner=false
kotlin.mpp.stability.nowarn=true
kotlin.native.ignoreDisabledTargets=true
kotlin.incremental.js.ir=true
org.gradle.configureondemand=true
org.gradle.parallel=true
org.gradle.jvmargs=-Xmx4096m
toolsVersion=0.13.0-kotlin-1.7.20-Beta
toolsVersion=0.14.6-kotlin-1.8.20
org.gradle.parallel=true
org.gradle.workers.max=4

View File

@ -1,5 +1,5 @@
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-7.5-bin.zip
distributionUrl=https\://services.gradle.org/distributions/gradle-7.6-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

View File

@ -3,65 +3,58 @@ plugins {
}
kscience{
jvm()
js()
native()
dependencies {
api(projects.kmathCore)
api("com.github.h0tk3y.betterParse:better-parse:0.4.4")
}
testDependencies {
implementation(projects.kmathComplex)
}
dependencies(jsMain) {
implementation(npm("astring", "1.7.5"))
implementation(npm("binaryen", "101.0.0"))
implementation(npm("js-base64", "3.6.1"))
}
dependencies(jvmMain){
implementation("org.ow2.asm:asm-commons:9.2")
}
}
kotlin.js {
nodejs {
testTask {
useMocha().timeout = "0"
kotlin {
js {
nodejs {
testTask {
useMocha().timeout = "0"
}
}
browser {
testTask {
useMocha().timeout = "0"
}
}
}
browser {
testTask {
useMocha().timeout = "0"
}
sourceSets {
filter { it.name.contains("test", true) }
.map(org.jetbrains.kotlin.gradle.plugin.KotlinSourceSet::languageSettings)
.forEach { it.optIn("space.kscience.kmath.misc.UnstableKMathAPI") }
}
}
kotlin.sourceSets {
filter { it.name.contains("test", true) }
.map(org.jetbrains.kotlin.gradle.plugin.KotlinSourceSet::languageSettings)
.forEach { it.optIn("space.kscience.kmath.misc.UnstableKMathAPI") }
commonMain {
dependencies {
api("com.github.h0tk3y.betterParse:better-parse:0.4.4")
api(project(":kmath-core"))
}
}
commonTest {
dependencies {
implementation(project(":kmath-complex"))
}
}
jsMain {
dependencies {
implementation(npm("astring", "1.7.5"))
implementation(npm("binaryen", "101.0.0"))
implementation(npm("js-base64", "3.6.1"))
}
}
jvmMain {
dependencies {
implementation("org.ow2.asm:asm-commons:9.2")
}
}
}
//Workaround for https://github.com/Kotlin/dokka/issues/1455
tasks.dokkaHtml {
dependsOn(tasks.build)
}
if (System.getProperty("space.kscience.kmath.ast.dump.generated.classes") == "1")
tasks.jvmTest {
if (System.getProperty("space.kscience.kmath.ast.dump.generated.classes") == "1") {
tasks.withType<org.jetbrains.kotlin.gradle.targets.jvm.tasks.KotlinJvmTest> {
jvmArgs("-Dspace.kscience.kmath.ast.dump.generated.classes=1")
}
}
readme {
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL

View File

@ -3,6 +3,8 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:Suppress("DEPRECATION")
package space.kscience.kmath.commons.expressions
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure
@ -18,7 +20,8 @@ import space.kscience.kmath.operations.NumbersAddOps
* @param bindings The map of bindings values. All bindings are considered free parameters
*/
@OptIn(UnstableKMathAPI::class)
public class DerivativeStructureField(
@Deprecated("Use generic DSAlgebra from the core")
public class CmDsField(
public val order: Int,
bindings: Map<Symbol, Double>,
) : ExtendedField<DerivativeStructure>, ExpressionAlgebra<Double, DerivativeStructure>,
@ -108,25 +111,27 @@ public class DerivativeStructureField(
/**
* Auto-diff processor based on Commons-math [DerivativeStructure]
*/
public object DSProcessor : AutoDiffProcessor<Double, DerivativeStructure, DerivativeStructureField> {
@Deprecated("Use generic DSAlgebra from the core")
public object CmDsProcessor : AutoDiffProcessor<Double, DerivativeStructure, CmDsField> {
override fun differentiate(
function: DerivativeStructureField.() -> DerivativeStructure,
): DerivativeStructureExpression = DerivativeStructureExpression(function)
function: CmDsField.() -> DerivativeStructure,
): CmDsExpression = CmDsExpression(function)
}
/**
* A constructs that creates a derivative structure with required order on-demand
*/
public class DerivativeStructureExpression(
public val function: DerivativeStructureField.() -> DerivativeStructure,
@Deprecated("Use generic DSAlgebra from the core")
public class CmDsExpression(
public val function: CmDsField.() -> DerivativeStructure,
) : DifferentiableExpression<Double> {
override operator fun invoke(arguments: Map<Symbol, Double>): Double =
DerivativeStructureField(0, arguments).function().value
CmDsField(0, arguments).function().value
/**
* Get the derivative expression with given orders
*/
override fun derivativeOrNull(symbols: List<Symbol>): Expression<Double> = Expression { arguments ->
with(DerivativeStructureField(symbols.size, arguments)) { function().derivative(symbols) }
with(CmDsField(symbols.size, arguments)) { function().derivative(symbols) }
}
}

View File

@ -6,12 +6,12 @@
package space.kscience.kmath.commons.random
import kotlinx.coroutines.runBlocking
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.samplers.GaussianSampler
import space.kscience.kmath.misc.toIntExact
import space.kscience.kmath.stat.RandomGenerator
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.samplers.GaussianSampler
import space.kscience.kmath.stat.next
public class CMRandomGeneratorWrapper(
public val factory: (IntArray) -> RandomGenerator,
) : org.apache.commons.math3.random.RandomGenerator {

View File

@ -10,28 +10,18 @@ import kotlinx.coroutines.flow.Flow
import kotlinx.coroutines.flow.map
import org.apache.commons.math3.transform.*
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.operations.SuspendBufferTransform
import space.kscience.kmath.operations.BufferTransform
import space.kscience.kmath.streaming.chunked
import space.kscience.kmath.streaming.spread
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.VirtualBuffer
import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.structures.*
/**
* Streaming and buffer transformations
* Streaming and buffer transformations with Commons-math algorithms
*/
public object Transformations {
private fun Buffer<Complex>.toArray(): Array<org.apache.commons.math3.complex.Complex> =
private fun Buffer<Complex>.toCmComplexArray(): Array<org.apache.commons.math3.complex.Complex> =
Array(size) { org.apache.commons.math3.complex.Complex(get(it).re, get(it).im) }
private fun Buffer<Double>.asArray() = if (this is DoubleBuffer) {
array
} else {
DoubleArray(size) { i -> get(i) }
}
/**
* Create a virtual buffer on top of array
*/
@ -43,70 +33,67 @@ public object Transformations {
public fun fourier(
normalization: DftNormalization = DftNormalization.STANDARD,
direction: TransformType = TransformType.FORWARD,
): SuspendBufferTransform<Complex, Complex> = {
FastFourierTransformer(normalization).transform(it.toArray(), direction).asBuffer()
): BufferTransform<Complex, Complex> = BufferTransform {
FastFourierTransformer(normalization).transform(it.toCmComplexArray(), direction).asBuffer()
}
public fun realFourier(
normalization: DftNormalization = DftNormalization.STANDARD,
direction: TransformType = TransformType.FORWARD,
): SuspendBufferTransform<Double, Complex> = {
FastFourierTransformer(normalization).transform(it.asArray(), direction).asBuffer()
): BufferTransform<Double, Complex> = BufferTransform {
FastFourierTransformer(normalization).transform(it.toDoubleArray(), direction).asBuffer()
}
public fun sine(
normalization: DstNormalization = DstNormalization.STANDARD_DST_I,
direction: TransformType = TransformType.FORWARD,
): SuspendBufferTransform<Double, Double> = {
FastSineTransformer(normalization).transform(it.asArray(), direction).asBuffer()
): BufferTransform<Double, Double> = DoubleBufferTransform {
FastSineTransformer(normalization).transform(it.array, direction).asBuffer()
}
public fun cosine(
normalization: DctNormalization = DctNormalization.STANDARD_DCT_I,
direction: TransformType = TransformType.FORWARD,
): SuspendBufferTransform<Double, Double> = {
FastCosineTransformer(normalization).transform(it.asArray(), direction).asBuffer()
): BufferTransform<Double, Double> = BufferTransform {
FastCosineTransformer(normalization).transform(it.toDoubleArray(), direction).asBuffer()
}
public fun hadamard(
direction: TransformType = TransformType.FORWARD,
): SuspendBufferTransform<Double, Double> = {
FastHadamardTransformer().transform(it.asArray(), direction).asBuffer()
): BufferTransform<Double, Double> = DoubleBufferTransform {
FastHadamardTransformer().transform(it.array, direction).asBuffer()
}
}
/**
* Process given [Flow] with commons-math fft transformation
*/
@FlowPreview
public fun Flow<Buffer<Complex>>.FFT(
public fun Flow<Buffer<Complex>>.fft(
normalization: DftNormalization = DftNormalization.STANDARD,
direction: TransformType = TransformType.FORWARD,
): Flow<Buffer<Complex>> {
val transform = Transformations.fourier(normalization, direction)
return map { transform(it) }
return map(transform::transform)
}
@FlowPreview
@JvmName("realFFT")
public fun Flow<Buffer<Double>>.FFT(
public fun Flow<Buffer<Double>>.fft(
normalization: DftNormalization = DftNormalization.STANDARD,
direction: TransformType = TransformType.FORWARD,
): Flow<Buffer<Complex>> {
val transform = Transformations.realFourier(normalization, direction)
return map(transform)
return map(transform::transform)
}
/**
* Process a continuous flow of real numbers in FFT splitting it in chunks of [bufferSize].
*/
@FlowPreview
@JvmName("realFFT")
public fun Flow<Double>.FFT(
public fun Flow<Double>.fft(
bufferSize: Int = Int.MAX_VALUE,
normalization: DftNormalization = DftNormalization.STANDARD,
direction: TransformType = TransformType.FORWARD,
): Flow<Complex> = chunked(bufferSize).FFT(normalization, direction).spread()
): Flow<Complex> = chunked(bufferSize).fft(normalization, direction).spread()
/**
* Map a complex flow into real flow by taking real part of each number

View File

@ -3,6 +3,8 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:Suppress("DEPRECATION")
package space.kscience.kmath.commons.expressions
import space.kscience.kmath.expressions.*
@ -15,10 +17,10 @@ import kotlin.test.assertFails
internal inline fun diff(
order: Int,
vararg parameters: Pair<Symbol, Double>,
block: DerivativeStructureField.() -> Unit,
block: CmDsField.() -> Unit,
) {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
DerivativeStructureField(order, mapOf(*parameters)).run(block)
CmDsField(order, mapOf(*parameters)).run(block)
}
internal class AutoDiffTest {
@ -41,7 +43,7 @@ internal class AutoDiffTest {
@Test
fun autoDifTest() {
val f = DerivativeStructureExpression {
val f = CmDsExpression {
val x by binding
val y by binding
x.pow(2) + 2 * x * y + y.pow(2) + 1

View File

@ -6,23 +6,25 @@
package space.kscience.kmath.commons.optimization
import kotlinx.coroutines.runBlocking
import space.kscience.kmath.commons.expressions.DSProcessor
import space.kscience.kmath.commons.expressions.DerivativeStructureExpression
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.expressions.DSFieldExpression
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.Symbol.Companion.y
import space.kscience.kmath.expressions.chiSquaredExpression
import space.kscience.kmath.expressions.autodiff
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.map
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.DoubleBufferOps.Companion.map
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.optimization.*
import space.kscience.kmath.stat.RandomGenerator
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.stat.chiSquaredExpression
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.asBuffer
import kotlin.math.pow
import kotlin.test.Test
@OptIn(UnstableKMathAPI::class)
internal class OptimizeTest {
val normal = DerivativeStructureExpression {
val normal = DSFieldExpression(DoubleField) {
exp(-bindSymbol(x).pow(2) / 2) + exp(-bindSymbol(y).pow(2) / 2)
}
@ -61,7 +63,7 @@ internal class OptimizeTest {
val yErr = DoubleBuffer(x.size) { sigma }
val chi2 = DSProcessor.chiSquaredExpression(
val chi2 = Double.autodiff.chiSquaredExpression(
x, y, yErr
) { arg ->
val cWithDefault = bindSymbolOrNull(c) ?: one

View File

@ -3,14 +3,12 @@ plugins {
}
kscience {
jvm()
js()
native()
}
kotlin.sourceSets {
commonMain {
dependencies {
api(project(":kmath-core"))
}
dependencies {
api(projects.kmathCore)
}
}

View File

@ -80,6 +80,8 @@ public object ComplexField :
override fun add(left: Complex, right: Complex): Complex = Complex(left.re + right.re, left.im + right.im)
// override fun multiply(a: Complex, k: Number): Complex = Complex(a.re * k.toDouble(), a.im * k.toDouble())
// override fun Complex.minus(arg: Complex): Complex = Complex(re - arg.re, im - arg.im)
override fun multiply(left: Complex, right: Complex): Complex =
Complex(left.re * right.re - left.im * right.im, left.re * right.im + left.im * right.re)
@ -193,7 +195,6 @@ public object ComplexField :
* @property re The real part.
* @property im The imaginary part.
*/
@OptIn(UnstableKMathAPI::class)
public data class Complex(val re: Double, val im: Double) {
public constructor(re: Number, im: Number) : this(re.toDouble(), im.toDouble())
public constructor(re: Number) : this(re.toDouble(), 0.0)

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.complex
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.*
@ -20,6 +21,7 @@ import kotlin.contracts.contract
public sealed class ComplexFieldOpsND : BufferedFieldOpsND<Complex, ComplexField>(ComplexField.bufferAlgebra),
ScaleOperations<StructureND<Complex>>, ExtendedFieldOps<StructureND<Complex>>, PowerOperations<StructureND<Complex>> {
@OptIn(PerformancePitfall::class)
override fun StructureND<Complex>.toBufferND(): BufferND<Complex> = when (this) {
is BufferND -> this
else -> {
@ -57,7 +59,7 @@ public sealed class ComplexFieldOpsND : BufferedFieldOpsND<Complex, ComplexField
}
@OptIn(UnstableKMathAPI::class)
public class ComplexFieldND(override val shape: Shape) :
public class ComplexFieldND(override val shape: ShapeND) :
ComplexFieldOpsND(), FieldND<Complex, ComplexField>,
NumbersAddOps<StructureND<Complex>> {
@ -69,12 +71,12 @@ public class ComplexFieldND(override val shape: Shape) :
public val ComplexField.ndAlgebra: ComplexFieldOpsND get() = ComplexFieldOpsND
public fun ComplexField.ndAlgebra(vararg shape: Int): ComplexFieldND = ComplexFieldND(shape)
public fun ComplexField.ndAlgebra(vararg shape: Int): ComplexFieldND = ComplexFieldND(ShapeND(shape))
/**
* Produce a context for n-dimensional operations inside this real field
*/
public inline fun <R> ComplexField.withNdAlgebra(vararg shape: Int, action: ComplexFieldND.() -> R): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return ComplexFieldND(shape).action()
return ComplexFieldND(ShapeND(shape)).action()
}

View File

@ -3,10 +3,12 @@ plugins {
}
kscience{
jvm()
js()
native()
dependencies {
api(project(":kmath-memory"))
api(projects.kmathMemory)
}
}

View File

@ -80,7 +80,6 @@ public abstract class DSAlgebra<T, A : Ring<T>>(
public val algebra: A,
public val order: Int,
bindings: Map<Symbol, T>,
public val valueBufferFactory: MutableBufferFactory<T> = algebra.bufferFactory,
) : ExpressionAlgebra<T, DS<T, A>>, SymbolIndexer {
/**
@ -116,7 +115,6 @@ public abstract class DSAlgebra<T, A : Ring<T>>(
newCache[p][o] = DSCompiler(
algebra,
valueBufferFactory,
p,
o,
valueCompiler,
@ -141,7 +139,7 @@ public abstract class DSAlgebra<T, A : Ring<T>>(
override val symbols: List<Symbol> = bindings.map { it.key }
private fun bufferForVariable(index: Int, value: T): Buffer<T> {
val buffer = valueBufferFactory(compiler.size) { algebra.zero }
val buffer = algebra.bufferFactory(compiler.size) { algebra.zero }
buffer[0] = value
if (compiler.order > 0) {
// the derivative of the variable with respect to itself is 1.
@ -207,7 +205,7 @@ public abstract class DSAlgebra<T, A : Ring<T>>(
}
public override fun const(value: T): DS<T, A> {
val buffer = valueBufferFactory(compiler.size) { algebra.zero }
val buffer = algebra.bufferFactory(compiler.size) { algebra.zero }
buffer[0] = value
return DS(buffer)
@ -245,11 +243,14 @@ public open class DSRing<T, A>(
algebra: A,
order: Int,
bindings: Map<Symbol, T>,
valueBufferFactory: MutableBufferFactory<T>,
) : DSAlgebra<T, A>(algebra, order, bindings, valueBufferFactory),
Ring<DS<T, A>>, ScaleOperations<DS<T, A>>,
) : DSAlgebra<T, A>(algebra, order, bindings),
Ring<DS<T, A>>,
ScaleOperations<DS<T, A>>,
NumericAlgebra<DS<T, A>>,
NumbersAddOps<DS<T, A>> where A : Ring<T>, A : NumericAlgebra<T>, A : ScaleOperations<T> {
NumbersAddOps<DS<T, A>>
where A : Ring<T>, A : NumericAlgebra<T>, A : ScaleOperations<T> {
public val elementBufferFactory: MutableBufferFactory<T> = algebra.bufferFactory
override fun bindSymbolOrNull(value: String): DSSymbol? =
super<DSAlgebra>.bindSymbolOrNull(value)
@ -261,14 +262,14 @@ public open class DSRing<T, A>(
*/
protected inline fun DS<T, A>.transformDataBuffer(block: A.(MutableBuffer<T>) -> Unit): DS<T, A> {
require(derivativeAlgebra == this@DSRing) { "All derivative operations should be done in the same algebra" }
val newData = valueBufferFactory(compiler.size) { data[it] }
val newData = elementBufferFactory(compiler.size) { data[it] }
algebra.block(newData)
return DS(newData)
}
protected fun DS<T, A>.mapData(block: A.(T) -> T): DS<T, A> {
require(derivativeAlgebra == this@DSRing) { "All derivative operations should be done in the same algebra" }
val newData: Buffer<T> = data.map(valueBufferFactory) {
val newData: Buffer<T> = data.mapToBuffer(elementBufferFactory) {
algebra.block(it)
}
return DS(newData)
@ -276,7 +277,7 @@ public open class DSRing<T, A>(
protected fun DS<T, A>.mapDataIndexed(block: (Int, T) -> T): DS<T, A> {
require(derivativeAlgebra == this@DSRing) { "All derivative operations should be done in the same algebra" }
val newData: Buffer<T> = data.mapIndexed(valueBufferFactory, block)
val newData: Buffer<T> = data.mapIndexedToBuffer(elementBufferFactory, block)
return DS(newData)
}
@ -329,22 +330,21 @@ public class DerivativeStructureRingExpression<T, A>(
public val function: DSRing<T, A>.() -> DS<T, A>,
) : DifferentiableExpression<T> where A : Ring<T>, A : ScaleOperations<T>, A : NumericAlgebra<T> {
override operator fun invoke(arguments: Map<Symbol, T>): T =
DSRing(algebra, 0, arguments, elementBufferFactory).function().value
DSRing(algebra, 0, arguments).function().value
override fun derivativeOrNull(symbols: List<Symbol>): Expression<T> = Expression { arguments ->
with(
DSRing(
algebra,
symbols.size,
arguments,
elementBufferFactory
arguments
)
) { function().derivative(symbols) }
}
}
/**
* A field over commons-math [DerivativeStructure].
* A field over [DS].
*
* @property order The derivation order.
* @param bindings The map of bindings values. All bindings are considered free parameters.
@ -354,8 +354,7 @@ public class DSField<T, A : ExtendedField<T>>(
algebra: A,
order: Int,
bindings: Map<Symbol, T>,
valueBufferFactory: MutableBufferFactory<T>,
) : DSRing<T, A>(algebra, order, bindings, valueBufferFactory), ExtendedField<DS<T, A>> {
) : DSRing<T, A>(algebra, order, bindings), ExtendedField<DS<T, A>> {
override fun number(value: Number): DS<T, A> = const(algebra.number(value))
override fun divide(left: DS<T, A>, right: DS<T, A>): DS<T, A> = left.transformDataBuffer { result ->
@ -414,6 +413,7 @@ public class DSField<T, A : ExtendedField<T>>(
is Int -> arg.transformDataBuffer { result ->
compiler.pow(arg.data, 0, pow, result, 0)
}
else -> arg.transformDataBuffer { result ->
compiler.pow(arg.data, 0, pow.toDouble(), result, 0)
}
@ -439,18 +439,29 @@ public class DSField<T, A : ExtendedField<T>>(
@UnstableKMathAPI
public class DSFieldExpression<T, A : ExtendedField<T>>(
public val algebra: A,
private val valueBufferFactory: MutableBufferFactory<T> = algebra.bufferFactory,
public val function: DSField<T, A>.() -> DS<T, A>,
) : DifferentiableExpression<T> {
override operator fun invoke(arguments: Map<Symbol, T>): T =
DSField(algebra, 0, arguments, valueBufferFactory).function().value
DSField(algebra, 0, arguments).function().value
override fun derivativeOrNull(symbols: List<Symbol>): Expression<T> = Expression { arguments ->
DSField(
algebra,
symbols.size,
arguments,
valueBufferFactory,
).run { function().derivative(symbols) }
}
}
@UnstableKMathAPI
public class DSFieldProcessor<T, A : ExtendedField<T>>(
public val algebra: A,
) : AutoDiffProcessor<T, DS<T, A>, DSField<T, A>> {
override fun differentiate(
function: DSField<T, A>.() -> DS<T, A>,
): DifferentiableExpression<T> = DSFieldExpression(algebra, function)
}
@UnstableKMathAPI
public val Double.Companion.autodiff: DSFieldProcessor<Double, DoubleField> get() = DSFieldProcessor(DoubleField)

View File

@ -9,7 +9,6 @@ package space.kscience.kmath.expressions
import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.MutableBufferFactory
import kotlin.math.min
internal fun <T> MutableBuffer<T>.fill(element: T, fromIndex: Int = 0, toIndex: Int = size) {
@ -56,7 +55,6 @@ internal fun <T> MutableBuffer<T>.fill(element: T, fromIndex: Int = 0, toIndex:
*/
public class DSCompiler<T, out A : Algebra<T>> internal constructor(
public val algebra: A,
public val bufferFactory: MutableBufferFactory<T>,
public val freeParameters: Int,
public val order: Int,
valueCompiler: DSCompiler<T, A>?,

View File

@ -48,6 +48,10 @@ public interface DoubleExpression : Expression<Double> {
* @return the value.
*/
public operator fun invoke(arguments: DoubleArray): Double
public companion object{
internal val EMPTY_DOUBLE_ARRAY = DoubleArray(0)
}
}
/**
@ -73,6 +77,10 @@ public interface IntExpression : Expression<Int> {
* @return the value.
*/
public operator fun invoke(arguments: IntArray): Int
public companion object{
internal val EMPTY_INT_ARRAY = IntArray(0)
}
}
/**
@ -98,6 +106,10 @@ public interface LongExpression : Expression<Long> {
* @return the value.
*/
public operator fun invoke(arguments: LongArray): Long
public companion object{
internal val EMPTY_LONG_ARRAY = LongArray(0)
}
}
/**
@ -145,7 +157,7 @@ public operator fun <T> Expression<T>.invoke(vararg pairs: Pair<String, T>): T =
}
)
private val EMPTY_DOUBLE_ARRAY = DoubleArray(0)
/**
* Calls this expression without providing any arguments.
@ -153,7 +165,7 @@ private val EMPTY_DOUBLE_ARRAY = DoubleArray(0)
* @return a value.
*/
@UnstableKMathAPI
public operator fun DoubleExpression.invoke(): Double = this(EMPTY_DOUBLE_ARRAY)
public operator fun DoubleExpression.invoke(): Double = this(DoubleExpression.EMPTY_DOUBLE_ARRAY)
/**
* Calls this expression from arguments.
@ -164,15 +176,13 @@ public operator fun DoubleExpression.invoke(): Double = this(EMPTY_DOUBLE_ARRAY)
@UnstableKMathAPI
public operator fun DoubleExpression.invoke(vararg arguments: Double): Double = this(arguments)
private val EMPTY_INT_ARRAY = IntArray(0)
/**
* Calls this expression without providing any arguments.
*
* @return a value.
*/
@UnstableKMathAPI
public operator fun IntExpression.invoke(): Int = this(EMPTY_INT_ARRAY)
public operator fun IntExpression.invoke(): Int = this(IntExpression.EMPTY_INT_ARRAY)
/**
* Calls this expression from arguments.
@ -183,15 +193,13 @@ public operator fun IntExpression.invoke(): Int = this(EMPTY_INT_ARRAY)
@UnstableKMathAPI
public operator fun IntExpression.invoke(vararg arguments: Int): Int = this(arguments)
private val EMPTY_LONG_ARRAY = LongArray(0)
/**
* Calls this expression without providing any arguments.
*
* @return a value.
*/
@UnstableKMathAPI
public operator fun LongExpression.invoke(): Long = this(EMPTY_LONG_ARRAY)
public operator fun LongExpression.invoke(): Long = this(LongExpression.EMPTY_LONG_ARRAY)
/**
* Calls this expression from arguments.

View File

@ -0,0 +1,31 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.expressions
public class ExpressionWithDefault<T>(
private val origin: Expression<T>,
private val defaultArgs: Map<Symbol, T>,
) : Expression<T> {
override fun invoke(arguments: Map<Symbol, T>): T = origin.invoke(defaultArgs + arguments)
}
public fun <T> Expression<T>.withDefaultArgs(defaultArgs: Map<Symbol, T>): ExpressionWithDefault<T> =
ExpressionWithDefault(this, defaultArgs)
public class DiffExpressionWithDefault<T>(
private val origin: DifferentiableExpression<T>,
private val defaultArgs: Map<Symbol, T>,
) : DifferentiableExpression<T> {
override fun invoke(arguments: Map<Symbol, T>): T = origin.invoke(defaultArgs + arguments)
override fun derivativeOrNull(symbols: List<Symbol>): Expression<T>? =
origin.derivativeOrNull(symbols)?.withDefaultArgs(defaultArgs)
}
public fun <T> DifferentiableExpression<T>.withDefaultArgs(defaultArgs: Map<Symbol, T>): DiffExpressionWithDefault<T> =
DiffExpressionWithDefault(this, defaultArgs)

View File

@ -0,0 +1,39 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:OptIn(UnstableKMathAPI::class)
package space.kscience.kmath.expressions
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.structures.getOrNull
public class NamedMatrix<T>(public val values: Matrix<T>, public val indexer: SymbolIndexer) : Matrix<T> by values {
public operator fun get(i: Symbol, j: Symbol): T = get(indexer.indexOf(i), indexer.indexOf(j))
public companion object {
@OptIn(PerformancePitfall::class)
public fun toStringWithSymbols(values: Matrix<*>, indexer: SymbolIndexer): String = buildString {
appendLine(indexer.symbols.joinToString(separator = "\t", prefix = "\t\t"))
indexer.symbols.forEach { i ->
append(i.identity + "\t")
values.rows.getOrNull(indexer.indexOf(i))?.let { row ->
indexer.symbols.forEach { j ->
append(row.getOrNull(indexer.indexOf(j)).toString())
append("\t")
}
appendLine()
}
}
}
}
}
public fun <T> Matrix<T>.named(indexer: SymbolIndexer): NamedMatrix<T> = NamedMatrix(this, indexer)
public fun <T> Matrix<T>.named(symbols: List<Symbol>): NamedMatrix<T> = named(SimpleSymbolIndexer(symbols))

View File

@ -6,9 +6,7 @@
package space.kscience.kmath.linear
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.BufferedRingOpsND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.asND
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.VirtualBuffer
@ -23,7 +21,7 @@ public class BufferedLinearSpace<T, out A : Ring<T>>(
private val ndAlgebra = BufferedRingOpsND(bufferAlgebra)
override fun buildMatrix(rows: Int, columns: Int, initializer: A.(i: Int, j: Int) -> T): Matrix<T> =
ndAlgebra.structureND(intArrayOf(rows, columns)) { (i, j) -> elementAlgebra.initializer(i, j) }.as2D()
ndAlgebra.structureND(ShapeND(rows, columns)) { (i, j) -> elementAlgebra.initializer(i, j) }.as2D()
override fun buildVector(size: Int, initializer: A.(Int) -> T): Point<T> =
bufferAlgebra.buffer(size) { elementAlgebra.initializer(it) }

View File

@ -6,9 +6,7 @@
package space.kscience.kmath.linear
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.DoubleFieldOpsND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.asND
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.DoubleBufferOps
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke
@ -23,7 +21,7 @@ public object DoubleLinearSpace : LinearSpace<Double, DoubleField> {
rows: Int,
columns: Int,
initializer: DoubleField.(i: Int, j: Int) -> Double
): Matrix<Double> = DoubleFieldOpsND.structureND(intArrayOf(rows, columns)) { (i, j) ->
): Matrix<Double> = DoubleFieldOpsND.structureND(ShapeND(rows, columns)) { (i, j) ->
DoubleField.initializer(i, j)
}.as2D()

View File

@ -5,6 +5,9 @@
package space.kscience.kmath.linear
import space.kscience.kmath.nd.ShapeND
/**
* The matrix where each element is evaluated each time when is being accessed.
*
@ -16,7 +19,7 @@ public class VirtualMatrix<out T : Any>(
public val generator: (i: Int, j: Int) -> T,
) : Matrix<T> {
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
override val shape: ShapeND get() = ShapeND(rowNum, colNum)
override operator fun get(i: Int, j: Int): T = generator(i, j)
}

View File

@ -9,7 +9,7 @@ import kotlin.jvm.JvmInline
import kotlin.reflect.KClass
/**
* A entity that contains a set of features defined by their types
* An entity that contains a set of features defined by their types
*/
public interface Featured<F : Any> {
public fun <T : F> getFeature(type: FeatureKey<T>): T?

View File

@ -29,3 +29,16 @@ public annotation class UnstableKMathAPI
public annotation class PerformancePitfall(
val message: String = "Potential performance problem",
)
/**
* Marks API that is public, but should not be used without clear understanding what it does.
*/
@MustBeDocumented
@Retention(value = AnnotationRetention.BINARY)
@RequiresOptIn(
"This API is unsafe and should be used carefully",
RequiresOptIn.Level.ERROR,
)
public annotation class UnsafeKMathAPI(
val message: String = "Unsafe API",
)

View File

@ -0,0 +1,22 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.misc
/**
* The same as [zipWithNext], but includes link between last and first element
*/
public inline fun <T, R> List<T>.zipWithNextCircular(transform: (a: T, b: T) -> R): List<R> {
if (isEmpty()) return emptyList()
return indices.map { i ->
if (i == size - 1) {
transform(last(), first())
} else {
transform(get(i), get(i + 1))
}
}
}
public inline fun <T> List<T>.zipWithNextCircular(): List<Pair<T,T>> = zipWithNextCircular { l, r -> l to r }

View File

@ -25,7 +25,7 @@ public interface AlgebraND<T, out C : Algebra<T>>: Algebra<StructureND<T>> {
/**
* Produces a new [StructureND] using given initializer function.
*/
public fun structureND(shape: Shape, initializer: C.(IntArray) -> T): StructureND<T>
public fun structureND(shape: ShapeND, initializer: C.(IntArray) -> T): StructureND<T>
/**
* Maps elements from one structure to another one by applying [transform] to them.

View File

@ -12,11 +12,11 @@ import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.*
public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> {
public val indexerBuilder: (IntArray) -> ShapeIndexer
public val indexerBuilder: (ShapeND) -> ShapeIndexer
public val bufferAlgebra: BufferAlgebra<T, A>
override val elementAlgebra: A get() = bufferAlgebra.elementAlgebra
override fun structureND(shape: Shape, initializer: A.(IntArray) -> T): BufferND<T> {
override fun structureND(shape: ShapeND, initializer: A.(IntArray) -> T): BufferND<T> {
val indexer = indexerBuilder(shape)
return BufferND(
indexer,
@ -26,6 +26,7 @@ public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> {
)
}
@OptIn(PerformancePitfall::class)
public fun StructureND<T>.toBufferND(): BufferND<T> = when (this) {
is BufferND -> this
else -> {
@ -46,7 +47,7 @@ public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> {
zipInline(left.toBufferND(), right.toBufferND(), transform)
public companion object {
public val defaultIndexerBuilder: (IntArray) -> ShapeIndexer = ::Strides
public val defaultIndexerBuilder: (ShapeND) -> ShapeIndexer = ::Strides
}
}
@ -98,24 +99,24 @@ internal inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.zipInline(
@OptIn(PerformancePitfall::class)
public open class BufferedGroupNDOps<T, out A : Group<T>>(
override val bufferAlgebra: BufferAlgebra<T, A>,
override val indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
override val indexerBuilder: (ShapeND) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : GroupOpsND<T, A>, BufferAlgebraND<T, A> {
override fun StructureND<T>.unaryMinus(): StructureND<T> = map { -it }
}
public open class BufferedRingOpsND<T, out A : Ring<T>>(
bufferAlgebra: BufferAlgebra<T, A>,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
indexerBuilder: (ShapeND) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : BufferedGroupNDOps<T, A>(bufferAlgebra, indexerBuilder), RingOpsND<T, A>
public open class BufferedFieldOpsND<T, out A : Field<T>>(
bufferAlgebra: BufferAlgebra<T, A>,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
indexerBuilder: (ShapeND) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : BufferedRingOpsND<T, A>(bufferAlgebra, indexerBuilder), FieldOpsND<T, A> {
public constructor(
elementAlgebra: A,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
indexerBuilder: (ShapeND) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : this(BufferFieldOps(elementAlgebra), indexerBuilder)
@OptIn(PerformancePitfall::class)
@ -130,7 +131,7 @@ public val <T, A : Field<T>> BufferAlgebra<T, A>.nd: BufferedFieldOpsND<T, A> ge
public fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.structureND(
vararg shape: Int,
initializer: A.(IntArray) -> T,
): BufferND<T> = structureND(shape, initializer)
): BufferND<T> = structureND(ShapeND(shape), initializer)
public fun <T, EA : Algebra<T>, A> A.structureND(
initializer: EA.(IntArray) -> T,

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.MutableBuffer
@ -22,32 +23,45 @@ public open class BufferND<out T>(
public open val buffer: Buffer<T>,
) : StructureND<T> {
@PerformancePitfall
override operator fun get(index: IntArray): T = buffer[indices.offset(index)]
override val shape: IntArray get() = indices.shape
override val shape: ShapeND get() = indices.shape
override fun toString(): String = StructureND.toString(this)
}
/**
* Transform structure to a new structure using provided [BufferFactory] and optimizing if argument is [BufferND]
* Create a generic [BufferND] using provided [initializer]
*/
public inline fun <T, R : Any> StructureND<T>.mapToBuffer(
factory: BufferFactory<R>,
crossinline transform: (T) -> R,
): BufferND<R> = if (this is BufferND<T>)
BufferND(this.indices, factory.invoke(indices.linearSize) { transform(buffer[it]) })
else {
val strides = DefaultStrides(shape)
BufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) })
public fun <T> BufferND(
shape: ShapeND,
bufferFactory: BufferFactory<T> = BufferFactory.boxing(),
initializer: (IntArray) -> T,
): BufferND<T> {
val strides = Strides(shape)
return BufferND(strides, bufferFactory(strides.linearSize) { initializer(strides.index(it)) })
}
/**
* Transform structure to a new structure using inferred [BufferFactory]
*/
public inline fun <T, reified R : Any> StructureND<T>.mapToBuffer(
crossinline transform: (T) -> R,
): BufferND<R> = mapToBuffer(Buffer.Companion::auto, transform)
///**
// * Transform structure to a new structure using provided [BufferFactory] and optimizing if argument is [BufferND]
// */
//public inline fun <T, R : Any> StructureND<T>.mapToBuffer(
// factory: BufferFactory<R>,
// crossinline transform: (T) -> R,
//): BufferND<R> = if (this is BufferND<T>)
// BufferND(this.indices, factory.invoke(indices.linearSize) { transform(buffer[it]) })
//else {
// val strides = ColumnStrides(shape)
// BufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) })
//}
//
///**
// * Transform structure to a new structure using inferred [BufferFactory]
// */
//public inline fun <T, reified R : Any> StructureND<T>.mapToBuffer(
// crossinline transform: (T) -> R,
//): BufferND<R> = mapToBuffer(Buffer.Companion::auto, transform)
/**
* Represents [MutableStructureND] over [MutableBuffer].
@ -60,22 +74,36 @@ public open class MutableBufferND<T>(
strides: ShapeIndexer,
override val buffer: MutableBuffer<T>,
) : MutableStructureND<T>, BufferND<T>(strides, buffer) {
@PerformancePitfall
override fun set(index: IntArray, value: T) {
buffer[indices.offset(index)] = value
}
}
/**
* Transform structure to a new structure using provided [MutableBufferFactory] and optimizing if argument is [MutableBufferND]
* Create a generic [BufferND] using provided [initializer]
*/
public inline fun <T, reified R : Any> MutableStructureND<T>.mapToMutableBuffer(
factory: MutableBufferFactory<R> = MutableBufferFactory(MutableBuffer.Companion::auto),
crossinline transform: (T) -> R,
): MutableBufferND<R> {
return if (this is MutableBufferND<T>)
MutableBufferND(this.indices, factory.invoke(indices.linearSize) { transform(buffer[it]) })
else {
val strides = DefaultStrides(shape)
MutableBufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) })
}
public fun <T> MutableBufferND(
shape: ShapeND,
bufferFactory: MutableBufferFactory<T> = MutableBufferFactory.boxing(),
initializer: (IntArray) -> T,
): MutableBufferND<T> {
val strides = Strides(shape)
return MutableBufferND(strides, bufferFactory(strides.linearSize) { initializer(strides.index(it)) })
}
///**
// * Transform structure to a new structure using provided [MutableBufferFactory] and optimizing if argument is [MutableBufferND]
// */
//public inline fun <T, reified R : Any> MutableStructureND<T>.mapToMutableBuffer(
// factory: MutableBufferFactory<R> = MutableBufferFactory(MutableBuffer.Companion::auto),
// crossinline transform: (T) -> R,
//): MutableBufferND<R> {
// return if (this is MutableBufferND<T>)
// MutableBufferND(this.indices, factory.invoke(indices.linearSize) { transform(buffer[it]) })
// else {
// val strides = ColumnStrides(shape)
// MutableBufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) })
// }
//}

View File

@ -14,15 +14,25 @@ import kotlin.contracts.contract
import kotlin.math.pow
import kotlin.math.pow as kpow
/**
* A simple mutable [StructureND] of doubles
*/
public class DoubleBufferND(
indexes: ShapeIndexer,
override val buffer: DoubleBuffer,
) : MutableBufferND<Double>(indexes, buffer)
) : MutableBufferND<Double>(indexes, buffer), MutableStructureNDOfDouble{
override fun getDouble(index: IntArray): Double = buffer[indices.offset(index)]
override fun setDouble(index: IntArray, value: Double) {
buffer[indices.offset(index)] = value
}
}
public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(DoubleField.bufferAlgebra),
ScaleOperations<StructureND<Double>>, ExtendedFieldOps<StructureND<Double>> {
@OptIn(PerformancePitfall::class)
override fun StructureND<Double>.toBufferND(): DoubleBufferND = when (this) {
is DoubleBufferND -> this
else -> {
@ -64,7 +74,7 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
transform: DoubleField.(Double, Double) -> Double,
): BufferND<Double> = zipInline(left.toBufferND(), right.toBufferND()) { l, r -> DoubleField.transform(l, r) }
override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): DoubleBufferND {
override fun structureND(shape: ShapeND, initializer: DoubleField.(IntArray) -> Double): DoubleBufferND {
val indexer = indexerBuilder(shape)
return DoubleBufferND(
indexer,
@ -179,7 +189,7 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
}
@OptIn(UnstableKMathAPI::class)
public class DoubleFieldND(override val shape: Shape) :
public class DoubleFieldND(override val shape: ShapeND) :
DoubleFieldOpsND(), FieldND<Double, DoubleField>, NumbersAddOps<StructureND<Double>>,
ExtendedField<StructureND<Double>> {
@ -221,7 +231,8 @@ public class DoubleFieldND(override val shape: Shape) :
public val DoubleField.ndAlgebra: DoubleFieldOpsND get() = DoubleFieldOpsND
public fun DoubleField.ndAlgebra(vararg shape: Int): DoubleFieldND = DoubleFieldND(shape)
public fun DoubleField.ndAlgebra(vararg shape: Int): DoubleFieldND = DoubleFieldND(ShapeND(shape))
public fun DoubleField.ndAlgebra(shape: ShapeND): DoubleFieldND = DoubleFieldND(shape)
/**
* Produce a context for n-dimensional operations inside this real field
@ -229,5 +240,5 @@ public fun DoubleField.ndAlgebra(vararg shape: Int): DoubleFieldND = DoubleField
@UnstableKMathAPI
public inline fun <R> DoubleField.withNdAlgebra(vararg shape: Int, action: DoubleFieldND.() -> R): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return DoubleFieldND(shape).run(action)
return DoubleFieldND(ShapeND(shape)).run(action)
}

View File

@ -20,7 +20,7 @@ public class IntBufferND(
public sealed class IntRingOpsND : BufferedRingOpsND<Int, IntRing>(IntRing.bufferAlgebra) {
override fun structureND(shape: Shape, initializer: IntRing.(IntArray) -> Int): IntBufferND {
override fun structureND(shape: ShapeND, initializer: IntRing.(IntArray) -> Int): IntBufferND {
val indexer = indexerBuilder(shape)
return IntBufferND(
indexer,
@ -35,7 +35,7 @@ public sealed class IntRingOpsND : BufferedRingOpsND<Int, IntRing>(IntRing.buffe
@OptIn(UnstableKMathAPI::class)
public class IntRingND(
override val shape: Shape
override val shape: ShapeND
) : IntRingOpsND(), RingND<Int, IntRing>, NumbersAddOps<StructureND<Int>> {
override fun number(value: Number): BufferND<Int> {
@ -46,5 +46,5 @@ public class IntRingND(
public inline fun <R> IntRing.withNdAlgebra(vararg shape: Int, action: IntRingND.() -> R): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return IntRingND(shape).run(action)
return IntRingND(ShapeND(shape)).run(action)
}

View File

@ -0,0 +1,50 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
public class PermutedStructureND<T>(
public val origin: StructureND<T>,
public val permutation: (IntArray) -> IntArray,
) : StructureND<T> {
override val shape: ShapeND
get() = origin.shape
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): T {
return origin[permutation(index)]
}
}
public fun <T> StructureND<T>.permute(
permutation: (IntArray) -> IntArray,
): PermutedStructureND<T> = PermutedStructureND(this, permutation)
public class PermutedMutableStructureND<T>(
public val origin: MutableStructureND<T>,
override val shape: ShapeND = origin.shape,
public val permutation: (IntArray) -> IntArray,
) : MutableStructureND<T> {
@OptIn(PerformancePitfall::class)
override fun set(index: IntArray, value: T) {
origin[permutation(index)] = value
}
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): T {
return origin[permutation(index)]
}
}
public fun <T> MutableStructureND<T>.permute(
newShape: ShapeND = shape,
permutation: (IntArray) -> IntArray,
): PermutedMutableStructureND<T> = PermutedMutableStructureND(this, newShape, permutation)

View File

@ -1,35 +0,0 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
/**
* An exception is thrown when the expected and actual shape of NDArray differ.
*
* @property expected the expected shape.
* @property actual the actual shape.
*/
public class ShapeMismatchException(public val expected: IntArray, public val actual: IntArray) :
RuntimeException("Shape ${actual.contentToString()} doesn't fit in expected shape ${expected.contentToString()}.")
public class IndexOutOfShapeException(public val shape: Shape, public val index: IntArray) :
RuntimeException("Index ${index.contentToString()} is out of shape ${shape.contentToString()}")
public typealias Shape = IntArray
public fun Shape(shapeFirst: Int, vararg shapeRest: Int): Shape = intArrayOf(shapeFirst, *shapeRest)
public interface WithShape {
public val shape: Shape
public val indices: ShapeIndexer get() = DefaultStrides(shape)
}
internal fun requireIndexInShape(index: IntArray, shape: Shape) {
if (index.size != shape.size) throw IndexOutOfShapeException(index, shape)
shape.forEachIndexed { axis, axisShape ->
if (index[axis] !in 0 until axisShape) throw IndexOutOfShapeException(index, shape)
}
}

View File

@ -1,127 +0,0 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
import kotlin.native.concurrent.ThreadLocal
/**
* A converter from linear index to multivariate index
*/
public interface ShapeIndexer : Iterable<IntArray> {
public val shape: Shape
/**
* Get linear index from multidimensional index
*/
public fun offset(index: IntArray): Int
/**
* Get multidimensional from linear
*/
public fun index(offset: Int): IntArray
/**
* The size of linear buffer to accommodate all elements of ND-structure corresponding to strides
*/
public val linearSize: Int
// TODO introduce a fast way to calculate index of the next element?
/**
* Iterate over ND indices in a natural order
*/
public fun asSequence(): Sequence<IntArray>
override fun iterator(): Iterator<IntArray> = asSequence().iterator()
override fun equals(other: Any?): Boolean
override fun hashCode(): Int
}
/**
* Linear transformation of indexes
*/
public abstract class Strides : ShapeIndexer {
/**
* Array strides
*/
public abstract val strides: IntArray
public override fun offset(index: IntArray): Int = index.mapIndexed { i, value ->
if (value < 0 || value >= shape[i]) throw IndexOutOfBoundsException("Index $value out of shape bounds: (0,${this.shape[i]})")
value * strides[i]
}.sum()
// TODO introduce a fast way to calculate index of the next element?
/**
* Iterate over ND indices in a natural order
*/
public override fun asSequence(): Sequence<IntArray> = (0 until linearSize).asSequence().map(::index)
}
/**
* Simple implementation of [Strides].
*/
public class DefaultStrides(override val shape: IntArray) : Strides() {
override val linearSize: Int get() = strides[shape.size]
/**
* Strides for memory access
*/
override val strides: IntArray by lazy {
sequence {
var current = 1
yield(1)
shape.forEach {
current *= it
yield(current)
}
}.toList().toIntArray()
}
override fun index(offset: Int): IntArray {
val res = IntArray(shape.size)
var current = offset
var strideIndex = strides.size - 2
while (strideIndex >= 0) {
res[strideIndex] = (current / strides[strideIndex])
current %= strides[strideIndex]
strideIndex--
}
return res
}
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is DefaultStrides) return false
if (!shape.contentEquals(other.shape)) return false
return true
}
override fun hashCode(): Int = shape.contentHashCode()
public companion object {
/**
* Cached builder for default strides
*/
@Deprecated("Replace by Strides(shape)")
public operator fun invoke(shape: IntArray): Strides =
defaultStridesCache.getOrPut(shape) { DefaultStrides(shape) }
}
}
@ThreadLocal
private val defaultStridesCache = HashMap<IntArray, Strides>()
/**
* Cached builder for default strides
*/
public fun Strides(shape: IntArray): Strides = defaultStridesCache.getOrPut(shape) { DefaultStrides(shape) }

View File

@ -0,0 +1,174 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
import kotlin.math.max
import kotlin.native.concurrent.ThreadLocal
/**
* A converter from linear index to multivariate index
*/
public interface ShapeIndexer : Iterable<IntArray> {
public val shape: ShapeND
/**
* Get linear index from multidimensional index
*/
public fun offset(index: IntArray): Int
/**
* Get multidimensional from linear
*/
public fun index(offset: Int): IntArray
/**
* The size of linear buffer to accommodate all elements of ND-structure corresponding to strides
*/
public val linearSize: Int
// TODO introduce a fast way to calculate index of the next element?
/**
* Iterate over ND indices in a natural order
*/
public fun asSequence(): Sequence<IntArray>
override fun iterator(): Iterator<IntArray> = asSequence().iterator()
override fun equals(other: Any?): Boolean
override fun hashCode(): Int
}
/**
* Linear transformation of indexes
*/
public abstract class Strides : ShapeIndexer {
/**
* Array strides
*/
internal abstract val strides: IntArray
public override fun offset(index: IntArray): Int {
var res = 0
index.forEachIndexed { i, value ->
if (value !in 0 until shape[i]) throw IndexOutOfBoundsException("Index $value out of shape bounds: (0, ${this.shape[i]})")
res += value * strides[i]
}
return res
}
// TODO introduce a fast way to calculate index of the next element?
/**
* Iterate over ND indices in a natural order
*/
public override fun asSequence(): Sequence<IntArray> = (0 until linearSize).asSequence().map(::index)
}
/**
* Column-first [Strides]. Columns are represented as continuous arrays
*/
public class ColumnStrides(override val shape: ShapeND) : Strides() {
override val linearSize: Int get() = strides[shape.size]
/**
* Strides for memory access
*/
override val strides: IntArray = sequence {
var current = 1
yield(1)
shape.forEach {
current *= it
yield(current)
}
}.toList().toIntArray()
override fun index(offset: Int): IntArray {
val res = IntArray(shape.size)
var current = offset
var strideIndex = strides.size - 2
while (strideIndex >= 0) {
res[strideIndex] = (current / strides[strideIndex])
current %= strides[strideIndex]
strideIndex--
}
return res
}
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is ColumnStrides) return false
return shape.contentEquals(other.shape)
}
override fun hashCode(): Int = shape.contentHashCode()
public companion object
}
/**
* This [Strides] implementation follows the last dimension first convention
* For more information: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html
*
* @param shape the shape of the tensor.
*/
public class RowStrides(override val shape: ShapeND) : Strides() {
override val strides: IntArray = run {
val nDim = shape.size
val res = IntArray(nDim)
if (nDim == 0) return@run res
var current = nDim - 1
res[current] = 1
while (current > 0) {
res[current - 1] = max(1, shape[current]) * res[current]
current--
}
res
}
override fun index(offset: Int): IntArray {
val res = IntArray(shape.size)
var current = offset
var strideIndex = 0
while (strideIndex < shape.size) {
res[strideIndex] = (current / strides[strideIndex])
current %= strides[strideIndex]
strideIndex++
}
return res
}
override val linearSize: Int get() = shape.linearSize
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is RowStrides) return false
return shape.contentEquals(other.shape)
}
override fun hashCode(): Int = shape.contentHashCode()
public companion object
}
@ThreadLocal
private val defaultStridesCache = HashMap<ShapeND, Strides>()
/**
* Cached builder for default strides
*/
public fun Strides(shape: ShapeND): Strides = defaultStridesCache.getOrPut(shape) { RowStrides(shape) }

View File

@ -0,0 +1,102 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
import space.kscience.kmath.misc.UnsafeKMathAPI
import kotlin.jvm.JvmInline
/**
* A read-only ND shape
*/
@JvmInline
public value class ShapeND(@PublishedApi internal val array: IntArray) {
public val size: Int get() = array.size
public operator fun get(index: Int): Int = array[index]
override fun toString(): String = array.contentToString()
}
public inline fun ShapeND.forEach(block: (value: Int) -> Unit): Unit = array.forEach(block)
public inline fun ShapeND.forEachIndexed(block: (index: Int, value: Int) -> Unit): Unit = array.forEachIndexed(block)
public infix fun ShapeND.contentEquals(other: ShapeND): Boolean = array.contentEquals(other.array)
public fun ShapeND.contentHashCode(): Int = array.contentHashCode()
public val ShapeND.indices: IntRange get() = array.indices
public val ShapeND.linearSize: Int get() = array.reduce(Int::times)
public fun ShapeND.slice(range: IntRange): ShapeND = ShapeND(array.sliceArray(range))
public fun ShapeND.last(): Int = array.last()
/**
* A shape including last [n] dimensions of this shape
*/
public fun ShapeND.last(n: Int): ShapeND = ShapeND(array.copyOfRange(size - n, size))
public fun ShapeND.first(): Int = array.first()
/**
* A shape including first [n] dimensions of this shape
*/
public fun ShapeND.first(n: Int): ShapeND = ShapeND(array.copyOfRange(0, n))
public operator fun ShapeND.plus(add: IntArray): ShapeND = ShapeND(array + add)
public operator fun ShapeND.plus(add: ShapeND): ShapeND = ShapeND(array + add.array)
public fun ShapeND.isEmpty(): Boolean = size == 0
public fun ShapeND.isNotEmpty(): Boolean = size > 0
public fun ShapeND.transposed(i: Int, j: Int): ShapeND = ShapeND(array.copyOf().apply {
val ith = get(i)
val jth = get(j)
set(i, jth)
set(j, ith)
})
public operator fun ShapeND.component1(): Int = get(0)
public operator fun ShapeND.component2(): Int = get(1)
public operator fun ShapeND.component3(): Int = get(2)
/**
* Convert to array with protective copy
*/
public fun ShapeND.toArray(): IntArray = array.copyOf()
@UnsafeKMathAPI
public fun ShapeND.asArray(): IntArray = array
public fun ShapeND.asList(): List<Int> = array.asList()
/**
* An exception is thrown when the expected and actual shape of NDArray differ.
*
* @property expected the expected shape.
* @property actual the actual shape.
*/
public class ShapeMismatchException(public val expected: ShapeND, public val actual: ShapeND) :
RuntimeException("Shape $actual doesn't fit in expected shape ${expected}.")
public class IndexOutOfShapeException(public val shape: ShapeND, public val index: IntArray) :
RuntimeException("Index ${index.contentToString()} is out of shape ${shape}")
public fun ShapeND(shapeFirst: Int, vararg shapeRest: Int): ShapeND = ShapeND(intArrayOf(shapeFirst, *shapeRest))
public interface WithShape {
public val shape: ShapeND
public val indices: ShapeIndexer get() = ColumnStrides(shape)
}
internal fun requireIndexInShape(index: IntArray, shape: ShapeND) {
if (index.size != shape.size) throw IndexOutOfShapeException(shape, index)
shape.forEachIndexed { axis, axisShape ->
if (index[axis] !in 0 until axisShape) throw IndexOutOfShapeException(shape, index)
}
}

View File

@ -18,7 +18,7 @@ public sealed class ShortRingOpsND : BufferedRingOpsND<Short, ShortRing>(ShortRi
@OptIn(UnstableKMathAPI::class)
public class ShortRingND(
override val shape: Shape
override val shape: ShapeND
) : ShortRingOpsND(), RingND<Short, ShortRing>, NumbersAddOps<StructureND<Short>> {
override fun number(value: Number): BufferND<Short> {
@ -30,5 +30,5 @@ public class ShortRingND(
public inline fun <R> ShortRing.withNdAlgebra(vararg shape: Int, action: ShortRingND.() -> R): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return ShortRingND(shape).run(action)
return ShortRingND(ShapeND(shape)).run(action)
}

View File

@ -18,6 +18,7 @@ import kotlin.jvm.JvmInline
public interface Structure1D<out T> : StructureND<T>, Buffer<T> {
override val dimension: Int get() = 1
@PerformancePitfall
override operator fun get(index: IntArray): T {
require(index.size == 1) { "Index dimension mismatch. Expected 1 but found ${index.size}" }
return get(index[0])
@ -32,6 +33,8 @@ public interface Structure1D<out T> : StructureND<T>, Buffer<T> {
* A mutable structure that is guaranteed to be one-dimensional
*/
public interface MutableStructure1D<T> : Structure1D<T>, MutableStructureND<T>, MutableBuffer<T> {
@PerformancePitfall
override operator fun set(index: IntArray, value: T) {
require(index.size == 1) { "Index dimension mismatch. Expected 1 but found ${index.size}" }
set(index[0], value)
@ -43,9 +46,10 @@ public interface MutableStructure1D<T> : Structure1D<T>, MutableStructureND<T>,
*/
@JvmInline
private value class Structure1DWrapper<out T>(val structure: StructureND<T>) : Structure1D<T> {
override val shape: IntArray get() = structure.shape
override val shape: ShapeND get() = structure.shape
override val size: Int get() = structure.shape[0]
@PerformancePitfall
override operator fun get(index: Int): T = structure[index]
@PerformancePitfall
@ -56,13 +60,16 @@ private value class Structure1DWrapper<out T>(val structure: StructureND<T>) : S
* A 1D wrapper for a mutable nd-structure
*/
private class MutableStructure1DWrapper<T>(val structure: MutableStructureND<T>) : MutableStructure1D<T> {
override val shape: IntArray get() = structure.shape
override val shape: ShapeND get() = structure.shape
override val size: Int get() = structure.shape[0]
@PerformancePitfall
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()
@PerformancePitfall
override fun get(index: Int): T = structure[index]
@PerformancePitfall
override fun set(index: Int, value: T) {
structure[intArrayOf(index)] = value
}
@ -83,7 +90,7 @@ private class MutableStructure1DWrapper<T>(val structure: MutableStructureND<T>)
*/
@JvmInline
private value class Buffer1DWrapper<out T>(val buffer: Buffer<T>) : Structure1D<T> {
override val shape: IntArray get() = intArrayOf(buffer.size)
override val shape: ShapeND get() = ShapeND(buffer.size)
override val size: Int get() = buffer.size
@PerformancePitfall
@ -95,7 +102,7 @@ private value class Buffer1DWrapper<out T>(val buffer: Buffer<T>) : Structure1D<
}
internal class MutableBuffer1DWrapper<T>(val buffer: MutableBuffer<T>) : MutableStructure1D<T> {
override val shape: IntArray get() = intArrayOf(buffer.size)
override val shape: ShapeND get() = ShapeND(buffer.size)
override val size: Int get() = buffer.size
@PerformancePitfall

View File

@ -7,6 +7,7 @@ package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.MutableListBuffer
import space.kscience.kmath.structures.VirtualBuffer
import kotlin.jvm.JvmInline
@ -28,7 +29,7 @@ public interface Structure2D<out T> : StructureND<T> {
*/
public val colNum: Int
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
override val shape: ShapeND get() = ShapeND(rowNum, colNum)
/**
* The buffer of rows of this structure. It gets elements from the structure dynamically.
@ -53,6 +54,7 @@ public interface Structure2D<out T> : StructureND<T> {
*/
public operator fun get(i: Int, j: Int): T
@PerformancePitfall
override operator fun get(index: IntArray): T {
require(index.size == 2) { "Index dimension mismatch. Expected 2 but found ${index.size}" }
return get(index[0], index[1])
@ -84,15 +86,15 @@ public interface MutableStructure2D<T> : Structure2D<T>, MutableStructureND<T> {
* The buffer of rows of this structure. It gets elements from the structure dynamically.
*/
@PerformancePitfall
override val rows: List<MutableStructure1D<T>>
get() = List(rowNum) { i -> MutableBuffer1DWrapper(MutableListBuffer(colNum) { j -> get(i, j) }) }
override val rows: List<MutableBuffer<T>>
get() = List(rowNum) { i -> MutableListBuffer(colNum) { j -> get(i, j) } }
/**
* The buffer of columns of this structure. It gets elements from the structure dynamically.
*/
@PerformancePitfall
override val columns: List<MutableStructure1D<T>>
get() = List(colNum) { j -> MutableBuffer1DWrapper(MutableListBuffer(rowNum) { i -> get(i, j) }) }
override val columns: List<MutableBuffer<T>>
get() = List(colNum) { j -> MutableListBuffer(rowNum) { i -> get(i, j) } }
}
/**
@ -100,11 +102,12 @@ public interface MutableStructure2D<T> : Structure2D<T>, MutableStructureND<T> {
*/
@JvmInline
private value class Structure2DWrapper<out T>(val structure: StructureND<T>) : Structure2D<T> {
override val shape: Shape get() = structure.shape
override val shape: ShapeND get() = structure.shape
override val rowNum: Int get() = shape[0]
override val colNum: Int get() = shape[1]
@PerformancePitfall
override operator fun get(i: Int, j: Int): T = structure[i, j]
override fun <F : StructureFeature> getFeature(type: KClass<out F>): F? = structure.getFeature(type)
@ -117,17 +120,20 @@ private value class Structure2DWrapper<out T>(val structure: StructureND<T>) : S
* A 2D wrapper for a mutable nd-structure
*/
private class MutableStructure2DWrapper<T>(val structure: MutableStructureND<T>) : MutableStructure2D<T> {
override val shape: Shape get() = structure.shape
override val shape: ShapeND get() = structure.shape
override val rowNum: Int get() = shape[0]
override val colNum: Int get() = shape[1]
@PerformancePitfall
override operator fun get(i: Int, j: Int): T = structure[i, j]
@PerformancePitfall
override fun set(index: IntArray, value: T) {
structure[index] = value
}
@PerformancePitfall
override operator fun set(i: Int, j: Int, value: T) {
structure[intArrayOf(i, j)] = value
}

View File

@ -33,7 +33,7 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
* The shape of structure i.e., non-empty sequence of non-negative integers that specify sizes of dimensions of
* this structure.
*/
override val shape: Shape
override val shape: ShapeND
/**
* The count of dimensions in this structure. It should be equal to size of [shape].
@ -46,6 +46,7 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
* @param index the indices.
* @return the value.
*/
@PerformancePitfall
public operator fun get(index: IntArray): T
/**
@ -97,6 +98,7 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
/**
* Debug output to string
*/
@OptIn(PerformancePitfall::class)
public fun toString(structure: StructureND<*>): String {
val bufferRepr: String = when (structure.shape.size) {
1 -> (0 until structure.shape[0]).map { structure[it] }
@ -116,7 +118,7 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
}
val className = structure::class.simpleName ?: "StructureND"
return "$className(shape=${structure.shape.contentToString()}, buffer=$bufferRepr)"
return "$className(shape=${structure.shape}, buffer=$bufferRepr)"
}
/**
@ -145,28 +147,28 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
): BufferND<T> = BufferND(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) })
public fun <T> buffered(
shape: IntArray,
shape: ShapeND,
bufferFactory: BufferFactory<T> = BufferFactory.boxing(),
initializer: (IntArray) -> T,
): BufferND<T> = buffered(DefaultStrides(shape), bufferFactory, initializer)
): BufferND<T> = buffered(ColumnStrides(shape), bufferFactory, initializer)
public inline fun <reified T : Any> auto(
shape: IntArray,
shape: ShapeND,
crossinline initializer: (IntArray) -> T,
): BufferND<T> = auto(DefaultStrides(shape), initializer)
): BufferND<T> = auto(ColumnStrides(shape), initializer)
@JvmName("autoVarArg")
public inline fun <reified T : Any> auto(
vararg shape: Int,
crossinline initializer: (IntArray) -> T,
): BufferND<T> =
auto(DefaultStrides(shape), initializer)
auto(ColumnStrides(ShapeND(shape)), initializer)
public inline fun <T : Any> auto(
type: KClass<T>,
vararg shape: Int,
crossinline initializer: (IntArray) -> T,
): BufferND<T> = auto(type, DefaultStrides(shape), initializer)
): BufferND<T> = auto(type, ColumnStrides(ShapeND(shape)), initializer)
}
}
@ -214,8 +216,13 @@ public fun <T : Comparable<T>> LinearSpace<T, Ring<T>>.contentEquals(
* @param index the indices.
* @return the value.
*/
@PerformancePitfall
public operator fun <T> StructureND<T>.get(vararg index: Int): T = get(index)
public operator fun StructureND<Double>.get(vararg index: Int): Double = getDouble(index)
public operator fun StructureND<Int>.get(vararg index: Int): Int = getInt(index)
//@UnstableKMathAPI
//public inline fun <reified T : StructureFeature> StructureND<*>.getFeature(): T? = getFeature(T::class)
@ -229,12 +236,14 @@ public interface MutableStructureND<T> : StructureND<T> {
* @param index the indices.
* @param value the value.
*/
@PerformancePitfall
public operator fun set(index: IntArray, value: T)
}
/**
* Set value at specified indices
*/
@PerformancePitfall
public operator fun <T> MutableStructureND<T>.set(vararg index: Int, value: T) {
set(index, value)
}

View File

@ -5,12 +5,15 @@
package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI
public open class VirtualStructureND<T>(
override val shape: Shape,
override val shape: ShapeND,
public val producer: (IntArray) -> T,
) : StructureND<T> {
@PerformancePitfall
override fun get(index: IntArray): T {
requireIndexInShape(index, shape)
return producer(index)
@ -19,12 +22,12 @@ public open class VirtualStructureND<T>(
@UnstableKMathAPI
public class VirtualDoubleStructureND(
shape: Shape,
shape: ShapeND,
producer: (IntArray) -> Double,
) : VirtualStructureND<Double>(shape, producer)
@UnstableKMathAPI
public class VirtualIntStructureND(
shape: Shape,
shape: ShapeND,
producer: (IntArray) -> Int,
) : VirtualStructureND<Int>(shape, producer)

View File

@ -15,9 +15,9 @@ public fun <T, A : Algebra<T>> AlgebraND<T, A>.structureND(
shapeFirst: Int,
vararg shapeRest: Int,
initializer: A.(IntArray) -> T
): StructureND<T> = structureND(Shape(shapeFirst, *shapeRest), initializer)
): StructureND<T> = structureND(ShapeND(shapeFirst, *shapeRest), initializer)
public fun <T, A : Group<T>> AlgebraND<T, A>.zero(shape: Shape): StructureND<T> = structureND(shape) { zero }
public fun <T, A : Group<T>> AlgebraND<T, A>.zero(shape: ShapeND): StructureND<T> = structureND(shape) { zero }
@JvmName("zeroVarArg")
public fun <T, A : Group<T>> AlgebraND<T, A>.zero(
@ -25,7 +25,7 @@ public fun <T, A : Group<T>> AlgebraND<T, A>.zero(
vararg shapeRest: Int,
): StructureND<T> = structureND(shapeFirst, *shapeRest) { zero }
public fun <T, A : Ring<T>> AlgebraND<T, A>.one(shape: Shape): StructureND<T> = structureND(shape) { one }
public fun <T, A : Ring<T>> AlgebraND<T, A>.one(shape: ShapeND): StructureND<T> = structureND(shape) { one }
@JvmName("oneVarArg")
public fun <T, A : Ring<T>> AlgebraND<T, A>.one(

View File

@ -5,6 +5,9 @@
package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
@OptIn(PerformancePitfall::class)
public fun <T> StructureND<T>.roll(axis: Int, step: Int = 1): StructureND<T> {
require(axis in shape.indices) { "Axis $axis is outside of shape dimensions: [0, ${shape.size})" }
return VirtualStructureND(shape) { index ->
@ -19,6 +22,7 @@ public fun <T> StructureND<T>.roll(axis: Int, step: Int = 1): StructureND<T> {
}
}
@OptIn(PerformancePitfall::class)
public fun <T> StructureND<T>.roll(pair: Pair<Int, Int>, vararg others: Pair<Int, Int>): StructureND<T> {
val axisMap: Map<Int, Int> = mapOf(pair, *others)
require(axisMap.keys.all { it in shape.indices }) { "Some of axes ${axisMap.keys} is outside of shape dimensions: [0, ${shape.size})" }

View File

@ -0,0 +1,45 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
public interface StructureNDOfDouble : StructureND<Double> {
/**
* Guaranteed non-blocking access to content
*/
public fun getDouble(index: IntArray): Double
}
/**
* Optimized method to access primitive without boxing if possible
*/
@OptIn(PerformancePitfall::class)
public fun StructureND<Double>.getDouble(index: IntArray): Double =
if (this is StructureNDOfDouble) getDouble(index) else get(index)
public interface MutableStructureNDOfDouble : StructureNDOfDouble, MutableStructureND<Double> {
/**
* Guaranteed non-blocking access to content
*/
public fun setDouble(index: IntArray, value: Double)
}
@OptIn(PerformancePitfall::class)
public fun MutableStructureND<Double>.getDouble(index: IntArray): Double =
if (this is StructureNDOfDouble) getDouble(index) else get(index)
public interface StructureNDOfInt : StructureND<Int> {
/**
* Guaranteed non-blocking access to content
*/
public fun getInt(index: IntArray): Int
}
@OptIn(PerformancePitfall::class)
public fun StructureND<Int>.getInt(index: IntArray): Int =
if (this is StructureNDOfInt) getInt(index) else get(index)

View File

@ -5,8 +5,6 @@
package space.kscience.kmath.operations
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.DoubleField.pow
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.DoubleBuffer
@ -32,9 +30,9 @@ public class DoubleBufferField(public val size: Int) : ExtendedField<Buffer<Doub
override fun atanh(arg: Buffer<Double>): DoubleBuffer = super<DoubleBufferOps>.atanh(arg)
override fun power(arg: Buffer<Double>, pow: Number): DoubleBuffer = if (pow.isInteger()) {
arg.mapInline { it.pow(pow.toInt()) }
arg.map { it.pow(pow.toInt()) }
} else {
arg.mapInline {
arg.map {
if(it<0) throw IllegalArgumentException("Negative argument $it could not be raised to the fractional power")
it.pow(pow.toDouble())
}
@ -42,103 +40,4 @@ public class DoubleBufferField(public val size: Int) : ExtendedField<Buffer<Doub
override fun unaryOperationFunction(operation: String): (arg: Buffer<Double>) -> Buffer<Double> =
super<ExtendedField>.unaryOperationFunction(operation)
// override fun number(value: Number): Buffer<Double> = DoubleBuffer(size) { value.toDouble() }
//
// override fun Buffer<Double>.unaryMinus(): Buffer<Double> = DoubleBufferOperations.run {
// -this@unaryMinus
// }
//
// override fun add(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
// require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
// return DoubleBufferOperations.add(a, b)
// }
//
//
// override fun multiply(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
// require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
// return DoubleBufferOperations.multiply(a, b)
// }
//
// override fun divide(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
// require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
// return DoubleBufferOperations.divide(a, b)
// }
//
// override fun sin(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.sin(arg)
// }
//
// override fun cos(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.cos(arg)
// }
//
// override fun tan(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.tan(arg)
// }
//
// override fun asin(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.asin(arg)
// }
//
// override fun acos(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.acos(arg)
// }
//
// override fun atan(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.atan(arg)
// }
//
// override fun sinh(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.sinh(arg)
// }
//
// override fun cosh(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.cosh(arg)
// }
//
// override fun tanh(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.tanh(arg)
// }
//
// override fun asinh(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.asinh(arg)
// }
//
// override fun acosh(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.acosh(arg)
// }
//
// override fun atanh(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.atanh(arg)
// }
//
// override fun power(arg: Buffer<Double>, pow: Number): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.power(arg, pow)
// }
//
// override fun exp(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.exp(arg)
// }
//
// override fun ln(arg: Buffer<Double>): DoubleBuffer {
// require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
// return DoubleBufferOperations.ln(arg)
// }
}

View File

@ -6,10 +6,8 @@
package space.kscience.kmath.operations
import space.kscience.kmath.linear.Point
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.MutableBufferFactory
import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.structures.*
import kotlin.math.*
/**
@ -19,10 +17,29 @@ public abstract class DoubleBufferOps : BufferAlgebra<Double, DoubleField>, Exte
Norm<Buffer<Double>, Double> {
override val elementAlgebra: DoubleField get() = DoubleField
override val elementBufferFactory: MutableBufferFactory<Double> get() = elementAlgebra.bufferFactory
override fun Buffer<Double>.map(block: DoubleField.(Double) -> Double): DoubleBuffer =
mapInline { DoubleField.block(it) }
@Suppress("OVERRIDE_BY_INLINE")
@OptIn(UnstableKMathAPI::class)
final override inline fun Buffer<Double>.map(block: DoubleField.(Double) -> Double): DoubleBuffer =
DoubleArray(size) { DoubleField.block(getDouble(it)) }.asBuffer()
@OptIn(UnstableKMathAPI::class)
@Suppress("OVERRIDE_BY_INLINE")
final override inline fun Buffer<Double>.mapIndexed(block: DoubleField.(index: Int, arg: Double) -> Double): DoubleBuffer =
DoubleBuffer(size) { DoubleField.block(it, getDouble(it)) }
@OptIn(UnstableKMathAPI::class)
@Suppress("OVERRIDE_BY_INLINE")
final override inline fun Buffer<Double>.zip(
other: Buffer<Double>,
block: DoubleField.(left: Double, right: Double) -> Double,
): DoubleBuffer {
require(size == other.size) { "Incompatible buffer sizes. left: ${size}, right: ${other.size}" }
return DoubleBuffer(size) { DoubleField.block(getDouble(it), other.getDouble(it)) }
}
override fun unaryOperationFunction(operation: String): (arg: Buffer<Double>) -> Buffer<Double> =
super<ExtendedFieldOps>.unaryOperationFunction(operation)
@ -30,7 +47,7 @@ public abstract class DoubleBufferOps : BufferAlgebra<Double, DoubleField>, Exte
override fun binaryOperationFunction(operation: String): (left: Buffer<Double>, right: Buffer<Double>) -> Buffer<Double> =
super<ExtendedFieldOps>.binaryOperationFunction(operation)
override fun Buffer<Double>.unaryMinus(): DoubleBuffer = mapInline { -it }
override fun Buffer<Double>.unaryMinus(): DoubleBuffer = map { -it }
override fun add(left: Buffer<Double>, right: Buffer<Double>): DoubleBuffer {
require(right.size == left.size) {
@ -77,6 +94,7 @@ public abstract class DoubleBufferOps : BufferAlgebra<Double, DoubleField>, Exte
// } else RealBuffer(DoubleArray(a.size) { a[it] / kValue })
// }
@UnstableKMathAPI
override fun multiply(left: Buffer<Double>, right: Buffer<Double>): DoubleBuffer {
require(right.size == left.size) {
"The size of the first buffer ${left.size} should be the same as for second one: ${right.size} "
@ -101,55 +119,83 @@ public abstract class DoubleBufferOps : BufferAlgebra<Double, DoubleField>, Exte
} else DoubleBuffer(DoubleArray(left.size) { left[it] / right[it] })
}
override fun sin(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::sin)
override fun sin(arg: Buffer<Double>): DoubleBuffer = arg.map { sin(it) }
override fun cos(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::cos)
override fun cos(arg: Buffer<Double>): DoubleBuffer = arg.map { cos(it) }
override fun tan(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::tan)
override fun tan(arg: Buffer<Double>): DoubleBuffer = arg.map { tan(it) }
override fun asin(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::asin)
override fun asin(arg: Buffer<Double>): DoubleBuffer = arg.map { asin(it) }
override fun acos(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::acos)
override fun acos(arg: Buffer<Double>): DoubleBuffer = arg.map { acos(it) }
override fun atan(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::atan)
override fun atan(arg: Buffer<Double>): DoubleBuffer = arg.map { atan(it) }
override fun sinh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::sinh)
override fun sinh(arg: Buffer<Double>): DoubleBuffer = arg.map { sinh(it) }
override fun cosh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::cosh)
override fun cosh(arg: Buffer<Double>): DoubleBuffer = arg.map { cosh(it) }
override fun tanh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::tanh)
override fun tanh(arg: Buffer<Double>): DoubleBuffer = arg.map { tanh(it) }
override fun asinh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::asinh)
override fun asinh(arg: Buffer<Double>): DoubleBuffer = arg.map { asinh(it) }
override fun acosh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::acosh)
override fun acosh(arg: Buffer<Double>): DoubleBuffer = arg.map { acosh(it) }
override fun atanh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::atanh)
override fun atanh(arg: Buffer<Double>): DoubleBuffer = arg.map { atanh(it) }
override fun exp(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::exp)
override fun exp(arg: Buffer<Double>): DoubleBuffer = arg.map { exp(it) }
override fun ln(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::ln)
override fun ln(arg: Buffer<Double>): DoubleBuffer = arg.map { ln(it) }
override fun norm(arg: Buffer<Double>): Double = DoubleL2Norm.norm(arg)
override fun scale(a: Buffer<Double>, value: Double): DoubleBuffer = a.mapInline { it * value }
override fun scale(a: Buffer<Double>, value: Double): DoubleBuffer = a.map { it * value }
override fun power(arg: Buffer<Double>, pow: Number): Buffer<Double> = if (pow is Int) {
arg.mapInline { it.pow(pow) }
arg.map { it.pow(pow) }
} else {
arg.mapInline { it.pow(pow.toDouble()) }
arg.map { it.pow(pow.toDouble()) }
}
public companion object : DoubleBufferOps() {
public inline fun Buffer<Double>.mapInline(block: (Double) -> Double): DoubleBuffer =
if (this is DoubleBuffer) {
DoubleArray(size) { block(array[it]) }.asBuffer()
} else {
DoubleArray(size) { block(get(it)) }.asBuffer()
}
}
public companion object : DoubleBufferOps()
}
public object DoubleL2Norm : Norm<Point<Double>, Double> {
override fun norm(arg: Point<Double>): Double = sqrt(arg.fold(0.0) { acc: Double, d: Double -> acc + d.pow(2) })
}
public fun DoubleBufferOps.sum(buffer: Buffer<Double>): Double = buffer.reduce(Double::plus)
/**
* Sum of elements using given [conversion]
*/
public inline fun <T> DoubleBufferOps.sumOf(buffer: Buffer<T>, conversion: (T) -> Double): Double =
buffer.fold(0.0) { acc, value -> acc + conversion(value) }
public fun DoubleBufferOps.average(buffer: Buffer<Double>): Double = sum(buffer) / buffer.size
/**
* Average of elements using given [conversion]
*/
public inline fun <T> DoubleBufferOps.averageOf(buffer: Buffer<T>, conversion: (T) -> Double): Double =
sumOf(buffer, conversion) / buffer.size
public fun DoubleBufferOps.dispersion(buffer: Buffer<Double>): Double {
val av = average(buffer)
return buffer.fold(0.0) { acc, value -> acc + (value - av).pow(2) } / buffer.size
}
public fun DoubleBufferOps.std(buffer: Buffer<Double>): Double = sqrt(dispersion(buffer))
public fun DoubleBufferOps.covariance(x: Buffer<Double>, y: Buffer<Double>): Double {
require(x.size == y.size) { "Expected buffers of the same size, but x.size == ${x.size} and y.size == ${y.size}" }
val xMean = average(x)
val yMean = average(y)
var sum = 0.0
x.indices.forEach {
sum += (x[it] - xMean) * (y[it] - yMean)
}
return sum / (x.size - 1)
}

View File

@ -5,6 +5,21 @@
package space.kscience.kmath.operations
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.structures.Buffer
/**
* Returns the sum of all elements in the iterable in this [Group].
*
* @receiver the algebra that provides addition.
* @param data the iterable to sum up.
* @return the sum.
*/
@PerformancePitfall("Potential boxing access to buffer elements")
public fun <T> Group<T>.sum(data: Buffer<T>): T = data.fold(zero) { left, right ->
add(left, right)
}
/**
* Returns the sum of all elements in the iterable in this [Group].
*
@ -29,6 +44,18 @@ public fun <T> Group<T>.sum(data: Sequence<T>): T = data.fold(zero) { left, righ
add(left, right)
}
/**
* Returns an average value of elements in the iterable in this [Group].
*
* @receiver the algebra that provides addition and division.
* @param data the iterable to find average.
* @return the average value.
* @author Iaroslav Postovalov
*/
@PerformancePitfall("Potential boxing access to buffer elements")
public fun <T, S> S.average(data: Buffer<T>): T where S : Group<T>, S : ScaleOperations<T> =
sum(data) / data.size
/**
* Returns an average value of elements in the iterable in this [Group].
*
@ -65,6 +92,17 @@ public fun <T : Comparable<T>> Group<T>.abs(value: T): T = if (value > zero) val
*/
public fun <T> Iterable<T>.sumWith(group: Group<T>): T = group.sum(this)
/**
* Sum extracted elements of [Iterable] with given [group]
*
* @receiver the collection to sum up.
* @param group tha algebra that provides addition
* @param extractor the (inline) lambda function to extract value
*/
public inline fun <T, R> Iterable<T>.sumWithGroupOf(group: Group<R>, extractor: (T) -> R): R = this.fold(group.zero) { left: R, right: T ->
group.add(left, extractor(right))
}
/**
* Returns the sum of all elements in the sequence in provided space.
*
@ -95,4 +133,3 @@ public fun <T, S> Iterable<T>.averageWith(space: S): T where S : Group<T>, S : S
*/
public fun <T, S> Sequence<T>.averageWith(space: S): T where S : Group<T>, S : ScaleOperations<T> =
space.average(this)

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.structures
import space.kscience.kmath.operations.WithSize
import space.kscience.kmath.operations.asSequence
import kotlin.jvm.JvmInline
import kotlin.reflect.KClass
@ -50,11 +51,11 @@ public fun interface MutableBufferFactory<T> : BufferFactory<T> {
*
* @param T the type of elements contained in the buffer.
*/
public interface Buffer<out T> {
public interface Buffer<out T> : WithSize {
/**
* The size of this buffer.
*/
public val size: Int
override val size: Int
/**
* Gets element at given index.
@ -64,7 +65,7 @@ public interface Buffer<out T> {
/**
* Iterates over all elements.
*/
public operator fun iterator(): Iterator<T>
public operator fun iterator(): Iterator<T> = indices.asSequence().map(::get).iterator()
override fun toString(): String
@ -122,7 +123,14 @@ public interface Buffer<out T> {
/**
* Returns an [IntRange] of the valid indices for this [Buffer].
*/
public val Buffer<*>.indices: IntRange get() = 0 until size
public val <T> Buffer<T>.indices: IntRange get() = 0 until size
public operator fun <T> Buffer<T>.get(index: UInt): T = get(index.toInt())
/**
* if index is in range of buffer, return the value. Otherwise, return null.
*/
public fun <T> Buffer<T>.getOrNull(index: Int): T? = if (index in indices) get(index) else null
public fun <T> Buffer<T>.first(): T {
require(size > 0) { "Can't get the first element of empty buffer" }

View File

@ -5,10 +5,7 @@
package space.kscience.kmath.structures
import space.kscience.kmath.nd.DefaultStrides
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.*
/**
* A context that allows to operate on a [MutableBuffer] as on 2d array
@ -31,7 +28,7 @@ internal class BufferAccessor2D<T>(
//TODO optimize wrapper
fun MutableBuffer<T>.collect(): Structure2D<T> = StructureND.buffered(
DefaultStrides(intArrayOf(rowNum, colNum)),
ColumnStrides(ShapeND(rowNum, colNum)),
factory
) { (i, j) ->
get(i, j)

View File

@ -0,0 +1,192 @@
package space.kscience.kmath.structures
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* A buffer that wraps an original buffer
*/
public interface BufferView<T> : Buffer<T> {
public val origin: Buffer<T>
/**
* Get the index in [origin] buffer from index in this buffer.
* Return -1 if element not present in the original buffer
* This method should be used internally to optimize non-boxing access.
*/
@UnstableKMathAPI
public fun originIndex(index: Int): Int
@OptIn(UnstableKMathAPI::class)
override fun get(index: Int): T = origin[originIndex(index)]
}
/**
* A zero-copy buffer that "sees" only part of original buffer. Slice can't go beyond original buffer borders.
*/
public class BufferSlice<T>(
override val origin: Buffer<T>,
public val offset: Int = 0,
override val size: Int,
) : BufferView<T> {
init {
require(size > 0) { "Size must be positive" }
require(offset + size <= origin.size) {
"End of buffer ${offset + size} is beyond the end of origin buffer size ${origin.size}"
}
}
override fun get(index: Int): T = if (index >= size) {
throw IndexOutOfBoundsException("$index is out of ${0 until size} rage")
} else {
origin[index + offset]
}
override fun iterator(): Iterator<T> =
(offset until (offset + size)).asSequence().map { origin[it] }.iterator()
@UnstableKMathAPI
override fun originIndex(index: Int): Int = if (index >= size) -1 else index - offset
override fun toString(): String = "$origin[$offset..${offset + size}"
}
/**
* An expanded buffer that could include the whole initial buffer or its part and fills all space beyond it borders with [defaultValue].
*
* The [offset] parameter shows the shift of expanded buffer start relative to origin start and could be both positive and negative.
*/
public class BufferExpanded<T>(
override val origin: Buffer<T>,
private val defaultValue: T,
public val offset: Int = 0,
override val size: Int = origin.size,
) : BufferView<T> {
init {
require(size > 0) { "Size must be positive" }
}
override fun get(index: Int): T = when (index) {
!in 0 until size -> throw IndexOutOfBoundsException("Index $index is not in $indices")
in -offset until origin.size - offset -> origin[index + offset]
else -> defaultValue
}
@UnstableKMathAPI
override fun originIndex(index: Int): Int = if (index in -offset until origin.size - offset) index + offset else -1
override fun toString(): String = "$origin[$offset..${offset + size}]"
}
/**
* Zero-copy select a slice inside the original buffer
*/
public fun <T> Buffer<T>.slice(range: IntRange): BufferView<T> = if (this is BufferSlice) {
BufferSlice(
origin,
this.offset + range.first,
(range.last - range.first) + 1
)
} else {
BufferSlice(
this,
range.first,
(range.last - range.first) + 1
)
}
/**
* Resize original buffer to a given range using given [range], filling additional segments with [defaultValue].
* Range left border could be negative to designate adding new blank segment to the beginning of the buffer
*/
public fun <T> Buffer<T>.expand(
range: IntRange,
defaultValue: T,
): BufferView<T> = if (range.first >= 0 && range.last < size) {
BufferSlice(
this,
range.first,
(range.last - range.first) + 1
)
} else {
BufferExpanded(
this,
defaultValue,
range.first,
(range.last - range.first) + 1
)
}
/**
* A [BufferView] that overrides indexing of the original buffer
*/
public class PermutedBuffer<T>(
override val origin: Buffer<T>,
private val permutations: IntArray,
) : BufferView<T> {
init {
permutations.forEach { index ->
if (index !in origin.indices) {
throw IndexOutOfBoundsException("Index $index is not in ${origin.indices}")
}
}
}
override val size: Int get() = permutations.size
override fun get(index: Int): T = origin[permutations[index]]
override fun iterator(): Iterator<T> = permutations.asSequence().map { origin[it] }.iterator()
@UnstableKMathAPI
override fun originIndex(index: Int): Int = if (index in permutations.indices) permutations[index] else -1
override fun toString(): String = Buffer.toString(this)
}
/**
* Created a permuted view of given buffer using provided [indices]
*/
public fun <T> Buffer<T>.permute(indices: IntArray): PermutedBuffer<T> =
PermutedBuffer(this, indices)
/**
* A [BufferView] that overrides indexing of the original buffer
*/
public class PermutedMutableBuffer<T>(
override val origin: MutableBuffer<T>,
private val permutations: IntArray,
) : BufferView<T>, MutableBuffer<T> {
init {
permutations.forEach { index ->
if (index !in origin.indices) {
throw IndexOutOfBoundsException("Index $index is not in ${origin.indices}")
}
}
}
override val size: Int get() = permutations.size
override fun get(index: Int): T = origin[permutations[index]]
override fun set(index: Int, value: T) {
origin[permutations[index]] = value
}
override fun copy(): MutableBuffer<T> = PermutedMutableBuffer(origin.copy(), permutations)
//TODO Probably could be optimized
override fun iterator(): Iterator<T> = permutations.asSequence().map { origin[it] }.iterator()
@UnstableKMathAPI
override fun originIndex(index: Int): Int = if (index in permutations.indices) permutations[index] else -1
override fun toString(): String = Buffer.toString(this)
}
/**
* Created a permuted mutable view of given buffer using provided [indices]
*/
public fun <T> MutableBuffer<T>.permute(indices: IntArray): PermutedMutableBuffer<T> =
PermutedMutableBuffer(this, indices)

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.structures
import space.kscience.kmath.operations.BufferTransform
import kotlin.jvm.JvmInline
/**
@ -13,7 +14,7 @@ import kotlin.jvm.JvmInline
* @property array the underlying array.
*/
@JvmInline
public value class DoubleBuffer(public val array: DoubleArray) : MutableBuffer<Double> {
public value class DoubleBuffer(public val array: DoubleArray) : PrimitiveBuffer<Double> {
override val size: Int get() = array.size
override operator fun get(index: Int): Double = array[index]
@ -28,7 +29,7 @@ public value class DoubleBuffer(public val array: DoubleArray) : MutableBuffer<D
override fun toString(): String = Buffer.toString(this)
public companion object{
public companion object {
public fun zero(size: Int): DoubleBuffer = DoubleArray(size).asBuffer()
}
}
@ -40,7 +41,8 @@ public value class DoubleBuffer(public val array: DoubleArray) : MutableBuffer<D
* The function [init] is called for each array element sequentially starting from the first one.
* It should return the value for a buffer element given its index.
*/
public inline fun DoubleBuffer(size: Int, init: (Int) -> Double): DoubleBuffer = DoubleBuffer(DoubleArray(size) { init(it) })
public inline fun DoubleBuffer(size: Int, init: (Int) -> Double): DoubleBuffer =
DoubleBuffer(DoubleArray(size) { init(it) })
/**
* Returns a new [DoubleBuffer] of given elements.
@ -51,10 +53,18 @@ public fun DoubleBuffer(vararg doubles: Double): DoubleBuffer = DoubleBuffer(dou
* Returns a new [DoubleArray] containing all the elements of this [Buffer].
*/
public fun Buffer<Double>.toDoubleArray(): DoubleArray = when (this) {
is DoubleBuffer -> array.copyOf()
is DoubleBuffer -> array
else -> DoubleArray(size, ::get)
}
/**
* Represent this buffer as [DoubleBuffer]. Does not guarantee that changes in the original buffer are reflected on this buffer.
*/
public fun Buffer<Double>.toDoubleBuffer(): DoubleBuffer = when (this) {
is DoubleBuffer -> this
else -> DoubleArray(size, ::get).asBuffer()
}
/**
* Returns [DoubleBuffer] over this array.
*
@ -62,3 +72,10 @@ public fun Buffer<Double>.toDoubleArray(): DoubleArray = when (this) {
* @return the new buffer.
*/
public fun DoubleArray.asBuffer(): DoubleBuffer = DoubleBuffer(this)
public fun interface DoubleBufferTransform : BufferTransform<Double, Double> {
public fun transform(arg: DoubleBuffer): DoubleBuffer
override fun transform(arg: Buffer<Double>): DoubleBuffer = arg.toDoubleBuffer()
}

View File

@ -14,7 +14,7 @@ import kotlin.jvm.JvmInline
* @author Iaroslav Postovalov
*/
@JvmInline
public value class FloatBuffer(public val array: FloatArray) : MutableBuffer<Float> {
public value class FloatBuffer(public val array: FloatArray) : PrimitiveBuffer<Float> {
override val size: Int get() = array.size
override operator fun get(index: Int): Float = array[index]

View File

@ -13,7 +13,7 @@ import kotlin.jvm.JvmInline
* @property array the underlying array.
*/
@JvmInline
public value class IntBuffer(public val array: IntArray) : MutableBuffer<Int> {
public value class IntBuffer(public val array: IntArray) : PrimitiveBuffer<Int> {
override val size: Int get() = array.size
override operator fun get(index: Int): Int = array[index]

View File

@ -13,7 +13,7 @@ import kotlin.jvm.JvmInline
* @property array the underlying array.
*/
@JvmInline
public value class LongBuffer(public val array: LongArray) : MutableBuffer<Long> {
public value class LongBuffer(public val array: LongArray) : PrimitiveBuffer<Long> {
override val size: Int get() = array.size
override operator fun get(index: Int): Long = array[index]

View File

@ -95,3 +95,6 @@ public interface MutableBuffer<T> : Buffer<T> {
auto(T::class, size, initializer)
}
}
public sealed interface PrimitiveBuffer<T>: MutableBuffer<T>

View File

@ -9,14 +9,18 @@ import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.structures.*
/**
* Typealias for buffer transformations.
* Type alias for buffer transformations.
*/
public typealias BufferTransform<T, R> = (Buffer<T>) -> Buffer<R>
public fun interface BufferTransform<T, R> {
public fun transform(arg: Buffer<T>): Buffer<R>
}
/**
* Typealias for buffer transformations with suspend function.
*/
public typealias SuspendBufferTransform<T, R> = suspend (Buffer<T>) -> Buffer<R>
///**
// * Type alias for buffer transformations with suspend function.
// */
//public fun interface SuspendBufferTransform<T, R>{
// public suspend fun transform(arg: Buffer<T>): Buffer<R>
//}
/**
@ -57,18 +61,18 @@ public fun <T> Buffer<T>.toMutableList(): MutableList<T> = when (this) {
*/
@UnstableKMathAPI
public inline fun <reified T> Buffer<T>.toTypedArray(): Array<T> = Array(size, ::get)
/**
* Create a new buffer from this one with the given mapping function and using [Buffer.Companion.auto] buffer factory.
*/
public inline fun <T, reified R : Any> Buffer<T>.map(block: (T) -> R): Buffer<R> =
Buffer.auto(size) { block(get(it)) }
//
///**
// * Create a new buffer from this one with the given mapping function and using [Buffer.Companion.auto] buffer factory.
// */
//public inline fun <T, reified R : Any> Buffer<T>.map(block: (T) -> R): Buffer<R> =
// Buffer.auto(size) { block(get(it)) }
/**
* Create a new buffer from this one with the given mapping function.
* Provided [bufferFactory] is used to construct the new buffer.
*/
public inline fun <T, R> Buffer<T>.map(
public inline fun <T, R> Buffer<T>.mapToBuffer(
bufferFactory: BufferFactory<R>,
crossinline block: (T) -> R,
): Buffer<R> = bufferFactory(size) { block(get(it)) }
@ -77,23 +81,24 @@ public inline fun <T, R> Buffer<T>.map(
* Create a new buffer from this one with the given mapping (indexed) function.
* Provided [bufferFactory] is used to construct the new buffer.
*/
public inline fun <T, R> Buffer<T>.mapIndexed(
public inline fun <T, R> Buffer<T>.mapIndexedToBuffer(
bufferFactory: BufferFactory<R>,
crossinline block: (index: Int, value: T) -> R,
): Buffer<R> = bufferFactory(size) { block(it, get(it)) }
/**
* Create a new buffer from this one with the given indexed mapping function.
* Provided [BufferFactory] is used to construct the new buffer.
*/
public inline fun <T, reified R : Any> Buffer<T>.mapIndexed(
crossinline block: (index: Int, value: T) -> R,
): Buffer<R> = Buffer.auto(size) { block(it, get(it)) }
//
///**
// * Create a new buffer from this one with the given indexed mapping function.
// * Provided [BufferFactory] is used to construct the new buffer.
// */
//public inline fun <T, reified R : Any> Buffer<T>.mapIndexed(
// crossinline block: (index: Int, value: T) -> R,
//): Buffer<R> = Buffer.auto(size) { block(it, get(it)) }
/**
* Fold given buffer according to [operation]
*/
public inline fun <T, R> Buffer<T>.fold(initial: R, operation: (acc: R, T) -> R): R {
if (size == 0) return initial
var accumulator = initial
for (index in this.indices) accumulator = operation(accumulator, get(index))
return accumulator
@ -103,18 +108,31 @@ public inline fun <T, R> Buffer<T>.fold(initial: R, operation: (acc: R, T) -> R)
* Fold given buffer according to indexed [operation]
*/
public inline fun <T : Any, R> Buffer<T>.foldIndexed(initial: R, operation: (index: Int, acc: R, T) -> R): R {
if (size == 0) return initial
var accumulator = initial
for (index in this.indices) accumulator = operation(index, accumulator, get(index))
return accumulator
}
/**
* Reduce a buffer from left to right according to [operation]
*/
public inline fun <T> Buffer<T>.reduce(operation: (left: T, value: T) -> T): T {
require(size > 0) { "Buffer must have elements" }
var current = get(0)
for (i in 1 until size) {
current = operation(current, get(i))
}
return current
}
/**
* Zip two buffers using given [transform].
*/
@UnstableKMathAPI
public inline fun <T1, T2 : Any, reified R : Any> Buffer<T1>.zip(
public inline fun <T1, T2, R> Buffer<T1>.combineToBuffer(
other: Buffer<T2>,
bufferFactory: BufferFactory<R> = BufferFactory.auto(),
bufferFactory: BufferFactory<R>,
crossinline transform: (T1, T2) -> R,
): Buffer<R> {
require(size == other.size) { "Buffer size mismatch in zip: expected $size but found ${other.size}" }

View File

@ -0,0 +1,38 @@
package space.kscience.kmath.structures
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* Non-boxing access to primitive [Double]
*/
@UnstableKMathAPI
public fun Buffer<Double>.getDouble(index: Int): Double = if (this is BufferView) {
val originIndex = originIndex(index)
if (originIndex >= 0) {
origin.getDouble(originIndex)
} else {
get(index)
}
} else if (this is DoubleBuffer) {
array[index]
} else {
get(index)
}
/**
* Non-boxing access to primitive [Int]
*/
@UnstableKMathAPI
public fun Buffer<Int>.getInt(index: Int): Int = if (this is BufferView) {
val originIndex = originIndex(index)
if (originIndex >= 0) {
origin.getInt(originIndex)
} else {
get(index)
}
} else if (this is IntBuffer) {
array[index]
} else {
get(index)
}

View File

@ -0,0 +1,20 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.structures
public typealias Float32 = Float
public typealias Float64 = Double
public typealias Int8 = Byte
public typealias Int16 = Short
public typealias Int32 = Int
public typealias Int64 = Long
public typealias UInt8 = UByte
public typealias UInt16 = UShort
public typealias UInt32 = UInt
public typealias UInt64 = ULong

View File

@ -9,7 +9,6 @@ package space.kscience.kmath.expressions
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.DoubleBuffer
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.test.Test
@ -22,7 +21,7 @@ internal inline fun diff(
block: DSField<Double, DoubleField>.() -> Unit,
) {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
DSField(DoubleField, order, mapOf(*parameters), ::DoubleBuffer).block()
DSField(DoubleField, order, mapOf(*parameters)).block()
}
internal class DSTest {
@ -45,7 +44,7 @@ internal class DSTest {
@Test
fun dsExpressionTest() {
val f = DSFieldExpression(DoubleField, ::DoubleBuffer) {
val f = DSFieldExpression(DoubleField) {
val x by binding
val y by binding
x.pow(2) + 2 * x * y + y.pow(2) + 1

View File

@ -0,0 +1,38 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
import kotlin.test.Test
class StridesTest {
@Test
fun checkRowBasedStrides() {
val strides = RowStrides(ShapeND(3, 3))
var counter = 0
for(i in 0..2){
for(j in 0..2){
// print(strides.offset(intArrayOf(i,j)).toString() + "\t")
require(strides.offset(intArrayOf(i,j)) == counter)
counter++
}
println()
}
}
@Test
fun checkColumnBasedStrides() {
val strides = ColumnStrides(ShapeND(3, 3))
var counter = 0
for(i in 0..2){
for(j in 0..2){
// print(strides.offset(intArrayOf(i,j)).toString() + "\t")
require(strides.offset(intArrayOf(j,i)) == counter)
counter++
}
println()
}
}
}

View File

@ -0,0 +1,27 @@
package space.kscience.kmath.structures
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertFails
internal class BufferExpandedTest {
private val buffer = (0..100).toList().asBuffer()
@Test
fun shrink(){
val view = buffer.slice(20..30)
assertEquals(20, view[0])
assertEquals(30, view[10])
assertFails { view[11] }
}
@Test
fun expandNegative(){
val view: BufferView<Int> = buffer.expand(-20..113,0)
assertEquals(0,view[4])
assertEquals(0,view[123])
assertEquals(100, view[120])
assertFails { view[-2] }
assertFails { view[134] }
}
}

View File

@ -88,7 +88,7 @@ class NumberNDFieldTest {
@Test
fun testInternalContext() {
algebra {
(DoubleField.ndAlgebra(*array1.shape)) { with(L2Norm) { 1 + norm(array1) + exp(array2) } }
(DoubleField.ndAlgebra(array1.shape)) { with(L2Norm) { 1 + norm(array1) + exp(array2) } }
}
}
}

View File

@ -0,0 +1,20 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.misc
import org.junit.jupiter.api.Test
import space.kscience.kmath.operations.JBigDecimalField
import kotlin.test.assertEquals
import kotlin.test.assertNotEquals
class JBigTest {
@Test
fun testExact() = with(JBigDecimalField) {
assertNotEquals(0.3, 0.1 + 0.2)
assertEquals(one * 0.3, one * 0.1 + one * 0.2)
}
}

View File

@ -2,25 +2,14 @@ plugins {
id("space.kscience.gradle.mpp")
}
kscience{
kscience {
jvm()
js()
native()
}
kotlin.sourceSets {
all {
with(languageSettings) {
optIn("kotlinx.coroutines.InternalCoroutinesApi")
optIn("kotlinx.coroutines.ExperimentalCoroutinesApi")
optIn("kotlinx.coroutines.FlowPreview")
}
}
commonMain {
dependencies {
api(project(":kmath-core"))
api(project(":kmath-complex"))
api("org.jetbrains.kotlinx:kotlinx-coroutines-core:${space.kscience.gradle.KScienceVersions.coroutinesVersion}")
}
dependencies {
api(project(":kmath-core"))
api(project(":kmath-complex"))
api(spclibs.kotlinx.coroutines.core)
}
}

Some files were not shown because too many files have changed in this diff Show More