0.3.1-dev-11 #510
@ -103,21 +103,45 @@ public object Euclidean3DSpace : GeometrySpace<DoubleVector3D>, ScaleOperations<
|
||||
override fun DoubleVector3D.dot(other: DoubleVector3D): Double =
|
||||
x * other.x + y * other.y + z * other.z
|
||||
|
||||
private fun leviCivita(i: Int, j: Int, k: Int): Int = when {
|
||||
// even permutation
|
||||
i == 0 && j == 1 && k == 2 -> 1
|
||||
i == 1 && j == 2 && k == 0 -> 1
|
||||
i == 2 && j == 0 && k == 1 -> 1
|
||||
// odd permutations
|
||||
i == 2 && j == 1 && k == 0 -> -1
|
||||
i == 0 && j == 2 && k == 1 -> -1
|
||||
i == 1 && j == 0 && k == 2 -> -1
|
||||
|
||||
else -> 0
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute vector product of [first] and [second]. The basis assumed to be right-handed.
|
||||
* Compute vector product of [first] and [second]. The basis assumed to be right-handed if [rightBasis] is true and
|
||||
* left-handed otherwise
|
||||
*/
|
||||
public fun vectorProduct(
|
||||
first: DoubleVector3D,
|
||||
second: DoubleVector3D,
|
||||
rightBasis: Boolean = true,
|
||||
): DoubleVector3D {
|
||||
val (x1, y1, z1) = first
|
||||
val (x2, y2, z2) = second
|
||||
var x = 0.0
|
||||
var y = 0.0
|
||||
var z = 0.0
|
||||
|
||||
return vector(y1 * z2 - y2 * z2, z1 * x2 - z2 * x2, x1 * y2 - x2 * y2)
|
||||
for (j in (0..2)) {
|
||||
for (k in (0..2)) {
|
||||
x += leviCivita(0, j, k) * first[j] * second[k]
|
||||
y += leviCivita(1, j, k) * first[j] * second[k]
|
||||
z += leviCivita(2, j, k) * first[j] * second[k]
|
||||
}
|
||||
}
|
||||
|
||||
return vector(x, y, z) * (if (rightBasis) 1 else -1)
|
||||
}
|
||||
|
||||
/**
|
||||
* Vector product with a right basis
|
||||
* Vector product with right basis
|
||||
*/
|
||||
public infix fun DoubleVector3D.cross(other: DoubleVector3D): Vector3D<Double> = vectorProduct(this, other)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user