Added Levenberg-Marquardt algorithm and svd Golub-Kahan #513

Merged
margarita0303 merged 35 commits from dev into dev 2023-06-19 16:11:59 +03:00
Showing only changes of commit f91b018d4f - Show all commits

View File

@ -22,63 +22,63 @@ class TestLmAlgorithm {
companion object { companion object {
fun funcEasyForLm(t: MutableStructure2D<Double>, p: MutableStructure2D<Double>, exampleNumber: Int): MutableStructure2D<Double> { fun funcEasyForLm(t: MutableStructure2D<Double>, p: MutableStructure2D<Double>, exampleNumber: Int): MutableStructure2D<Double> {
val m = t.shape.component1() val m = t.shape.component1()
var y_hat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(m, 1))) var yHat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(m, 1)))
if (exampleNumber == 1) { if (exampleNumber == 1) {
y_hat = DoubleTensorAlgebra.exp((t.times(-1.0 / p[1, 0]))).times(p[0, 0]) + t.times(p[2, 0]).times( yHat = DoubleTensorAlgebra.exp((t.times(-1.0 / p[1, 0]))).times(p[0, 0]) + t.times(p[2, 0]).times(
DoubleTensorAlgebra.exp((t.times(-1.0 / p[3, 0]))) DoubleTensorAlgebra.exp((t.times(-1.0 / p[3, 0])))
) )
} }
else if (exampleNumber == 2) { else if (exampleNumber == 2) {
val mt = t.max() val mt = t.max()
y_hat = (t.times(1.0 / mt)).times(p[0, 0]) + yHat = (t.times(1.0 / mt)).times(p[0, 0]) +
(t.times(1.0 / mt)).pow(2).times(p[1, 0]) + (t.times(1.0 / mt)).pow(2).times(p[1, 0]) +
(t.times(1.0 / mt)).pow(3).times(p[2, 0]) + (t.times(1.0 / mt)).pow(3).times(p[2, 0]) +
(t.times(1.0 / mt)).pow(4).times(p[3, 0]) (t.times(1.0 / mt)).pow(4).times(p[3, 0])
} }
else if (exampleNumber == 3) { else if (exampleNumber == 3) {
y_hat = DoubleTensorAlgebra.exp((t.times(-1.0 / p[1, 0]))) yHat = DoubleTensorAlgebra.exp((t.times(-1.0 / p[1, 0])))
.times(p[0, 0]) + DoubleTensorAlgebra.sin((t.times(1.0 / p[3, 0]))).times(p[2, 0]) .times(p[0, 0]) + DoubleTensorAlgebra.sin((t.times(1.0 / p[3, 0]))).times(p[2, 0])
} }
return y_hat.as2D() return yHat.as2D()
} }
fun funcMiddleForLm(t: MutableStructure2D<Double>, p: MutableStructure2D<Double>, exampleNumber: Int): MutableStructure2D<Double> { fun funcMiddleForLm(t: MutableStructure2D<Double>, p: MutableStructure2D<Double>, exampleNumber: Int): MutableStructure2D<Double> {
val m = t.shape.component1() val m = t.shape.component1()
var y_hat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf (m, 1))) var yHat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf (m, 1)))
val mt = t.max() val mt = t.max()
for(i in 0 until p.shape.component1()){ for(i in 0 until p.shape.component1()){
y_hat += (t.times(1.0 / mt)).times(p[i, 0]) yHat += (t.times(1.0 / mt)).times(p[i, 0])
} }
for(i in 0 until 5){ for(i in 0 until 5){
y_hat = funcEasyForLm(y_hat.as2D(), p, exampleNumber).asDoubleTensor() yHat = funcEasyForLm(yHat.as2D(), p, exampleNumber).asDoubleTensor()
} }
return y_hat.as2D() return yHat.as2D()
} }
fun funcDifficultForLm(t: MutableStructure2D<Double>, p: MutableStructure2D<Double>, exampleNumber: Int): MutableStructure2D<Double> { fun funcDifficultForLm(t: MutableStructure2D<Double>, p: MutableStructure2D<Double>, exampleNumber: Int): MutableStructure2D<Double> {
val m = t.shape.component1() val m = t.shape.component1()
var y_hat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf (m, 1))) var yHat = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf (m, 1)))
val mt = t.max() val mt = t.max()
for(i in 0 until p.shape.component1()){ for(i in 0 until p.shape.component1()){
y_hat = y_hat.plus( (t.times(1.0 / mt)).times(p[i, 0]) ) yHat = yHat.plus( (t.times(1.0 / mt)).times(p[i, 0]) )
} }
for(i in 0 until 4){ for(i in 0 until 4){
y_hat = funcEasyForLm((y_hat.as2D() + t).as2D(), p, exampleNumber).asDoubleTensor() yHat = funcEasyForLm((yHat.as2D() + t).as2D(), p, exampleNumber).asDoubleTensor()
} }
return y_hat.as2D() return yHat.as2D()
} }
} }
@Test @Test
fun testLMEasy() = DoubleTensorAlgebra { fun testLMEasy() = DoubleTensorAlgebra {
val lm_matx_y_dat = doubleArrayOf( val lmMatxYDat = doubleArrayOf(
19.6594, 18.6096, 17.6792, 17.2747, 16.3065, 17.1458, 16.0467, 16.7023, 15.7809, 15.9807, 19.6594, 18.6096, 17.6792, 17.2747, 16.3065, 17.1458, 16.0467, 16.7023, 15.7809, 15.9807,
14.7620, 15.1128, 16.0973, 15.1934, 15.8636, 15.4763, 15.6860, 15.1895, 15.3495, 16.6054, 14.7620, 15.1128, 16.0973, 15.1934, 15.8636, 15.4763, 15.6860, 15.1895, 15.3495, 16.6054,
16.2247, 15.9854, 16.1421, 17.0960, 16.7769, 17.1997, 17.2767, 17.5882, 17.5378, 16.7894, 16.2247, 15.9854, 16.1421, 17.0960, 16.7769, 17.1997, 17.2767, 17.5882, 17.5378, 16.7894,
@ -91,7 +91,7 @@ class TestLmAlgorithm {
14.7665, 13.3718, 15.0587, 13.8320, 14.7873, 13.6824, 14.2579, 14.2154, 13.5818, 13.8157 14.7665, 13.3718, 15.0587, 13.8320, 14.7873, 13.6824, 14.2579, 14.2154, 13.5818, 13.8157
) )
var example_number = 1 var exampleNumber = 1
val p_init = BroadcastDoubleTensorAlgebra.fromArray( val p_init = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(4, 1)), doubleArrayOf(5.0, 2.0, 0.2, 10.0) ShapeND(intArrayOf(4, 1)), doubleArrayOf(5.0, 2.0, 0.2, 10.0)
).as2D() ).as2D()
@ -101,8 +101,8 @@ class TestLmAlgorithm {
t[i, 0] = t[i, 0] * (i + 1) t[i, 0] = t[i, 0] * (i + 1)
} }
val y_dat = BroadcastDoubleTensorAlgebra.fromArray( val yDat = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(100, 1)), lm_matx_y_dat ShapeND(intArrayOf(100, 1)), lmMatxYDat
).as2D() ).as2D()
val weight = 4.0 val weight = 4.0
@ -111,20 +111,16 @@ class TestLmAlgorithm {
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 } ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
).as2D() ).as2D()
val p_min = BroadcastDoubleTensorAlgebra.fromArray( val pMin = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(4, 1)), doubleArrayOf(-50.0, -20.0, -2.0, -100.0) ShapeND(intArrayOf(4, 1)), doubleArrayOf(-50.0, -20.0, -2.0, -100.0)
).as2D() ).as2D()
val p_max = BroadcastDoubleTensorAlgebra.fromArray( val pMax = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(4, 1)), doubleArrayOf(50.0, 20.0, 2.0, 100.0) ShapeND(intArrayOf(4, 1)), doubleArrayOf(50.0, 20.0, 2.0, 100.0)
).as2D() ).as2D()
val opts = doubleArrayOf(3.0, 100.0, 1e-3, 1e-3, 1e-1, 1e-1, 1e-2, 11.0, 9.0, 1.0) val inputData = LMInput(::funcEasyForLm, p_init, t, yDat, weight, dp, pMin, pMax, 100,
doubleArrayOf(1e-3, 1e-3, 1e-1, 1e-1), doubleArrayOf(1e-2, 11.0, 9.0), 1, 10, exampleNumber)
val inputData = LMInput(::funcEasyForLm, p_init, t, y_dat, weight, dp, p_min, p_max, opts[1].toInt(),
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
doubleArrayOf(opts[6], opts[7], opts[8]),
opts[9].toInt(), 10, example_number)
val result = levenbergMarquardt(inputData) val result = levenbergMarquardt(inputData)
assertEquals(13, result.iterations) assertEquals(13, result.iterations)
@ -149,46 +145,46 @@ class TestLmAlgorithm {
@Test @Test
fun TestLMMiddle() = DoubleTensorAlgebra { fun TestLMMiddle() = DoubleTensorAlgebra {
val NData = 100 val NData = 100
var t_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D() val tExample = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D()
for (i in 0 until NData) { for (i in 0 until NData) {
t_example[i, 0] = t_example[i, 0] * (i + 1) tExample[i, 0] = tExample[i, 0] * (i + 1)
} }
val Nparams = 20 val Nparams = 20
var p_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D() val pExample = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) { for (i in 0 until Nparams) {
p_example[i, 0] = p_example[i, 0] + i - 25 pExample[i, 0] = pExample[i, 0] + i - 25
} }
val exampleNumber = 1 val exampleNumber = 1
var y_hat = funcMiddleForLm(t_example, p_example, exampleNumber) val yHat = funcMiddleForLm(tExample, pExample, exampleNumber)
var p_init = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D() val pInit = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) { for (i in 0 until Nparams) {
p_init[i, 0] = (p_example[i, 0] + 0.9) pInit[i, 0] = (pExample[i, 0] + 0.9)
} }
var t = t_example val t = tExample
val y_dat = y_hat val yDat = yHat
val weight = 1.0 val weight = 1.0
val dp = BroadcastDoubleTensorAlgebra.fromArray( val dp = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 } ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
).as2D() ).as2D()
var p_min = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))) var pMin = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / -50.0) pMin = pMin.div(1.0 / -50.0)
val p_max = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))) val pMax = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / 50.0) pMin = pMin.div(1.0 / 50.0)
val opts = doubleArrayOf(3.0, 7000.0, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 11.0, 9.0, 1.0) val opts = doubleArrayOf(3.0, 7000.0, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 11.0, 9.0, 1.0)
val inputData = LMInput(::funcMiddleForLm, val inputData = LMInput(::funcMiddleForLm,
p_init.as2D(), pInit.as2D(),
t, t,
y_dat, yDat,
weight, weight,
dp, dp,
p_min.as2D(), pMin.as2D(),
p_max.as2D(), pMax.as2D(),
opts[1].toInt(), opts[1].toInt(),
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]), doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
doubleArrayOf(opts[6], opts[7], opts[8]), doubleArrayOf(opts[6], opts[7], opts[8]),
@ -197,51 +193,67 @@ class TestLmAlgorithm {
1) 1)
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData) val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
assertEquals(46, result.iterations)
assertEquals(113, result.funcCalls)
assertEquals(0.000005977, (result.resultChiSq * 1e9).roundToLong() / 1e9)
assertEquals(1.0 * 1e-7, (result.resultLambda * 1e13).roundToLong() / 1e13)
assertEquals(result.typeOfConvergence, TypeOfConvergence.InReducedChiSquare)
val expectedParameters = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(Nparams, 1)), doubleArrayOf( -23.9717, -18.6686, -21.7971,
-20.9681, -22.086, -20.5859, -19.0384, -17.4957, -15.9991, -14.576, -13.2441, -
12.0201, -10.9256, -9.9878, -9.2309, -8.6589, -8.2365, -7.8783, -7.4598, -6.8511)).as2D()
result.resultParameters = result.resultParameters.map { x -> (x * 1e4).roundToLong() / 1e4}.as2D()
val receivedParameters = zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
receivedParameters[i, 0] = result.resultParameters[i, 0]
assertEquals(expectedParameters[i, 0], result.resultParameters[i, 0])
}
} }
@Test @Test
fun TestLMDifficult() = DoubleTensorAlgebra { fun TestLMDifficult() = DoubleTensorAlgebra {
val NData = 200 val NData = 200
var t_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D() var tExample = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D()
for (i in 0 until NData) { for (i in 0 until NData) {
t_example[i, 0] = t_example[i, 0] * (i + 1) - 104 tExample[i, 0] = tExample[i, 0] * (i + 1) - 104
} }
val Nparams = 15 val Nparams = 15
var p_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D() var pExample = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) { for (i in 0 until Nparams) {
p_example[i, 0] = p_example[i, 0] + i - 25 pExample[i, 0] = pExample[i, 0] + i - 25
} }
val exampleNumber = 1 val exampleNumber = 1
var y_hat = funcDifficultForLm(t_example, p_example, exampleNumber) var yHat = funcDifficultForLm(tExample, pExample, exampleNumber)
var p_init = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D() var pInit = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) { for (i in 0 until Nparams) {
p_init[i, 0] = (p_example[i, 0] + 0.9) pInit[i, 0] = (pExample[i, 0] + 0.9)
} }
var t = t_example var t = tExample
val y_dat = y_hat val yDat = yHat
val weight = 1.0 / Nparams * 1.0 - 0.085 val weight = 1.0 / Nparams * 1.0 - 0.085
val dp = BroadcastDoubleTensorAlgebra.fromArray( val dp = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 } ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
).as2D() ).as2D()
var p_min = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))) var pMin = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / -50.0) pMin = pMin.div(1.0 / -50.0)
val p_max = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))) val pMax = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
p_min = p_min.div(1.0 / 50.0) pMin = pMin.div(1.0 / 50.0)
val opts = doubleArrayOf(3.0, 7000.0, 1e-2, 1e-3, 1e-2, 1e-2, 1e-2, 11.0, 9.0, 1.0) val opts = doubleArrayOf(3.0, 7000.0, 1e-2, 1e-3, 1e-2, 1e-2, 1e-2, 11.0, 9.0, 1.0)
val inputData = LMInput(::funcDifficultForLm, val inputData = LMInput(::funcDifficultForLm,
p_init.as2D(), pInit.as2D(),
t, t,
y_dat, yDat,
weight, weight,
dp, dp,
p_min.as2D(), pMin.as2D(),
p_max.as2D(), pMax.as2D(),
opts[1].toInt(), opts[1].toInt(),
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]), doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
doubleArrayOf(opts[6], opts[7], opts[8]), doubleArrayOf(opts[6], opts[7], opts[8]),
@ -250,5 +262,19 @@ class TestLmAlgorithm {
1) 1)
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData) val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
assertEquals(2375, result.iterations)
assertEquals(4858, result.funcCalls)
assertEquals(5.14347, (result.resultLambda * 1e5).roundToLong() / 1e5)
assertEquals(result.typeOfConvergence, TypeOfConvergence.InParameters)
val expectedParameters = BroadcastDoubleTensorAlgebra.fromArray(
ShapeND(intArrayOf(Nparams, 1)), doubleArrayOf(-23.6412, -16.7402, -21.5705, -21.0464,
-17.2852, -17.2959, -17.298, 0.9999, -17.2885, -17.3008, -17.2941, -17.2923, -17.2976, -17.3028, -17.2891)).as2D()
result.resultParameters = result.resultParameters.map { x -> (x * 1e4).roundToLong() / 1e4}.as2D()
val receivedParameters = zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
for (i in 0 until Nparams) {
receivedParameters[i, 0] = result.resultParameters[i, 0]
assertEquals(expectedParameters[i, 0], result.resultParameters[i, 0])
}
} }
} }