9.7 KiB
9.7 KiB
In [ ]:
%use kmath(0.3.1-dev-5) %use plotly(0.5.0) @file:DependsOn("space.kscience:kmath-commons:0.3.1-dev-5")
In [ ]:
//Uncomment to work in Jupyter classic or DataLore //Plotly.jupyter.notebook()
The model¶
Defining the input data format, the statistic abstraction and the statistic implementation based on a weighted sum of elements.
In [ ]:
class XYValues(val xValues: DoubleArray, val yValues: DoubleArray) { init { require(xValues.size == yValues.size) } } fun interface XYStatistic { operator fun invoke(values: XYValues): Double } class ConvolutionalXYStatistic(val weights: DoubleArray) : XYStatistic { override fun invoke(values: XYValues): Double { require(weights.size == values.yValues.size) val norm = values.yValues.sum() return values.yValues.zip(weights) { value, weight -> value * weight }.sum()/norm } }
Generator¶
Generate sample data for parabolas and hyperbolas
In [ ]:
fun generateParabolas(xValues: DoubleArray, a: Double, b: Double, c: Double): XYValues { val yValues = xValues.map { x -> a * x * x + b * x + c }.toDoubleArray() return XYValues(xValues, yValues) } fun generateHyperbols(xValues: DoubleArray, gamma: Double, x0: Double, y0: Double): XYValues { val yValues = xValues.map { x -> y0 + gamma / (x - x0) }.toDoubleArray() return XYValues(xValues, yValues) }
In [ ]:
val xValues = (1.0..10.0).step(1.0).toDoubleArray() val xy = generateHyperbols(xValues, 1.0, 0.0, 0.0) Plotly.plot { scatter { this.x.doubles = xValues this.y.doubles = xy.yValues } }
Create a default statistic with uniform weights
In [ ]:
val statistic = ConvolutionalXYStatistic(DoubleArray(xValues.size){1.0}) statistic(xy)
In [ ]:
import kotlin.random.Random val random = Random(1288) val parabolas = buildList{ repeat(500){ add( generateParabolas( xValues, random.nextDouble(), random.nextDouble(), random.nextDouble() ) ) } } val hyperbolas: List<XYValues> = buildList{ repeat(500){ add( generateHyperbols( xValues, random.nextDouble()*10, random.nextDouble(), random.nextDouble() ) ) } }
In [ ]:
Plotly.plot { scatter { x.doubles = xValues y.doubles = parabolas[257].yValues } scatter { x.doubles = xValues y.doubles = hyperbolas[252].yValues } }
In [ ]:
Plotly.plot { histogram { name = "parabolae" x.numbers = parabolas.map { statistic(it) } } histogram { name = "hyperbolae" x.numbers = hyperbolas.map { statistic(it) } } }
In [ ]:
val lossFunction: (XYStatistic) -> Double = { statistic -> - abs(parabolas.sumOf { statistic(it) } - hyperbolas.sumOf { statistic(it) }) }
Using commons-math optimizer to optimize weights
In [ ]:
import org.apache.commons.math3.optim.* import org.apache.commons.math3.optim.nonlinear.scalar.* import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.* val optimizer = SimplexOptimizer(1e-1, Double.MAX_VALUE) val result = optimizer.optimize( ObjectiveFunction { point -> lossFunction(ConvolutionalXYStatistic(point)) }, NelderMeadSimplex(xValues.size), InitialGuess(DoubleArray(xValues.size){ 1.0 }), GoalType.MINIMIZE, MaxEval(100000) )
Print resulting weights of optimization
In [ ]:
result.point
In [ ]:
Plotly.plot { scatter { y.doubles = result.point } }
The resulting statistic distribution¶
In [ ]:
val resultStatistic = ConvolutionalXYStatistic(result.point) Plotly.plot { histogram { name = "parabolae" x.numbers = parabolas.map { resultStatistic(it) } } histogram { name = "hyperbolae" x.numbers = hyperbolas.map { resultStatistic(it) } } }
In [ ]: