0.3.1-dev-11 #510

Merged
altavir merged 80 commits from dev into master 2023-04-05 18:46:36 +03:00
72 changed files with 860 additions and 517 deletions
Showing only changes of commit b0abcf2d0c - Show all commits

View File

@ -7,6 +7,7 @@
- Algebra now has an obligatory `bufferFactory` (#477). - Algebra now has an obligatory `bufferFactory` (#477).
### Changed ### Changed
- Shape is read-only
- Major refactor of tensors (only minor API changes) - Major refactor of tensors (only minor API changes)
- Kotlin 1.7.20 - Kotlin 1.7.20
- `LazyStructure` `deffered` -> `async` to comply with coroutines code style - `LazyStructure` `deffered` -> `async` to comply with coroutines code style

View File

@ -13,10 +13,8 @@ import org.jetbrains.kotlinx.multik.api.Multik
import org.jetbrains.kotlinx.multik.api.ones import org.jetbrains.kotlinx.multik.api.ones
import org.jetbrains.kotlinx.multik.ndarray.data.DN import org.jetbrains.kotlinx.multik.ndarray.data.DN
import org.jetbrains.kotlinx.multik.ndarray.data.DataType import org.jetbrains.kotlinx.multik.ndarray.data.DataType
import space.kscience.kmath.nd.BufferedFieldOpsND import space.kscience.kmath.misc.UnsafeKMathAPI
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.ndAlgebra
import space.kscience.kmath.nd.one
import space.kscience.kmath.nd4j.nd4j import space.kscience.kmath.nd4j.nd4j
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.tensors.core.DoubleTensor import space.kscience.kmath.tensors.core.DoubleTensor
@ -69,9 +67,10 @@ internal class NDFieldBenchmark {
blackhole.consume(res) blackhole.consume(res)
} }
@OptIn(UnsafeKMathAPI::class)
@Benchmark @Benchmark
fun multikInPlaceAdd(blackhole: Blackhole) = with(multikAlgebra) { fun multikInPlaceAdd(blackhole: Blackhole) = with(multikAlgebra) {
val res = Multik.ones<Double, DN>(shape, DataType.DoubleDataType).wrap() val res = Multik.ones<Double, DN>(shape.asArray(), DataType.DoubleDataType).wrap()
repeat(n) { res += 1.0 } repeat(n) { res += 1.0 }
blackhole.consume(res) blackhole.consume(res)
} }
@ -86,7 +85,7 @@ internal class NDFieldBenchmark {
private companion object { private companion object {
private const val dim = 1000 private const val dim = 1000
private const val n = 100 private const val n = 100
private val shape = intArrayOf(dim, dim) private val shape = Shape(dim, dim)
private val specializedField = DoubleField.ndAlgebra private val specializedField = DoubleField.ndAlgebra
private val genericField = BufferedFieldOpsND(DoubleField) private val genericField = BufferedFieldOpsND(DoubleField)
private val nd4jField = DoubleField.nd4j private val nd4jField = DoubleField.nd4j

View File

@ -1,4 +1,3 @@
import space.kscience.gradle.isInDevelopment
import space.kscience.gradle.useApache2Licence import space.kscience.gradle.useApache2Licence
import space.kscience.gradle.useSPCTeam import space.kscience.gradle.useSPCTeam
@ -15,7 +14,7 @@ allprojects {
} }
group = "space.kscience" group = "space.kscience"
version = "0.3.1-dev-4" version = "0.3.1-dev-5"
} }
subprojects { subprojects {
@ -78,11 +77,12 @@ ksciencePublish {
} }
github("kmath", "SciProgCentre") github("kmath", "SciProgCentre")
space( space(
if (isInDevelopment) { "https://maven.pkg.jetbrains.space/spc/p/sci/maven"
"https://maven.pkg.jetbrains.space/mipt-npm/p/sci/dev" // if (isInDevelopment) {
} else { // "https://maven.pkg.jetbrains.space/spc/p/sci/dev"
"https://maven.pkg.jetbrains.space/mipt-npm/p/sci/release" // } else {
} // "https://maven.pkg.jetbrains.space/spc/p/sci/release"
// }
) )
sonatype() sonatype()
} }

View File

@ -17,7 +17,7 @@ import java.util.stream.IntStream
* A demonstration implementation of NDField over Real using Java [java.util.stream.DoubleStream] for parallel * A demonstration implementation of NDField over Real using Java [java.util.stream.DoubleStream] for parallel
* execution. * execution.
*/ */
class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, DoubleField>, class StreamDoubleFieldND(override val shape: Shape) : FieldND<Double, DoubleField>,
NumbersAddOps<StructureND<Double>>, NumbersAddOps<StructureND<Double>>,
ExtendedField<StructureND<Double>> { ExtendedField<StructureND<Double>> {
@ -31,6 +31,7 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
return structureND(shape) { d } return structureND(shape) { d }
} }
@OptIn(PerformancePitfall::class)
private val StructureND<Double>.buffer: DoubleBuffer private val StructureND<Double>.buffer: DoubleBuffer
get() = when { get() = when {
!shape.contentEquals(this@StreamDoubleFieldND.shape) -> throw ShapeMismatchException( !shape.contentEquals(this@StreamDoubleFieldND.shape) -> throw ShapeMismatchException(
@ -110,4 +111,4 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
override fun atanh(arg: StructureND<Double>): BufferND<Double> = arg.map { atanh(it) } override fun atanh(arg: StructureND<Double>): BufferND<Double> = arg.map { atanh(it) }
} }
fun DoubleField.ndStreaming(vararg shape: Int): StreamDoubleFieldND = StreamDoubleFieldND(shape) fun DoubleField.ndStreaming(vararg shape: Int): StreamDoubleFieldND = StreamDoubleFieldND(Shape(shape))

View File

@ -5,16 +5,19 @@
package space.kscience.kmath.structures package space.kscience.kmath.structures
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.BufferND import space.kscience.kmath.nd.BufferND
import space.kscience.kmath.nd.ColumnStrides import space.kscience.kmath.nd.ColumnStrides
import space.kscience.kmath.nd.Shape
import kotlin.system.measureTimeMillis import kotlin.system.measureTimeMillis
@Suppress("ASSIGNED_BUT_NEVER_ACCESSED_VARIABLE") @Suppress("ASSIGNED_BUT_NEVER_ACCESSED_VARIABLE")
@OptIn(PerformancePitfall::class)
fun main() { fun main() {
val n = 6000 val n = 6000
val array = DoubleArray(n * n) { 1.0 } val array = DoubleArray(n * n) { 1.0 }
val buffer = DoubleBuffer(array) val buffer = DoubleBuffer(array)
val strides = ColumnStrides(intArrayOf(n, n)) val strides = ColumnStrides(Shape(n, n))
val structure = BufferND(strides, buffer) val structure = BufferND(strides, buffer)
measureTimeMillis { measureTimeMillis {

View File

@ -5,16 +5,20 @@
package space.kscience.kmath.structures package space.kscience.kmath.structures
import space.kscience.kmath.nd.BufferND
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.mapToBuffer import space.kscience.kmath.operations.map
import kotlin.system.measureTimeMillis import kotlin.system.measureTimeMillis
private inline fun <T, reified R: Any> BufferND<T>.map(block: (T) -> R): BufferND<R> = BufferND(indices, buffer.map(block))
@Suppress("UNUSED_VARIABLE") @Suppress("UNUSED_VARIABLE")
fun main() { fun main() {
val n = 6000 val n = 6000
val structure = StructureND.buffered(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 } val structure = StructureND.buffered(Shape(n, n), Buffer.Companion::auto) { 1.0 }
structure.mapToBuffer { it + 1 } // warm-up structure.map { it + 1 } // warm-up
val time1 = measureTimeMillis { val res = structure.mapToBuffer { it + 1 } } val time1 = measureTimeMillis { val res = structure.map { it + 1 } }
println("Structure mapping finished in $time1 millis") println("Structure mapping finished in $time1 millis")
val array = DoubleArray(n * n) { 1.0 } val array = DoubleArray(n * n) { 1.0 }

View File

@ -6,6 +6,8 @@
package space.kscience.kmath.tensors package space.kscience.kmath.tensors
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.DoubleTensor import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
@ -23,10 +25,10 @@ fun main() {
DoubleTensorAlgebra { DoubleTensorAlgebra {
// take coefficient vector from normal distribution // take coefficient vector from normal distribution
val alpha = randomNormal( val alpha = randomNormal(
intArrayOf(5), Shape(5),
randSeed randSeed
) + fromArray( ) + fromArray(
intArrayOf(5), Shape(5),
doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1) doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1)
) )
@ -34,7 +36,7 @@ fun main() {
// also take sample of size 20 from normal distribution for x // also take sample of size 20 from normal distribution for x
val x = randomNormal( val x = randomNormal(
intArrayOf(20, 5), Shape(20, 5),
randSeed randSeed
) )
@ -50,11 +52,13 @@ fun main() {
// inverse Sigma matrix can be restored from singular values with diagonalEmbedding function // inverse Sigma matrix can be restored from singular values with diagonalEmbedding function
val sigma = diagonalEmbedding(singValues.map{ if (abs(it) < 1e-3) 0.0 else 1.0/it }) val sigma = diagonalEmbedding(singValues.map { if (abs(it) < 1e-3) 0.0 else 1.0 / it })
val alphaOLS = v dot sigma dot u.transposed() dot y val alphaOLS = v dot sigma dot u.transposed() dot y
println("Estimated alpha:\n" + println(
"$alphaOLS") "Estimated alpha:\n" +
"$alphaOLS"
)
// figure out MSE of approximation // figure out MSE of approximation
fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double { fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double {

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.tensors package space.kscience.kmath.tensors
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.tensors.core.tensorAlgebra import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast import space.kscience.kmath.tensors.core.withBroadcast
@ -16,7 +17,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
// assume x is range from 0 until 10 // assume x is range from 0 until 10
val x = fromArray( val x = fromArray(
intArrayOf(10), Shape(10),
DoubleArray(10) { it.toDouble() } DoubleArray(10) { it.toDouble() }
) )
@ -41,13 +42,13 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
// save means ans standard deviations for further recovery // save means ans standard deviations for further recovery
val mean = fromArray( val mean = fromArray(
intArrayOf(2), Shape(2),
doubleArrayOf(xMean, yMean) doubleArrayOf(xMean, yMean)
) )
println("Means:\n$mean") println("Means:\n$mean")
val std = fromArray( val std = fromArray(
intArrayOf(2), Shape(2),
doubleArrayOf(xStd, yStd) doubleArrayOf(xStd, yStd)
) )
println("Standard deviations:\n$std") println("Standard deviations:\n$std")
@ -68,7 +69,7 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast { // work in context with
// we can restore original data from reduced data; // we can restore original data from reduced data;
// for example, find 7th element of dataset. // for example, find 7th element of dataset.
val n = 7 val n = 7
val restored = (datasetReduced.getTensor(n) dot v.view(intArrayOf(1, 2))) * std + mean val restored = (datasetReduced.getTensor(n) dot v.view(Shape(1, 2))) * std + mean
println("Original value:\n${dataset.getTensor(n)}") println("Original value:\n${dataset.getTensor(n)}")
println("Restored value:\n$restored") println("Restored value:\n$restored")
} }

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.tensors package space.kscience.kmath.tensors
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.tensors.core.tensorAlgebra import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast import space.kscience.kmath.tensors.core.withBroadcast
@ -13,10 +14,10 @@ import space.kscience.kmath.tensors.core.withBroadcast
fun main() = Double.tensorAlgebra.withBroadcast { // work in context with broadcast methods fun main() = Double.tensorAlgebra.withBroadcast { // work in context with broadcast methods
// take dataset of 5-element vectors from normal distribution // take dataset of 5-element vectors from normal distribution
val dataset = randomNormal(intArrayOf(100, 5)) * 1.5 // all elements from N(0, 1.5) val dataset = randomNormal(Shape(100, 5)) * 1.5 // all elements from N(0, 1.5)
dataset += fromArray( dataset += fromArray(
intArrayOf(5), Shape(5),
doubleArrayOf(0.0, 1.0, 1.5, 3.0, 5.0) // row means doubleArrayOf(0.0, 1.0, 1.5, 3.0, 5.0) // row means
) )

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.tensors package space.kscience.kmath.tensors
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.tensors.core.DoubleTensor import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.tensorAlgebra import space.kscience.kmath.tensors.core.tensorAlgebra
import space.kscience.kmath.tensors.core.withBroadcast import space.kscience.kmath.tensors.core.withBroadcast
@ -15,13 +16,13 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// set true value of x // set true value of x
val trueX = fromArray( val trueX = fromArray(
intArrayOf(4), Shape(4),
doubleArrayOf(-2.0, 1.5, 6.8, -2.4) doubleArrayOf(-2.0, 1.5, 6.8, -2.4)
) )
// and A matrix // and A matrix
val a = fromArray( val a = fromArray(
intArrayOf(4, 4), Shape(4, 4),
doubleArrayOf( doubleArrayOf(
0.5, 10.5, 4.5, 1.0, 0.5, 10.5, 4.5, 1.0,
8.5, 0.9, 12.8, 0.1, 8.5, 0.9, 12.8, 0.1,
@ -64,7 +65,7 @@ fun main() = Double.tensorAlgebra.withBroadcast {// work in context with linear
// this function returns solution x of a system lx = b, l should be lower triangular // this function returns solution x of a system lx = b, l should be lower triangular
fun solveLT(l: DoubleTensor, b: DoubleTensor): DoubleTensor { fun solveLT(l: DoubleTensor, b: DoubleTensor): DoubleTensor {
val n = l.shape[0] val n = l.shape[0]
val x = zeros(intArrayOf(n)) val x = zeros(Shape(n))
for (i in 0 until n) { for (i in 0 until n) {
x[intArrayOf(i)] = (b[intArrayOf(i)] - l.getTensor(i).dot(x).value()) / l[intArrayOf(i, i)] x[intArrayOf(i)] = (b[intArrayOf(i)] - l.getTensor(i).dot(x).value()) / l[intArrayOf(i, i)]
} }

View File

@ -5,6 +5,8 @@
package space.kscience.kmath.tensors package space.kscience.kmath.tensors
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.operations.asIterable import space.kscience.kmath.operations.asIterable
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
@ -68,12 +70,12 @@ class Dense(
private val weights: DoubleTensor = DoubleTensorAlgebra { private val weights: DoubleTensor = DoubleTensorAlgebra {
randomNormal( randomNormal(
intArrayOf(inputUnits, outputUnits), Shape(inputUnits, outputUnits),
seed seed
) * sqrt(2.0 / (inputUnits + outputUnits)) ) * sqrt(2.0 / (inputUnits + outputUnits))
} }
private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(intArrayOf(outputUnits)) } private val bias: DoubleTensor = DoubleTensorAlgebra { zeros(Shape(outputUnits)) }
override fun forward(input: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra { override fun forward(input: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
(input dot weights) + bias (input dot weights) + bias
@ -182,17 +184,17 @@ fun main() = BroadcastDoubleTensorAlgebra {
//val testSize = sampleSize - trainSize //val testSize = sampleSize - trainSize
// take sample of features from normal distribution // take sample of features from normal distribution
val x = randomNormal(intArrayOf(sampleSize, features), seed) * 2.5 val x = randomNormal(Shape(sampleSize, features), seed) * 2.5
x += fromArray( x += fromArray(
intArrayOf(5), Shape(5),
doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // row means doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // row means
) )
// define class like '1' if the sum of features > 0 and '0' otherwise // define class like '1' if the sum of features > 0 and '0' otherwise
val y = fromArray( val y = fromArray(
intArrayOf(sampleSize, 1), Shape(sampleSize, 1),
DoubleArray(sampleSize) { i -> DoubleArray(sampleSize) { i ->
if (x.getTensor(i).sum() > 0.0) { if (x.getTensor(i).sum() > 0.0) {
1.0 1.0

View File

@ -3,13 +3,11 @@
# Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. # Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
# #
kotlin.code.style=official kotlin.code.style=official
kotlin.jupyter.add.scanner=false
kotlin.mpp.stability.nowarn=true kotlin.mpp.stability.nowarn=true
kotlin.native.ignoreDisabledTargets=true kotlin.native.ignoreDisabledTargets=true
kotlin.incremental.js.ir=true kotlin.incremental.js.ir=true
org.gradle.configureondemand=true org.gradle.configureondemand=true
org.gradle.parallel=true
org.gradle.jvmargs=-Xmx4096m org.gradle.jvmargs=-Xmx4096m
toolsVersion=0.13.0-kotlin-1.7.20-Beta toolsVersion=0.13.1-kotlin-1.7.20

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.complex package space.kscience.kmath.complex
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.*
@ -20,6 +21,7 @@ import kotlin.contracts.contract
public sealed class ComplexFieldOpsND : BufferedFieldOpsND<Complex, ComplexField>(ComplexField.bufferAlgebra), public sealed class ComplexFieldOpsND : BufferedFieldOpsND<Complex, ComplexField>(ComplexField.bufferAlgebra),
ScaleOperations<StructureND<Complex>>, ExtendedFieldOps<StructureND<Complex>>, PowerOperations<StructureND<Complex>> { ScaleOperations<StructureND<Complex>>, ExtendedFieldOps<StructureND<Complex>>, PowerOperations<StructureND<Complex>> {
@OptIn(PerformancePitfall::class)
override fun StructureND<Complex>.toBufferND(): BufferND<Complex> = when (this) { override fun StructureND<Complex>.toBufferND(): BufferND<Complex> = when (this) {
is BufferND -> this is BufferND -> this
else -> { else -> {
@ -69,12 +71,12 @@ public class ComplexFieldND(override val shape: Shape) :
public val ComplexField.ndAlgebra: ComplexFieldOpsND get() = ComplexFieldOpsND public val ComplexField.ndAlgebra: ComplexFieldOpsND get() = ComplexFieldOpsND
public fun ComplexField.ndAlgebra(vararg shape: Int): ComplexFieldND = ComplexFieldND(shape) public fun ComplexField.ndAlgebra(vararg shape: Int): ComplexFieldND = ComplexFieldND(Shape(shape))
/** /**
* Produce a context for n-dimensional operations inside this real field * Produce a context for n-dimensional operations inside this real field
*/ */
public inline fun <R> ComplexField.withNdAlgebra(vararg shape: Int, action: ComplexFieldND.() -> R): R { public inline fun <R> ComplexField.withNdAlgebra(vararg shape: Int, action: ComplexFieldND.() -> R): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) } contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return ComplexFieldND(shape).action() return ComplexFieldND(Shape(shape)).action()
} }

View File

@ -6,9 +6,7 @@
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.BufferedRingOpsND import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.asND
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.VirtualBuffer import space.kscience.kmath.structures.VirtualBuffer
@ -23,7 +21,7 @@ public class BufferedLinearSpace<T, out A : Ring<T>>(
private val ndAlgebra = BufferedRingOpsND(bufferAlgebra) private val ndAlgebra = BufferedRingOpsND(bufferAlgebra)
override fun buildMatrix(rows: Int, columns: Int, initializer: A.(i: Int, j: Int) -> T): Matrix<T> = override fun buildMatrix(rows: Int, columns: Int, initializer: A.(i: Int, j: Int) -> T): Matrix<T> =
ndAlgebra.structureND(intArrayOf(rows, columns)) { (i, j) -> elementAlgebra.initializer(i, j) }.as2D() ndAlgebra.structureND(Shape(rows, columns)) { (i, j) -> elementAlgebra.initializer(i, j) }.as2D()
override fun buildVector(size: Int, initializer: A.(Int) -> T): Point<T> = override fun buildVector(size: Int, initializer: A.(Int) -> T): Point<T> =
bufferAlgebra.buffer(size) { elementAlgebra.initializer(it) } bufferAlgebra.buffer(size) { elementAlgebra.initializer(it) }

View File

@ -6,9 +6,7 @@
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.DoubleFieldOpsND import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.nd.asND
import space.kscience.kmath.operations.DoubleBufferOps import space.kscience.kmath.operations.DoubleBufferOps
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
@ -23,7 +21,7 @@ public object DoubleLinearSpace : LinearSpace<Double, DoubleField> {
rows: Int, rows: Int,
columns: Int, columns: Int,
initializer: DoubleField.(i: Int, j: Int) -> Double initializer: DoubleField.(i: Int, j: Int) -> Double
): Matrix<Double> = DoubleFieldOpsND.structureND(intArrayOf(rows, columns)) { (i, j) -> ): Matrix<Double> = DoubleFieldOpsND.structureND(Shape(rows, columns)) { (i, j) ->
DoubleField.initializer(i, j) DoubleField.initializer(i, j)
}.as2D() }.as2D()

View File

@ -5,6 +5,8 @@
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.kmath.nd.Shape
/** /**
* The matrix where each element is evaluated each time when is being accessed. * The matrix where each element is evaluated each time when is being accessed.
* *
@ -16,7 +18,7 @@ public class VirtualMatrix<out T : Any>(
public val generator: (i: Int, j: Int) -> T, public val generator: (i: Int, j: Int) -> T,
) : Matrix<T> { ) : Matrix<T> {
override val shape: IntArray get() = intArrayOf(rowNum, colNum) override val shape: Shape get() = Shape(rowNum, colNum)
override operator fun get(i: Int, j: Int): T = generator(i, j) override operator fun get(i: Int, j: Int): T = generator(i, j)
} }

View File

@ -29,3 +29,16 @@ public annotation class UnstableKMathAPI
public annotation class PerformancePitfall( public annotation class PerformancePitfall(
val message: String = "Potential performance problem", val message: String = "Potential performance problem",
) )
/**
* Marks API that is public, but should not be used without clear understanding what it does.
*/
@MustBeDocumented
@Retention(value = AnnotationRetention.BINARY)
@RequiresOptIn(
"This API is unsafe and should be used carefully",
RequiresOptIn.Level.ERROR,
)
public annotation class UnsafeKMathAPI(
val message: String = "Unsafe API",
)

View File

@ -12,7 +12,7 @@ import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.*
public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> { public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> {
public val indexerBuilder: (IntArray) -> ShapeIndexer public val indexerBuilder: (Shape) -> ShapeIndexer
public val bufferAlgebra: BufferAlgebra<T, A> public val bufferAlgebra: BufferAlgebra<T, A>
override val elementAlgebra: A get() = bufferAlgebra.elementAlgebra override val elementAlgebra: A get() = bufferAlgebra.elementAlgebra
@ -26,6 +26,7 @@ public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> {
) )
} }
@OptIn(PerformancePitfall::class)
public fun StructureND<T>.toBufferND(): BufferND<T> = when (this) { public fun StructureND<T>.toBufferND(): BufferND<T> = when (this) {
is BufferND -> this is BufferND -> this
else -> { else -> {
@ -46,7 +47,7 @@ public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> {
zipInline(left.toBufferND(), right.toBufferND(), transform) zipInline(left.toBufferND(), right.toBufferND(), transform)
public companion object { public companion object {
public val defaultIndexerBuilder: (IntArray) -> ShapeIndexer = ::Strides public val defaultIndexerBuilder: (Shape) -> ShapeIndexer = ::Strides
} }
} }
@ -98,24 +99,24 @@ internal inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.zipInline(
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class)
public open class BufferedGroupNDOps<T, out A : Group<T>>( public open class BufferedGroupNDOps<T, out A : Group<T>>(
override val bufferAlgebra: BufferAlgebra<T, A>, override val bufferAlgebra: BufferAlgebra<T, A>,
override val indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder, override val indexerBuilder: (Shape) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : GroupOpsND<T, A>, BufferAlgebraND<T, A> { ) : GroupOpsND<T, A>, BufferAlgebraND<T, A> {
override fun StructureND<T>.unaryMinus(): StructureND<T> = map { -it } override fun StructureND<T>.unaryMinus(): StructureND<T> = map { -it }
} }
public open class BufferedRingOpsND<T, out A : Ring<T>>( public open class BufferedRingOpsND<T, out A : Ring<T>>(
bufferAlgebra: BufferAlgebra<T, A>, bufferAlgebra: BufferAlgebra<T, A>,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder, indexerBuilder: (Shape) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : BufferedGroupNDOps<T, A>(bufferAlgebra, indexerBuilder), RingOpsND<T, A> ) : BufferedGroupNDOps<T, A>(bufferAlgebra, indexerBuilder), RingOpsND<T, A>
public open class BufferedFieldOpsND<T, out A : Field<T>>( public open class BufferedFieldOpsND<T, out A : Field<T>>(
bufferAlgebra: BufferAlgebra<T, A>, bufferAlgebra: BufferAlgebra<T, A>,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder, indexerBuilder: (Shape) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : BufferedRingOpsND<T, A>(bufferAlgebra, indexerBuilder), FieldOpsND<T, A> { ) : BufferedRingOpsND<T, A>(bufferAlgebra, indexerBuilder), FieldOpsND<T, A> {
public constructor( public constructor(
elementAlgebra: A, elementAlgebra: A,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder, indexerBuilder: (Shape) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : this(BufferFieldOps(elementAlgebra), indexerBuilder) ) : this(BufferFieldOps(elementAlgebra), indexerBuilder)
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class)
@ -130,7 +131,7 @@ public val <T, A : Field<T>> BufferAlgebra<T, A>.nd: BufferedFieldOpsND<T, A> ge
public fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.structureND( public fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.structureND(
vararg shape: Int, vararg shape: Int,
initializer: A.(IntArray) -> T, initializer: A.(IntArray) -> T,
): BufferND<T> = structureND(shape, initializer) ): BufferND<T> = structureND(Shape(shape), initializer)
public fun <T, EA : Algebra<T>, A> A.structureND( public fun <T, EA : Algebra<T>, A> A.structureND(
initializer: EA.(IntArray) -> T, initializer: EA.(IntArray) -> T,

View File

@ -5,10 +5,9 @@
package space.kscience.kmath.nd package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.MutableBuffer import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.MutableBufferFactory
/** /**
* Represents [StructureND] over [Buffer]. * Represents [StructureND] over [Buffer].
@ -22,32 +21,33 @@ public open class BufferND<out T>(
public open val buffer: Buffer<T>, public open val buffer: Buffer<T>,
) : StructureND<T> { ) : StructureND<T> {
@PerformancePitfall
override operator fun get(index: IntArray): T = buffer[indices.offset(index)] override operator fun get(index: IntArray): T = buffer[indices.offset(index)]
override val shape: IntArray get() = indices.shape override val shape: Shape get() = indices.shape
override fun toString(): String = StructureND.toString(this) override fun toString(): String = StructureND.toString(this)
} }
/** ///**
* Transform structure to a new structure using provided [BufferFactory] and optimizing if argument is [BufferND] // * Transform structure to a new structure using provided [BufferFactory] and optimizing if argument is [BufferND]
*/ // */
public inline fun <T, R : Any> StructureND<T>.mapToBuffer( //public inline fun <T, R : Any> StructureND<T>.mapToBuffer(
factory: BufferFactory<R>, // factory: BufferFactory<R>,
crossinline transform: (T) -> R, // crossinline transform: (T) -> R,
): BufferND<R> = if (this is BufferND<T>) //): BufferND<R> = if (this is BufferND<T>)
BufferND(this.indices, factory.invoke(indices.linearSize) { transform(buffer[it]) }) // BufferND(this.indices, factory.invoke(indices.linearSize) { transform(buffer[it]) })
else { //else {
val strides = ColumnStrides(shape) // val strides = ColumnStrides(shape)
BufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) }) // BufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) })
} //}
//
/** ///**
* Transform structure to a new structure using inferred [BufferFactory] // * Transform structure to a new structure using inferred [BufferFactory]
*/ // */
public inline fun <T, reified R : Any> StructureND<T>.mapToBuffer( //public inline fun <T, reified R : Any> StructureND<T>.mapToBuffer(
crossinline transform: (T) -> R, // crossinline transform: (T) -> R,
): BufferND<R> = mapToBuffer(Buffer.Companion::auto, transform) //): BufferND<R> = mapToBuffer(Buffer.Companion::auto, transform)
/** /**
* Represents [MutableStructureND] over [MutableBuffer]. * Represents [MutableStructureND] over [MutableBuffer].
@ -60,22 +60,24 @@ public open class MutableBufferND<T>(
strides: ShapeIndexer, strides: ShapeIndexer,
override val buffer: MutableBuffer<T>, override val buffer: MutableBuffer<T>,
) : MutableStructureND<T>, BufferND<T>(strides, buffer) { ) : MutableStructureND<T>, BufferND<T>(strides, buffer) {
@PerformancePitfall
override fun set(index: IntArray, value: T) { override fun set(index: IntArray, value: T) {
buffer[indices.offset(index)] = value buffer[indices.offset(index)] = value
} }
} }
/** ///**
* Transform structure to a new structure using provided [MutableBufferFactory] and optimizing if argument is [MutableBufferND] // * Transform structure to a new structure using provided [MutableBufferFactory] and optimizing if argument is [MutableBufferND]
*/ // */
public inline fun <T, reified R : Any> MutableStructureND<T>.mapToMutableBuffer( //public inline fun <T, reified R : Any> MutableStructureND<T>.mapToMutableBuffer(
factory: MutableBufferFactory<R> = MutableBufferFactory(MutableBuffer.Companion::auto), // factory: MutableBufferFactory<R> = MutableBufferFactory(MutableBuffer.Companion::auto),
crossinline transform: (T) -> R, // crossinline transform: (T) -> R,
): MutableBufferND<R> { //): MutableBufferND<R> {
return if (this is MutableBufferND<T>) // return if (this is MutableBufferND<T>)
MutableBufferND(this.indices, factory.invoke(indices.linearSize) { transform(buffer[it]) }) // MutableBufferND(this.indices, factory.invoke(indices.linearSize) { transform(buffer[it]) })
else { // else {
val strides = ColumnStrides(shape) // val strides = ColumnStrides(shape)
MutableBufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) }) // MutableBufferND(strides, factory.invoke(strides.linearSize) { transform(get(strides.index(it))) })
} // }
} //}

View File

@ -14,15 +14,25 @@ import kotlin.contracts.contract
import kotlin.math.pow import kotlin.math.pow
import kotlin.math.pow as kpow import kotlin.math.pow as kpow
/**
* A simple mutable [StructureND] of doubles
*/
public class DoubleBufferND( public class DoubleBufferND(
indexes: ShapeIndexer, indexes: ShapeIndexer,
override val buffer: DoubleBuffer, override val buffer: DoubleBuffer,
) : MutableBufferND<Double>(indexes, buffer) ) : MutableBufferND<Double>(indexes, buffer), MutableStructureNDOfDouble{
override fun getDouble(index: IntArray): Double = buffer[indices.offset(index)]
override fun setDouble(index: IntArray, value: Double) {
buffer[indices.offset(index)] = value
}
}
public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(DoubleField.bufferAlgebra), public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(DoubleField.bufferAlgebra),
ScaleOperations<StructureND<Double>>, ExtendedFieldOps<StructureND<Double>> { ScaleOperations<StructureND<Double>>, ExtendedFieldOps<StructureND<Double>> {
@OptIn(PerformancePitfall::class)
override fun StructureND<Double>.toBufferND(): DoubleBufferND = when (this) { override fun StructureND<Double>.toBufferND(): DoubleBufferND = when (this) {
is DoubleBufferND -> this is DoubleBufferND -> this
else -> { else -> {
@ -221,7 +231,8 @@ public class DoubleFieldND(override val shape: Shape) :
public val DoubleField.ndAlgebra: DoubleFieldOpsND get() = DoubleFieldOpsND public val DoubleField.ndAlgebra: DoubleFieldOpsND get() = DoubleFieldOpsND
public fun DoubleField.ndAlgebra(vararg shape: Int): DoubleFieldND = DoubleFieldND(shape) public fun DoubleField.ndAlgebra(vararg shape: Int): DoubleFieldND = DoubleFieldND(Shape(shape))
public fun DoubleField.ndAlgebra(shape: Shape): DoubleFieldND = DoubleFieldND(shape)
/** /**
* Produce a context for n-dimensional operations inside this real field * Produce a context for n-dimensional operations inside this real field
@ -229,5 +240,5 @@ public fun DoubleField.ndAlgebra(vararg shape: Int): DoubleFieldND = DoubleField
@UnstableKMathAPI @UnstableKMathAPI
public inline fun <R> DoubleField.withNdAlgebra(vararg shape: Int, action: DoubleFieldND.() -> R): R { public inline fun <R> DoubleField.withNdAlgebra(vararg shape: Int, action: DoubleFieldND.() -> R): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) } contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return DoubleFieldND(shape).run(action) return DoubleFieldND(Shape(shape)).run(action)
} }

View File

@ -46,5 +46,5 @@ public class IntRingND(
public inline fun <R> IntRing.withNdAlgebra(vararg shape: Int, action: IntRingND.() -> R): R { public inline fun <R> IntRing.withNdAlgebra(vararg shape: Int, action: IntRingND.() -> R): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) } contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return IntRingND(shape).run(action) return IntRingND(Shape(shape)).run(action)
} }

View File

@ -0,0 +1,50 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
public class PermutedStructureND<T>(
public val origin: StructureND<T>,
public val permutation: (IntArray) -> IntArray,
) : StructureND<T> {
override val shape: Shape
get() = origin.shape
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): T {
return origin[permutation(index)]
}
}
public fun <T> StructureND<T>.permute(
permutation: (IntArray) -> IntArray,
): PermutedStructureND<T> = PermutedStructureND(this, permutation)
public class PermutedMutableStructureND<T>(
public val origin: MutableStructureND<T>,
override val shape: Shape = origin.shape,
public val permutation: (IntArray) -> IntArray,
) : MutableStructureND<T> {
@OptIn(PerformancePitfall::class)
override fun set(index: IntArray, value: T) {
origin[permutation(index)] = value
}
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): T {
return origin[permutation(index)]
}
}
public fun <T> MutableStructureND<T>.permute(
newShape: Shape = shape,
permutation: (IntArray) -> IntArray,
): PermutedMutableStructureND<T> = PermutedMutableStructureND(this, newShape, permutation)

View File

@ -5,21 +5,88 @@
package space.kscience.kmath.nd package space.kscience.kmath.nd
import space.kscience.kmath.misc.UnsafeKMathAPI
import kotlin.jvm.JvmInline
/**
* A read-only ND shape
*/
@JvmInline
public value class Shape(@PublishedApi internal val array: IntArray) {
public val size: Int get() = array.size
public operator fun get(index: Int): Int = array[index]
override fun toString(): String = array.contentToString()
}
public inline fun Shape.forEach(block: (value: Int) -> Unit): Unit = array.forEach(block)
public inline fun Shape.forEachIndexed(block: (index: Int, value: Int) -> Unit): Unit = array.forEachIndexed(block)
public infix fun Shape.contentEquals(other: Shape): Boolean = array.contentEquals(other.array)
public fun Shape.contentHashCode(): Int = array.contentHashCode()
public val Shape.indices: IntRange get() = array.indices
public val Shape.linearSize: Int get() = array.reduce(Int::times)
public fun Shape.slice(range: IntRange): Shape = Shape(array.sliceArray(range))
public fun Shape.last(): Int = array.last()
/**
* A shape including last [n] dimensions of this shape
*/
public fun Shape.last(n: Int): Shape = Shape(array.copyOfRange(size - n, size))
public fun Shape.first(): Int = array.first()
/**
* A shape including first [n] dimensions of this shape
*/
public fun Shape.first(n: Int): Shape = Shape(array.copyOfRange(0, n))
public operator fun Shape.plus(add: IntArray): Shape = Shape(array + add)
public operator fun Shape.plus(add: Shape): Shape = Shape(array + add.array)
public fun Shape.isEmpty(): Boolean = size == 0
public fun Shape.isNotEmpty(): Boolean = size > 0
public fun Shape.transposed(i: Int, j: Int): Shape = Shape(array.copyOf().apply {
val ith = get(i)
val jth = get(j)
set(i, jth)
set(j, ith)
})
public operator fun Shape.component1(): Int = get(0)
public operator fun Shape.component2(): Int = get(1)
public operator fun Shape.component3(): Int = get(2)
/**
* Convert to array with protective copy
*/
public fun Shape.toArray(): IntArray = array.copyOf()
@UnsafeKMathAPI
public fun Shape.asArray(): IntArray = array
public fun Shape.asList(): List<Int> = array.asList()
/** /**
* An exception is thrown when the expected and actual shape of NDArray differ. * An exception is thrown when the expected and actual shape of NDArray differ.
* *
* @property expected the expected shape. * @property expected the expected shape.
* @property actual the actual shape. * @property actual the actual shape.
*/ */
public class ShapeMismatchException(public val expected: IntArray, public val actual: IntArray) : public class ShapeMismatchException(public val expected: Shape, public val actual: Shape) :
RuntimeException("Shape ${actual.contentToString()} doesn't fit in expected shape ${expected.contentToString()}.") RuntimeException("Shape $actual doesn't fit in expected shape ${expected}.")
public class IndexOutOfShapeException(public val shape: Shape, public val index: IntArray) : public class IndexOutOfShapeException(public val shape: Shape, public val index: IntArray) :
RuntimeException("Index ${index.contentToString()} is out of shape ${shape.contentToString()}") RuntimeException("Index ${index.contentToString()} is out of shape ${shape}")
public typealias Shape = IntArray public fun Shape(shapeFirst: Int, vararg shapeRest: Int): Shape = Shape(intArrayOf(shapeFirst, *shapeRest))
public fun Shape(shapeFirst: Int, vararg shapeRest: Int): Shape = intArrayOf(shapeFirst, *shapeRest)
public interface WithShape { public interface WithShape {
public val shape: Shape public val shape: Shape
@ -28,8 +95,8 @@ public interface WithShape {
} }
internal fun requireIndexInShape(index: IntArray, shape: Shape) { internal fun requireIndexInShape(index: IntArray, shape: Shape) {
if (index.size != shape.size) throw IndexOutOfShapeException(index, shape) if (index.size != shape.size) throw IndexOutOfShapeException(shape, index)
shape.forEachIndexed { axis, axisShape -> shape.forEachIndexed { axis, axisShape ->
if (index[axis] !in 0 until axisShape) throw IndexOutOfShapeException(index, shape) if (index[axis] !in 0 until axisShape) throw IndexOutOfShapeException(shape, index)
} }
} }

View File

@ -49,10 +49,10 @@ public abstract class Strides : ShapeIndexer {
/** /**
* Array strides * Array strides
*/ */
public abstract val strides: IntArray internal abstract val strides: IntArray
public override fun offset(index: IntArray): Int = index.mapIndexed { i, value -> public override fun offset(index: IntArray): Int = index.mapIndexed { i, value ->
if (value < 0 || value >= shape[i]) throw IndexOutOfBoundsException("Index $value out of shape bounds: (0,${this.shape[i]})") if (value !in 0 until shape[i]) throw IndexOutOfBoundsException("Index $value out of shape bounds: (0, ${this.shape[i]})")
value * strides[i] value * strides[i]
}.sum() }.sum()
@ -63,15 +63,12 @@ public abstract class Strides : ShapeIndexer {
*/ */
public override fun asSequence(): Sequence<IntArray> = (0 until linearSize).asSequence().map(::index) public override fun asSequence(): Sequence<IntArray> = (0 until linearSize).asSequence().map(::index)
public companion object{
public fun linearSizeOf(shape: IntArray): Int = shape.reduce(Int::times)
}
} }
/** /**
* Column-first [Strides]. Columns are represented as continuous arrays * Column-first [Strides]. Columns are represented as continuous arrays
*/ */
public class ColumnStrides(override val shape: IntArray) : Strides() { public class ColumnStrides(override val shape: Shape) : Strides() {
override val linearSize: Int get() = strides[shape.size] override val linearSize: Int get() = strides[shape.size]
/** /**
@ -121,7 +118,7 @@ public class ColumnStrides(override val shape: IntArray) : Strides() {
* *
* @param shape the shape of the tensor. * @param shape the shape of the tensor.
*/ */
public class RowStrides(override val shape: IntArray) : Strides() { public class RowStrides(override val shape: Shape) : Strides() {
override val strides: IntArray by lazy { override val strides: IntArray by lazy {
val nDim = shape.size val nDim = shape.size
@ -151,7 +148,7 @@ public class RowStrides(override val shape: IntArray) : Strides() {
return res return res
} }
override val linearSize: Int get() = linearSizeOf(shape) override val linearSize: Int get() = shape.linearSize
override fun equals(other: Any?): Boolean { override fun equals(other: Any?): Boolean {
if (this === other) return true if (this === other) return true
@ -166,9 +163,9 @@ public class RowStrides(override val shape: IntArray) : Strides() {
} }
@ThreadLocal @ThreadLocal
private val defaultStridesCache = HashMap<IntArray, Strides>() private val defaultStridesCache = HashMap<Shape, Strides>()
/** /**
* Cached builder for default strides * Cached builder for default strides
*/ */
public fun Strides(shape: IntArray): Strides = defaultStridesCache.getOrPut(shape) { RowStrides(shape) } public fun Strides(shape: Shape): Strides = defaultStridesCache.getOrPut(shape) { RowStrides(shape) }

View File

@ -30,5 +30,5 @@ public class ShortRingND(
public inline fun <R> ShortRing.withNdAlgebra(vararg shape: Int, action: ShortRingND.() -> R): R { public inline fun <R> ShortRing.withNdAlgebra(vararg shape: Int, action: ShortRingND.() -> R): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) } contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return ShortRingND(shape).run(action) return ShortRingND(Shape(shape)).run(action)
} }

View File

@ -18,6 +18,7 @@ import kotlin.jvm.JvmInline
public interface Structure1D<out T> : StructureND<T>, Buffer<T> { public interface Structure1D<out T> : StructureND<T>, Buffer<T> {
override val dimension: Int get() = 1 override val dimension: Int get() = 1
@PerformancePitfall
override operator fun get(index: IntArray): T { override operator fun get(index: IntArray): T {
require(index.size == 1) { "Index dimension mismatch. Expected 1 but found ${index.size}" } require(index.size == 1) { "Index dimension mismatch. Expected 1 but found ${index.size}" }
return get(index[0]) return get(index[0])
@ -32,6 +33,8 @@ public interface Structure1D<out T> : StructureND<T>, Buffer<T> {
* A mutable structure that is guaranteed to be one-dimensional * A mutable structure that is guaranteed to be one-dimensional
*/ */
public interface MutableStructure1D<T> : Structure1D<T>, MutableStructureND<T>, MutableBuffer<T> { public interface MutableStructure1D<T> : Structure1D<T>, MutableStructureND<T>, MutableBuffer<T> {
@PerformancePitfall
override operator fun set(index: IntArray, value: T) { override operator fun set(index: IntArray, value: T) {
require(index.size == 1) { "Index dimension mismatch. Expected 1 but found ${index.size}" } require(index.size == 1) { "Index dimension mismatch. Expected 1 but found ${index.size}" }
set(index[0], value) set(index[0], value)
@ -43,9 +46,10 @@ public interface MutableStructure1D<T> : Structure1D<T>, MutableStructureND<T>,
*/ */
@JvmInline @JvmInline
private value class Structure1DWrapper<out T>(val structure: StructureND<T>) : Structure1D<T> { private value class Structure1DWrapper<out T>(val structure: StructureND<T>) : Structure1D<T> {
override val shape: IntArray get() = structure.shape override val shape: Shape get() = structure.shape
override val size: Int get() = structure.shape[0] override val size: Int get() = structure.shape[0]
@PerformancePitfall
override operator fun get(index: Int): T = structure[index] override operator fun get(index: Int): T = structure[index]
@PerformancePitfall @PerformancePitfall
@ -56,13 +60,16 @@ private value class Structure1DWrapper<out T>(val structure: StructureND<T>) : S
* A 1D wrapper for a mutable nd-structure * A 1D wrapper for a mutable nd-structure
*/ */
private class MutableStructure1DWrapper<T>(val structure: MutableStructureND<T>) : MutableStructure1D<T> { private class MutableStructure1DWrapper<T>(val structure: MutableStructureND<T>) : MutableStructure1D<T> {
override val shape: IntArray get() = structure.shape override val shape: Shape get() = structure.shape
override val size: Int get() = structure.shape[0] override val size: Int get() = structure.shape[0]
@PerformancePitfall @PerformancePitfall
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements() override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()
@PerformancePitfall
override fun get(index: Int): T = structure[index] override fun get(index: Int): T = structure[index]
@PerformancePitfall
override fun set(index: Int, value: T) { override fun set(index: Int, value: T) {
structure[intArrayOf(index)] = value structure[intArrayOf(index)] = value
} }
@ -83,7 +90,7 @@ private class MutableStructure1DWrapper<T>(val structure: MutableStructureND<T>)
*/ */
@JvmInline @JvmInline
private value class Buffer1DWrapper<out T>(val buffer: Buffer<T>) : Structure1D<T> { private value class Buffer1DWrapper<out T>(val buffer: Buffer<T>) : Structure1D<T> {
override val shape: IntArray get() = intArrayOf(buffer.size) override val shape: Shape get() = Shape(buffer.size)
override val size: Int get() = buffer.size override val size: Int get() = buffer.size
@PerformancePitfall @PerformancePitfall
@ -95,7 +102,7 @@ private value class Buffer1DWrapper<out T>(val buffer: Buffer<T>) : Structure1D<
} }
internal class MutableBuffer1DWrapper<T>(val buffer: MutableBuffer<T>) : MutableStructure1D<T> { internal class MutableBuffer1DWrapper<T>(val buffer: MutableBuffer<T>) : MutableStructure1D<T> {
override val shape: IntArray get() = intArrayOf(buffer.size) override val shape: Shape get() = Shape(buffer.size)
override val size: Int get() = buffer.size override val size: Int get() = buffer.size
@PerformancePitfall @PerformancePitfall

View File

@ -29,7 +29,7 @@ public interface Structure2D<out T> : StructureND<T> {
*/ */
public val colNum: Int public val colNum: Int
override val shape: IntArray get() = intArrayOf(rowNum, colNum) override val shape: Shape get() = Shape(rowNum, colNum)
/** /**
* The buffer of rows of this structure. It gets elements from the structure dynamically. * The buffer of rows of this structure. It gets elements from the structure dynamically.
@ -54,6 +54,7 @@ public interface Structure2D<out T> : StructureND<T> {
*/ */
public operator fun get(i: Int, j: Int): T public operator fun get(i: Int, j: Int): T
@PerformancePitfall
override operator fun get(index: IntArray): T { override operator fun get(index: IntArray): T {
require(index.size == 2) { "Index dimension mismatch. Expected 2 but found ${index.size}" } require(index.size == 2) { "Index dimension mismatch. Expected 2 but found ${index.size}" }
return get(index[0], index[1]) return get(index[0], index[1])
@ -106,6 +107,7 @@ private value class Structure2DWrapper<out T>(val structure: StructureND<T>) : S
override val rowNum: Int get() = shape[0] override val rowNum: Int get() = shape[0]
override val colNum: Int get() = shape[1] override val colNum: Int get() = shape[1]
@PerformancePitfall
override operator fun get(i: Int, j: Int): T = structure[i, j] override operator fun get(i: Int, j: Int): T = structure[i, j]
override fun <F : StructureFeature> getFeature(type: KClass<out F>): F? = structure.getFeature(type) override fun <F : StructureFeature> getFeature(type: KClass<out F>): F? = structure.getFeature(type)
@ -123,12 +125,15 @@ private class MutableStructure2DWrapper<T>(val structure: MutableStructureND<T>)
override val rowNum: Int get() = shape[0] override val rowNum: Int get() = shape[0]
override val colNum: Int get() = shape[1] override val colNum: Int get() = shape[1]
@PerformancePitfall
override operator fun get(i: Int, j: Int): T = structure[i, j] override operator fun get(i: Int, j: Int): T = structure[i, j]
@PerformancePitfall
override fun set(index: IntArray, value: T) { override fun set(index: IntArray, value: T) {
structure[index] = value structure[index] = value
} }
@PerformancePitfall
override operator fun set(i: Int, j: Int, value: T) { override operator fun set(i: Int, j: Int, value: T) {
structure[intArrayOf(i, j)] = value structure[intArrayOf(i, j)] = value
} }

View File

@ -46,6 +46,7 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
* @param index the indices. * @param index the indices.
* @return the value. * @return the value.
*/ */
@PerformancePitfall
public operator fun get(index: IntArray): T public operator fun get(index: IntArray): T
/** /**
@ -97,6 +98,7 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
/** /**
* Debug output to string * Debug output to string
*/ */
@OptIn(PerformancePitfall::class)
public fun toString(structure: StructureND<*>): String { public fun toString(structure: StructureND<*>): String {
val bufferRepr: String = when (structure.shape.size) { val bufferRepr: String = when (structure.shape.size) {
1 -> (0 until structure.shape[0]).map { structure[it] } 1 -> (0 until structure.shape[0]).map { structure[it] }
@ -116,7 +118,7 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
} }
val className = structure::class.simpleName ?: "StructureND" val className = structure::class.simpleName ?: "StructureND"
return "$className(shape=${structure.shape.contentToString()}, buffer=$bufferRepr)" return "$className(shape=${structure.shape}, buffer=$bufferRepr)"
} }
/** /**
@ -145,13 +147,13 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
): BufferND<T> = BufferND(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) }) ): BufferND<T> = BufferND(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) })
public fun <T> buffered( public fun <T> buffered(
shape: IntArray, shape: Shape,
bufferFactory: BufferFactory<T> = BufferFactory.boxing(), bufferFactory: BufferFactory<T> = BufferFactory.boxing(),
initializer: (IntArray) -> T, initializer: (IntArray) -> T,
): BufferND<T> = buffered(ColumnStrides(shape), bufferFactory, initializer) ): BufferND<T> = buffered(ColumnStrides(shape), bufferFactory, initializer)
public inline fun <reified T : Any> auto( public inline fun <reified T : Any> auto(
shape: IntArray, shape: Shape,
crossinline initializer: (IntArray) -> T, crossinline initializer: (IntArray) -> T,
): BufferND<T> = auto(ColumnStrides(shape), initializer) ): BufferND<T> = auto(ColumnStrides(shape), initializer)
@ -160,13 +162,13 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
vararg shape: Int, vararg shape: Int,
crossinline initializer: (IntArray) -> T, crossinline initializer: (IntArray) -> T,
): BufferND<T> = ): BufferND<T> =
auto(ColumnStrides(shape), initializer) auto(ColumnStrides(Shape(shape)), initializer)
public inline fun <T : Any> auto( public inline fun <T : Any> auto(
type: KClass<T>, type: KClass<T>,
vararg shape: Int, vararg shape: Int,
crossinline initializer: (IntArray) -> T, crossinline initializer: (IntArray) -> T,
): BufferND<T> = auto(type, ColumnStrides(shape), initializer) ): BufferND<T> = auto(type, ColumnStrides(Shape(shape)), initializer)
} }
} }
@ -214,8 +216,13 @@ public fun <T : Comparable<T>> LinearSpace<T, Ring<T>>.contentEquals(
* @param index the indices. * @param index the indices.
* @return the value. * @return the value.
*/ */
@PerformancePitfall
public operator fun <T> StructureND<T>.get(vararg index: Int): T = get(index) public operator fun <T> StructureND<T>.get(vararg index: Int): T = get(index)
public operator fun StructureND<Double>.get(vararg index: Int): Double = getDouble(index)
public operator fun StructureND<Int>.get(vararg index: Int): Int = getInt(index)
//@UnstableKMathAPI //@UnstableKMathAPI
//public inline fun <reified T : StructureFeature> StructureND<*>.getFeature(): T? = getFeature(T::class) //public inline fun <reified T : StructureFeature> StructureND<*>.getFeature(): T? = getFeature(T::class)
@ -229,12 +236,14 @@ public interface MutableStructureND<T> : StructureND<T> {
* @param index the indices. * @param index the indices.
* @param value the value. * @param value the value.
*/ */
@PerformancePitfall
public operator fun set(index: IntArray, value: T) public operator fun set(index: IntArray, value: T)
} }
/** /**
* Set value at specified indices * Set value at specified indices
*/ */
@PerformancePitfall
public operator fun <T> MutableStructureND<T>.set(vararg index: Int, value: T) { public operator fun <T> MutableStructureND<T>.set(vararg index: Int, value: T) {
set(index, value) set(index, value)
} }

View File

@ -5,12 +5,15 @@
package space.kscience.kmath.nd package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
public open class VirtualStructureND<T>( public open class VirtualStructureND<T>(
override val shape: Shape, override val shape: Shape,
public val producer: (IntArray) -> T, public val producer: (IntArray) -> T,
) : StructureND<T> { ) : StructureND<T> {
@PerformancePitfall
override fun get(index: IntArray): T { override fun get(index: IntArray): T {
requireIndexInShape(index, shape) requireIndexInShape(index, shape)
return producer(index) return producer(index)

View File

@ -5,6 +5,9 @@
package space.kscience.kmath.nd package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
@OptIn(PerformancePitfall::class)
public fun <T> StructureND<T>.roll(axis: Int, step: Int = 1): StructureND<T> { public fun <T> StructureND<T>.roll(axis: Int, step: Int = 1): StructureND<T> {
require(axis in shape.indices) { "Axis $axis is outside of shape dimensions: [0, ${shape.size})" } require(axis in shape.indices) { "Axis $axis is outside of shape dimensions: [0, ${shape.size})" }
return VirtualStructureND(shape) { index -> return VirtualStructureND(shape) { index ->
@ -19,6 +22,7 @@ public fun <T> StructureND<T>.roll(axis: Int, step: Int = 1): StructureND<T> {
} }
} }
@OptIn(PerformancePitfall::class)
public fun <T> StructureND<T>.roll(pair: Pair<Int, Int>, vararg others: Pair<Int, Int>): StructureND<T> { public fun <T> StructureND<T>.roll(pair: Pair<Int, Int>, vararg others: Pair<Int, Int>): StructureND<T> {
val axisMap: Map<Int, Int> = mapOf(pair, *others) val axisMap: Map<Int, Int> = mapOf(pair, *others)
require(axisMap.keys.all { it in shape.indices }) { "Some of axes ${axisMap.keys} is outside of shape dimensions: [0, ${shape.size})" } require(axisMap.keys.all { it in shape.indices }) { "Some of axes ${axisMap.keys} is outside of shape dimensions: [0, ${shape.size})" }

View File

@ -0,0 +1,45 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
public interface StructureNDOfDouble : StructureND<Double> {
/**
* Guaranteed non-blocking access to content
*/
public fun getDouble(index: IntArray): Double
}
/**
* Optimized method to access primitive without boxing if possible
*/
@OptIn(PerformancePitfall::class)
public fun StructureND<Double>.getDouble(index: IntArray): Double =
if (this is StructureNDOfDouble) getDouble(index) else get(index)
public interface MutableStructureNDOfDouble : StructureNDOfDouble, MutableStructureND<Double> {
/**
* Guaranteed non-blocking access to content
*/
public fun setDouble(index: IntArray, value: Double)
}
@OptIn(PerformancePitfall::class)
public fun MutableStructureND<Double>.getDouble(index: IntArray): Double =
if (this is StructureNDOfDouble) getDouble(index) else get(index)
public interface StructureNDOfInt : StructureND<Int> {
/**
* Guaranteed non-blocking access to content
*/
public fun getInt(index: IntArray): Int
}
@OptIn(PerformancePitfall::class)
public fun StructureND<Int>.getInt(index: IntArray): Int =
if (this is StructureNDOfInt) getInt(index) else get(index)

View File

@ -5,10 +5,7 @@
package space.kscience.kmath.structures package space.kscience.kmath.structures
import space.kscience.kmath.nd.ColumnStrides import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.as2D
/** /**
* A context that allows to operate on a [MutableBuffer] as on 2d array * A context that allows to operate on a [MutableBuffer] as on 2d array
@ -31,7 +28,7 @@ internal class BufferAccessor2D<T>(
//TODO optimize wrapper //TODO optimize wrapper
fun MutableBuffer<T>.collect(): Structure2D<T> = StructureND.buffered( fun MutableBuffer<T>.collect(): Structure2D<T> = StructureND.buffered(
ColumnStrides(intArrayOf(rowNum, colNum)), ColumnStrides(Shape(rowNum, colNum)),
factory factory
) { (i, j) -> ) { (i, j) ->
get(i, j) get(i, j)

View File

@ -10,7 +10,7 @@ import kotlin.test.Test
class StridesTest { class StridesTest {
@Test @Test
fun checkRowBasedStrides() { fun checkRowBasedStrides() {
val strides = RowStrides(intArrayOf(3, 3)) val strides = RowStrides(Shape(3, 3))
var counter = 0 var counter = 0
for(i in 0..2){ for(i in 0..2){
for(j in 0..2){ for(j in 0..2){
@ -24,7 +24,7 @@ class StridesTest {
@Test @Test
fun checkColumnBasedStrides() { fun checkColumnBasedStrides() {
val strides = ColumnStrides(intArrayOf(3, 3)) val strides = ColumnStrides(Shape(3, 3))
var counter = 0 var counter = 0
for(i in 0..2){ for(i in 0..2){
for(j in 0..2){ for(j in 0..2){

View File

@ -88,7 +88,7 @@ class NumberNDFieldTest {
@Test @Test
fun testInternalContext() { fun testInternalContext() {
algebra { algebra {
(DoubleField.ndAlgebra(*array1.shape)) { with(L2Norm) { 1 + norm(array1) + exp(array2) } } (DoubleField.ndAlgebra(array1.shape)) { with(L2Norm) { 1 + norm(array1) + exp(array2) } }
} }
} }
} }

View File

@ -9,11 +9,12 @@ import kotlinx.coroutines.*
import space.kscience.kmath.coroutines.Math import space.kscience.kmath.coroutines.Math
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.ColumnStrides import space.kscience.kmath.nd.ColumnStrides
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
public class LazyStructureND<out T>( public class LazyStructureND<out T>(
public val scope: CoroutineScope, public val scope: CoroutineScope,
override val shape: IntArray, override val shape: Shape,
public val function: suspend (IntArray) -> T, public val function: suspend (IntArray) -> T,
) : StructureND<T> { ) : StructureND<T> {
private val cache: MutableMap<IntArray, Deferred<T>> = HashMap() private val cache: MutableMap<IntArray, Deferred<T>> = HashMap()
@ -23,6 +24,7 @@ public class LazyStructureND<out T>(
} }
public suspend fun await(index: IntArray): T = async(index).await() public suspend fun await(index: IntArray): T = async(index).await()
@PerformancePitfall
override operator fun get(index: IntArray): T = runBlocking { async(index).await() } override operator fun get(index: IntArray): T = runBlocking { async(index).await() }
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class)

View File

@ -6,6 +6,7 @@
package space.kscience.kmath.dimensions package space.kscience.kmath.dimensions
import space.kscience.kmath.linear.* import space.kscience.kmath.linear.*
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.Structure2D import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
@ -47,7 +48,7 @@ public interface DMatrix<out T, R : Dimension, C : Dimension> : Structure2D<T> {
public value class DMatrixWrapper<out T, R : Dimension, C : Dimension>( public value class DMatrixWrapper<out T, R : Dimension, C : Dimension>(
private val structure: Structure2D<T>, private val structure: Structure2D<T>,
) : DMatrix<T, R, C> { ) : DMatrix<T, R, C> {
override val shape: IntArray get() = structure.shape override val shape: Shape get() = structure.shape
override val rowNum: Int get() = shape[0] override val rowNum: Int get() = shape[0]
override val colNum: Int get() = shape[1] override val colNum: Int get() = shape[1]
override operator fun get(i: Int, j: Int): T = structure[i, j] override operator fun get(i: Int, j: Int): T = structure[i, j]

View File

@ -15,6 +15,7 @@ import space.kscience.kmath.linear.*
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.toArray
import space.kscience.kmath.operations.algebra import space.kscience.kmath.operations.algebra
import kotlin.random.Random import kotlin.random.Random
import kotlin.random.asJavaRandom import kotlin.random.asJavaRandom
@ -52,7 +53,7 @@ internal class EjmlMatrixTest {
fun shape() { fun shape() {
val m = randomMatrix val m = randomMatrix
val w = EjmlDoubleMatrix(m) val w = EjmlDoubleMatrix(m)
assertContentEquals(intArrayOf(m.numRows, m.numCols), w.shape) assertContentEquals(intArrayOf(m.numRows, m.numCols), w.shape.toArray())
} }
@OptIn(UnstableKMathAPI::class) @OptIn(UnstableKMathAPI::class)

View File

@ -7,6 +7,7 @@ package space.kscience.kmath.histogram
import space.kscience.kmath.domains.Domain import space.kscience.kmath.domains.Domain
import space.kscience.kmath.linear.Point import space.kscience.kmath.linear.Point
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.ColumnStrides import space.kscience.kmath.nd.ColumnStrides
import space.kscience.kmath.nd.FieldOpsND import space.kscience.kmath.nd.FieldOpsND
import space.kscience.kmath.nd.Shape import space.kscience.kmath.nd.Shape
@ -24,6 +25,7 @@ public class HistogramND<T : Comparable<T>, D : Domain<T>, V : Any>(
internal val values: StructureND<V>, internal val values: StructureND<V>,
) : Histogram<T, V, DomainBin<T, D, V>> { ) : Histogram<T, V, DomainBin<T, D, V>> {
@OptIn(PerformancePitfall::class)
override fun get(point: Point<T>): DomainBin<T, D, V>? { override fun get(point: Point<T>): DomainBin<T, D, V>? {
val index = group.getIndexOrNull(point) ?: return null val index = group.getIndexOrNull(point) ?: return null
return group.produceBin(index, values[index]) return group.produceBin(index, values[index])
@ -31,6 +33,7 @@ public class HistogramND<T : Comparable<T>, D : Domain<T>, V : Any>(
override val dimension: Int get() = group.shape.size override val dimension: Int get() = group.shape.size
@OptIn(PerformancePitfall::class)
override val bins: Iterable<DomainBin<T, D, V>> override val bins: Iterable<DomainBin<T, D, V>>
get() = ColumnStrides(group.shape).asSequence().map { get() = ColumnStrides(group.shape).asSequence().map {
group.produceBin(it, values[it]) group.produceBin(it, values[it])

View File

@ -9,11 +9,10 @@ package space.kscience.kmath.histogram
import space.kscience.kmath.domains.HyperSquareDomain import space.kscience.kmath.domains.HyperSquareDomain
import space.kscience.kmath.linear.Point import space.kscience.kmath.linear.Point
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.*
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.* import space.kscience.kmath.structures.*
import kotlin.math.floor import kotlin.math.floor
@ -40,7 +39,7 @@ public class UniformHistogramGroupND<V : Any, A : Field<V>>(
public val dimension: Int get() = lower.size public val dimension: Int get() = lower.size
override val shape: IntArray = IntArray(binNums.size) { binNums[it] + 2 } override val shape: Shape = Shape(IntArray(binNums.size) { binNums[it] + 2 })
private val binSize = DoubleBuffer(dimension) { (upper[it] - lower[it]) / binNums[it] } private val binSize = DoubleBuffer(dimension) { (upper[it] - lower[it]) / binNums[it] }
@ -83,8 +82,12 @@ public class UniformHistogramGroupND<V : Any, A : Field<V>>(
} }
override fun produce(builder: HistogramBuilder<Double, V>.() -> Unit): HistogramND<Double, HyperSquareDomain, V> { @OptIn(PerformancePitfall::class)
val ndCounter = StructureND.buffered(shape) { Counter.of(valueAlgebraND.elementAlgebra) } override fun produce(
builder: HistogramBuilder<Double, V>.() -> Unit,
): HistogramND<Double, HyperSquareDomain, V> {
val ndCounter: BufferND<ObjectCounter<V>> =
StructureND.buffered(shape) { Counter.of(valueAlgebraND.elementAlgebra) }
val hBuilder = object : HistogramBuilder<Double, V> { val hBuilder = object : HistogramBuilder<Double, V> {
override val defaultValue: V get() = valueAlgebraND.elementAlgebra.one override val defaultValue: V get() = valueAlgebraND.elementAlgebra.one
@ -94,7 +97,8 @@ public class UniformHistogramGroupND<V : Any, A : Field<V>>(
} }
} }
hBuilder.apply(builder) hBuilder.apply(builder)
val values: BufferND<V> = ndCounter.mapToBuffer(valueBufferFactory) { it.value } val values: BufferND<V> = BufferND(ndCounter.indices, ndCounter.buffer.map(valueBufferFactory) { it.value })
return HistogramND(this, values) return HistogramND(this, values)
} }

View File

@ -7,6 +7,7 @@
package space.kscience.kmath.histogram package space.kscience.kmath.histogram
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.ColumnStrides import space.kscience.kmath.nd.ColumnStrides
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
@ -50,6 +51,7 @@ internal class MultivariateHistogramTest {
assertEquals(n, histogram.bins.sumOf { it.binValue.toInt() }) assertEquals(n, histogram.bins.sumOf { it.binValue.toInt() })
} }
@OptIn(PerformancePitfall::class)
@Test @Test
fun testHistogramAlgebra() { fun testHistogramAlgebra() {
Histogram.uniformDoubleNDFromRanges( Histogram.uniformDoubleNDFromRanges(

View File

@ -13,14 +13,16 @@ import kotlin.jvm.JvmInline
@JvmInline @JvmInline
public value class MultikTensor<T>(public val array: MutableMultiArray<T, DN>) : Tensor<T> { public value class MultikTensor<T>(public val array: MutableMultiArray<T, DN>) : Tensor<T> {
override val shape: Shape get() = array.shape override val shape: Shape get() = Shape(array.shape)
@PerformancePitfall
override fun get(index: IntArray): T = array[index] override fun get(index: IntArray): T = array[index]
@PerformancePitfall @PerformancePitfall
override fun elements(): Sequence<Pair<IntArray, T>> = override fun elements(): Sequence<Pair<IntArray, T>> =
array.multiIndices.iterator().asSequence().map { it to get(it) } array.multiIndices.iterator().asSequence().map { it to get(it) }
@PerformancePitfall
override fun set(index: IntArray, value: T) { override fun set(index: IntArray, value: T) {
array[index] = value array[index] = value
} }

View File

@ -14,6 +14,7 @@ import org.jetbrains.kotlinx.multik.api.stat.Statistics
import org.jetbrains.kotlinx.multik.ndarray.data.* import org.jetbrains.kotlinx.multik.ndarray.data.*
import org.jetbrains.kotlinx.multik.ndarray.operations.* import org.jetbrains.kotlinx.multik.ndarray.operations.*
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnsafeKMathAPI
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.*
import space.kscience.kmath.tensors.api.Tensor import space.kscience.kmath.tensors.api.Tensor
@ -30,21 +31,22 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
protected val multikLinAl: LinAlg = multikEngine.getLinAlg() protected val multikLinAl: LinAlg = multikEngine.getLinAlg()
protected val multikStat: Statistics = multikEngine.getStatistics() protected val multikStat: Statistics = multikEngine.getStatistics()
@OptIn(UnsafeKMathAPI::class)
override fun structureND(shape: Shape, initializer: A.(IntArray) -> T): MultikTensor<T> { override fun structureND(shape: Shape, initializer: A.(IntArray) -> T): MultikTensor<T> {
val strides = ColumnStrides(shape) val strides = ColumnStrides(shape)
val memoryView = initMemoryView<T>(strides.linearSize, type) val memoryView = initMemoryView<T>(strides.linearSize, type)
strides.asSequence().forEachIndexed { linearIndex, tensorIndex -> strides.asSequence().forEachIndexed { linearIndex, tensorIndex ->
memoryView[linearIndex] = elementAlgebra.initializer(tensorIndex) memoryView[linearIndex] = elementAlgebra.initializer(tensorIndex)
} }
return MultikTensor(NDArray(memoryView, shape = shape, dim = DN(shape.size))) return MultikTensor(NDArray(memoryView, shape = shape.asArray(), dim = DN(shape.size)))
} }
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class, UnsafeKMathAPI::class)
override fun StructureND<T>.map(transform: A.(T) -> T): MultikTensor<T> = if (this is MultikTensor) { override fun StructureND<T>.map(transform: A.(T) -> T): MultikTensor<T> = if (this is MultikTensor) {
val data = initMemoryView<T>(array.size, type) val data = initMemoryView<T>(array.size, type)
var count = 0 var count = 0
for (el in array) data[count++] = elementAlgebra.transform(el) for (el in array) data[count++] = elementAlgebra.transform(el)
NDArray(data, shape = shape, dim = array.dim).wrap() NDArray(data, shape = shape.asArray(), dim = array.dim).wrap()
} else { } else {
structureND(shape) { index -> structureND(shape) { index ->
transform(get(index)) transform(get(index))
@ -75,6 +77,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
/** /**
* Transform a structure element-by element in place. * Transform a structure element-by element in place.
*/ */
@OptIn(PerformancePitfall::class)
public inline fun <T> MutableStructureND<T>.mapIndexedInPlace(operation: (index: IntArray, t: T) -> T): Unit { public inline fun <T> MutableStructureND<T>.mapIndexedInPlace(operation: (index: IntArray, t: T) -> T): Unit {
if (this is MultikTensor) { if (this is MultikTensor) {
array.multiIndices.iterator().forEach { array.multiIndices.iterator().forEach {
@ -106,10 +109,11 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
* Convert a tensor to [MultikTensor] if necessary. If tensor is converted, changes on the resulting tensor * Convert a tensor to [MultikTensor] if necessary. If tensor is converted, changes on the resulting tensor
* are not reflected back onto the source * are not reflected back onto the source
*/ */
@OptIn(UnsafeKMathAPI::class, PerformancePitfall::class)
public fun StructureND<T>.asMultik(): MultikTensor<T> = if (this is MultikTensor) { public fun StructureND<T>.asMultik(): MultikTensor<T> = if (this is MultikTensor) {
this this
} else { } else {
val res = mk.zeros<T, DN>(shape, type).asDNArray() val res = mk.zeros<T, DN>(shape.asArray(), type).asDNArray()
for (index in res.multiIndices) { for (index in res.multiIndices) {
res[index] = this[index] res[index] = this[index]
} }
@ -118,7 +122,8 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
public fun MutableMultiArray<T, *>.wrap(): MultikTensor<T> = MultikTensor(this.asDNArray()) public fun MutableMultiArray<T, *>.wrap(): MultikTensor<T> = MultikTensor(this.asDNArray())
override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals intArrayOf(1)) { @OptIn(PerformancePitfall::class)
override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals Shape(1)) {
get(intArrayOf(0)) get(intArrayOf(0))
} else null } else null
@ -139,6 +144,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
} }
} }
@OptIn(PerformancePitfall::class)
override fun Tensor<T>.plusAssign(arg: StructureND<T>) { override fun Tensor<T>.plusAssign(arg: StructureND<T>) {
if (this is MultikTensor) { if (this is MultikTensor) {
array.plusAssign(arg.asMultik().array) array.plusAssign(arg.asMultik().array)
@ -163,6 +169,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
} }
} }
@OptIn(PerformancePitfall::class)
override fun Tensor<T>.minusAssign(arg: StructureND<T>) { override fun Tensor<T>.minusAssign(arg: StructureND<T>) {
if (this is MultikTensor) { if (this is MultikTensor) {
array.minusAssign(arg.asMultik().array) array.minusAssign(arg.asMultik().array)
@ -188,6 +195,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
} }
} }
@OptIn(PerformancePitfall::class)
override fun Tensor<T>.timesAssign(arg: StructureND<T>) { override fun Tensor<T>.timesAssign(arg: StructureND<T>) {
if (this is MultikTensor) { if (this is MultikTensor) {
array.timesAssign(arg.asMultik().array) array.timesAssign(arg.asMultik().array)
@ -201,13 +209,13 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
override fun Tensor<T>.getTensor(i: Int): MultikTensor<T> = asMultik().array.mutableView(i).wrap() override fun Tensor<T>.getTensor(i: Int): MultikTensor<T> = asMultik().array.mutableView(i).wrap()
override fun Tensor<T>.transposed(i: Int, j: Int): MultikTensor<T> = asMultik().array.transpose(i, j).wrap() override fun StructureND<T>.transposed(i: Int, j: Int): MultikTensor<T> = asMultik().array.transpose(i, j).wrap()
override fun Tensor<T>.view(shape: IntArray): MultikTensor<T> { override fun Tensor<T>.view(shape: Shape): MultikTensor<T> {
require(shape.all { it > 0 }) require(shape.asList().all { it > 0 })
require(shape.fold(1, Int::times) == this.shape.size) { require(shape.linearSize == this.shape.size) {
"Cannot reshape array of size ${this.shape.size} into a new shape ${ "Cannot reshape array of size ${this.shape.size} into a new shape ${
shape.joinToString( shape.asList().joinToString(
prefix = "(", prefix = "(",
postfix = ")" postfix = ")"
) )
@ -215,10 +223,11 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
} }
val mt = asMultik().array val mt = asMultik().array
return if (mt.shape.contentEquals(shape)) { return if (Shape(mt.shape).contentEquals(shape)) {
mt mt
} else { } else {
NDArray(mt.data, mt.offset, shape, dim = DN(shape.size), base = mt.base ?: mt) @OptIn(UnsafeKMathAPI::class)
NDArray(mt.data, mt.offset, shape.asArray(), dim = DN(shape.size), base = mt.base ?: mt)
}.wrap() }.wrap()
} }
@ -241,7 +250,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>>(
TODO("Not implemented for broadcasting") TODO("Not implemented for broadcasting")
} }
override fun diagonalEmbedding(diagonalEntries: Tensor<T>, offset: Int, dim1: Int, dim2: Int): MultikTensor<T> { override fun diagonalEmbedding(diagonalEntries: StructureND<T>, offset: Int, dim1: Int, dim2: Int): MultikTensor<T> {
TODO("Diagonal embedding not implemented") TODO("Diagonal embedding not implemented")
} }
@ -284,8 +293,9 @@ public abstract class MultikDivisionTensorAlgebra<T, A : Field<T>>(
multikEngine: Engine, multikEngine: Engine,
) : MultikTensorAlgebra<T, A>(multikEngine), TensorPartialDivisionAlgebra<T, A> where T : Number, T : Comparable<T> { ) : MultikTensorAlgebra<T, A>(multikEngine), TensorPartialDivisionAlgebra<T, A> where T : Number, T : Comparable<T> {
@OptIn(UnsafeKMathAPI::class)
override fun T.div(arg: StructureND<T>): MultikTensor<T> = override fun T.div(arg: StructureND<T>): MultikTensor<T> =
Multik.ones<T, DN>(arg.shape, type).apply { divAssign(arg.asMultik().array) }.wrap() Multik.ones<T, DN>(arg.shape.asArray(), type).apply { divAssign(arg.asMultik().array) }.wrap()
override fun StructureND<T>.div(arg: T): MultikTensor<T> = override fun StructureND<T>.div(arg: T): MultikTensor<T> =
asMultik().array.div(arg).wrap() asMultik().array.div(arg).wrap()
@ -301,6 +311,7 @@ public abstract class MultikDivisionTensorAlgebra<T, A : Field<T>>(
} }
} }
@OptIn(PerformancePitfall::class)
override fun Tensor<T>.divAssign(arg: StructureND<T>) { override fun Tensor<T>.divAssign(arg: StructureND<T>) {
if (this is MultikTensor) { if (this is MultikTensor) {
array.divAssign(arg.asMultik().array) array.divAssign(arg.asMultik().array)

View File

@ -7,6 +7,7 @@ package space.kscience.kmath.multik
import org.jetbrains.kotlinx.multik.default.DefaultEngine import org.jetbrains.kotlinx.multik.default.DefaultEngine
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.one import space.kscience.kmath.nd.one
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
@ -28,8 +29,8 @@ internal class MultikNDTest {
fun dotResult() { fun dotResult() {
val dim = 100 val dim = 100
val tensor1 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12224) val tensor1 = DoubleTensorAlgebra.randomNormal(shape = Shape(dim, dim), 12224)
val tensor2 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12225) val tensor2 = DoubleTensorAlgebra.randomNormal(shape = Shape(dim, dim), 12225)
val multikResult = with(multikAlgebra) { val multikResult = with(multikAlgebra) {
tensor1 dot tensor2 tensor1 dot tensor2

View File

@ -11,6 +11,7 @@ import org.nd4j.linalg.api.ops.impl.transforms.strict.ASinh
import org.nd4j.linalg.factory.Nd4j import org.nd4j.linalg.factory.Nd4j
import org.nd4j.linalg.ops.transforms.Transforms import org.nd4j.linalg.ops.transforms.Transforms
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnsafeKMathAPI
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.*
@ -33,7 +34,8 @@ public sealed interface Nd4jArrayAlgebra<T, out C : Algebra<T>> : AlgebraND<T, C
public val StructureND<T>.ndArray: INDArray public val StructureND<T>.ndArray: INDArray
override fun structureND(shape: Shape, initializer: C.(IntArray) -> T): Nd4jArrayStructure<T> { override fun structureND(shape: Shape, initializer: C.(IntArray) -> T): Nd4jArrayStructure<T> {
val struct = Nd4j.create(*shape)!!.wrap() @OptIn(UnsafeKMathAPI::class)
val struct: Nd4jArrayStructure<T> = Nd4j.create(*shape.asArray())!!.wrap()
struct.indicesIterator().forEach { struct[it] = elementAlgebra.initializer(it) } struct.indicesIterator().forEach { struct[it] = elementAlgebra.initializer(it) }
return struct return struct
} }
@ -45,23 +47,23 @@ public sealed interface Nd4jArrayAlgebra<T, out C : Algebra<T>> : AlgebraND<T, C
return newStruct return newStruct
} }
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class, UnsafeKMathAPI::class)
override fun StructureND<T>.mapIndexed( override fun StructureND<T>.mapIndexed(
transform: C.(index: IntArray, T) -> T, transform: C.(index: IntArray, T) -> T,
): Nd4jArrayStructure<T> { ): Nd4jArrayStructure<T> {
val new = Nd4j.create(*shape).wrap() val new = Nd4j.create(*shape.asArray()).wrap()
new.indicesIterator().forEach { idx -> new[idx] = elementAlgebra.transform(idx, this[idx]) } new.indicesIterator().forEach { idx -> new[idx] = elementAlgebra.transform(idx, this[idx]) }
return new return new
} }
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class, UnsafeKMathAPI::class)
override fun zip( override fun zip(
left: StructureND<T>, left: StructureND<T>,
right: StructureND<T>, right: StructureND<T>,
transform: C.(T, T) -> T, transform: C.(T, T) -> T,
): Nd4jArrayStructure<T> { ): Nd4jArrayStructure<T> {
require(left.shape.contentEquals(right.shape)) { "Can't zip tow structures of shape ${left.shape} and ${right.shape}" } require(left.shape.contentEquals(right.shape)) { "Can't zip tow structures of shape ${left.shape} and ${right.shape}" }
val new = Nd4j.create(*left.shape).wrap() val new = Nd4j.create(*left.shape.asArray()).wrap()
new.indicesIterator().forEach { idx -> new[idx] = elementAlgebra.transform(left[idx], right[idx]) } new.indicesIterator().forEach { idx -> new[idx] = elementAlgebra.transform(left[idx], right[idx]) }
return new return new
} }
@ -192,11 +194,11 @@ public open class DoubleNd4jArrayFieldOps : Nd4jArrayExtendedFieldOps<Double, Do
override fun INDArray.wrap(): Nd4jArrayStructure<Double> = asDoubleStructure() override fun INDArray.wrap(): Nd4jArrayStructure<Double> = asDoubleStructure()
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class, UnsafeKMathAPI::class)
override val StructureND<Double>.ndArray: INDArray override val StructureND<Double>.ndArray: INDArray
get() = when (this) { get() = when (this) {
is Nd4jArrayStructure<Double> -> ndArray is Nd4jArrayStructure<Double> -> ndArray
else -> Nd4j.zeros(*shape).also { else -> Nd4j.zeros(*shape.asArray()).also {
elements().forEach { (idx, value) -> it.putScalar(idx, value) } elements().forEach { (idx, value) -> it.putScalar(idx, value) }
} }
} }
@ -225,7 +227,7 @@ public val DoubleField.nd4j: DoubleNd4jArrayFieldOps get() = DoubleNd4jArrayFiel
public class DoubleNd4jArrayField(override val shape: Shape) : DoubleNd4jArrayFieldOps(), FieldND<Double, DoubleField> public class DoubleNd4jArrayField(override val shape: Shape) : DoubleNd4jArrayFieldOps(), FieldND<Double, DoubleField>
public fun DoubleField.nd4j(shapeFirst: Int, vararg shapeRest: Int): DoubleNd4jArrayField = public fun DoubleField.nd4j(shapeFirst: Int, vararg shapeRest: Int): DoubleNd4jArrayField =
DoubleNd4jArrayField(intArrayOf(shapeFirst, * shapeRest)) DoubleNd4jArrayField(Shape(shapeFirst, * shapeRest))
/** /**
@ -236,11 +238,11 @@ public open class FloatNd4jArrayFieldOps : Nd4jArrayExtendedFieldOps<Float, Floa
override fun INDArray.wrap(): Nd4jArrayStructure<Float> = asFloatStructure() override fun INDArray.wrap(): Nd4jArrayStructure<Float> = asFloatStructure()
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class, UnsafeKMathAPI::class)
override val StructureND<Float>.ndArray: INDArray override val StructureND<Float>.ndArray: INDArray
get() = when (this) { get() = when (this) {
is Nd4jArrayStructure<Float> -> ndArray is Nd4jArrayStructure<Float> -> ndArray
else -> Nd4j.zeros(*shape).also { else -> Nd4j.zeros(*shape.asArray()).also {
elements().forEach { (idx, value) -> it.putScalar(idx, value) } elements().forEach { (idx, value) -> it.putScalar(idx, value) }
} }
} }
@ -274,7 +276,7 @@ public class FloatNd4jArrayField(override val shape: Shape) : FloatNd4jArrayFiel
public val FloatField.nd4j: FloatNd4jArrayFieldOps get() = FloatNd4jArrayFieldOps public val FloatField.nd4j: FloatNd4jArrayFieldOps get() = FloatNd4jArrayFieldOps
public fun FloatField.nd4j(shapeFirst: Int, vararg shapeRest: Int): FloatNd4jArrayField = public fun FloatField.nd4j(shapeFirst: Int, vararg shapeRest: Int): FloatNd4jArrayField =
FloatNd4jArrayField(intArrayOf(shapeFirst, * shapeRest)) FloatNd4jArrayField(Shape(shapeFirst, * shapeRest))
/** /**
* Represents [RingND] over [Nd4jArrayIntStructure]. * Represents [RingND] over [Nd4jArrayIntStructure].
@ -284,11 +286,11 @@ public open class IntNd4jArrayRingOps : Nd4jArrayRingOps<Int, IntRing> {
override fun INDArray.wrap(): Nd4jArrayStructure<Int> = asIntStructure() override fun INDArray.wrap(): Nd4jArrayStructure<Int> = asIntStructure()
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class, UnsafeKMathAPI::class)
override val StructureND<Int>.ndArray: INDArray override val StructureND<Int>.ndArray: INDArray
get() = when (this) { get() = when (this) {
is Nd4jArrayStructure<Int> -> ndArray is Nd4jArrayStructure<Int> -> ndArray
else -> Nd4j.zeros(*shape).also { else -> Nd4j.zeros(*shape.asArray()).also {
elements().forEach { (idx, value) -> it.putScalar(idx, value) } elements().forEach { (idx, value) -> it.putScalar(idx, value) }
} }
} }
@ -313,4 +315,4 @@ public val IntRing.nd4j: IntNd4jArrayRingOps get() = IntNd4jArrayRingOps
public class IntNd4jArrayRing(override val shape: Shape) : IntNd4jArrayRingOps(), RingND<Int, IntRing> public class IntNd4jArrayRing(override val shape: Shape) : IntNd4jArrayRingOps(), RingND<Int, IntRing>
public fun IntRing.nd4j(shapeFirst: Int, vararg shapeRest: Int): IntNd4jArrayRing = public fun IntRing.nd4j(shapeFirst: Int, vararg shapeRest: Int): IntNd4jArrayRing =
IntNd4jArrayRing(intArrayOf(shapeFirst, * shapeRest)) IntNd4jArrayRing(Shape(shapeFirst, * shapeRest))

View File

@ -7,8 +7,7 @@ package space.kscience.kmath.nd4j
import org.nd4j.linalg.api.ndarray.INDArray import org.nd4j.linalg.api.ndarray.INDArray
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.MutableStructureND import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.StructureND
/** /**
* Represents a [StructureND] wrapping an [INDArray] object. * Represents a [StructureND] wrapping an [INDArray] object.
@ -22,7 +21,7 @@ public sealed class Nd4jArrayStructure<T> : MutableStructureND<T> {
*/ */
public abstract val ndArray: INDArray public abstract val ndArray: INDArray
override val shape: IntArray get() = ndArray.shape().toIntArray() override val shape: Shape get() = Shape(ndArray.shape().toIntArray())
internal abstract fun elementsIterator(): Iterator<Pair<IntArray, T>> internal abstract fun elementsIterator(): Iterator<Pair<IntArray, T>>
internal fun indicesIterator(): Iterator<IntArray> = ndArray.indicesIterator() internal fun indicesIterator(): Iterator<IntArray> = ndArray.indicesIterator()
@ -31,20 +30,31 @@ public sealed class Nd4jArrayStructure<T> : MutableStructureND<T> {
override fun elements(): Sequence<Pair<IntArray, T>> = Sequence(::elementsIterator) override fun elements(): Sequence<Pair<IntArray, T>> = Sequence(::elementsIterator)
} }
private data class Nd4jArrayIntStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Int>() { public data class Nd4jArrayIntStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Int>(), StructureNDOfInt {
override fun elementsIterator(): Iterator<Pair<IntArray, Int>> = ndArray.intIterator() override fun elementsIterator(): Iterator<Pair<IntArray, Int>> = ndArray.intIterator()
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): Int = ndArray.getInt(*index) override fun get(index: IntArray): Int = ndArray.getInt(*index)
override fun getInt(index: IntArray): Int = ndArray.getInt(*index)
@OptIn(PerformancePitfall::class)
override fun set(index: IntArray, value: Int): Unit = run { ndArray.putScalar(index, value) } override fun set(index: IntArray, value: Int): Unit = run { ndArray.putScalar(index, value) }
} }
/** /**
* Wraps this [INDArray] to [Nd4jArrayStructure]. * Wraps this [INDArray] to [Nd4jArrayStructure].
*/ */
public fun INDArray.asIntStructure(): Nd4jArrayStructure<Int> = Nd4jArrayIntStructure(this) public fun INDArray.asIntStructure(): Nd4jArrayIntStructure = Nd4jArrayIntStructure(this)
private data class Nd4jArrayDoubleStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Double>() { public data class Nd4jArrayDoubleStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Double>(), StructureNDOfDouble {
override fun elementsIterator(): Iterator<Pair<IntArray, Double>> = ndArray.realIterator() override fun elementsIterator(): Iterator<Pair<IntArray, Double>> = ndArray.realIterator()
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): Double = ndArray.getDouble(*index) override fun get(index: IntArray): Double = ndArray.getDouble(*index)
override fun getDouble(index: IntArray): Double = ndArray.getDouble(*index)
@OptIn(PerformancePitfall::class)
override fun set(index: IntArray, value: Double): Unit = run { ndArray.putScalar(index, value) } override fun set(index: IntArray, value: Double): Unit = run { ndArray.putScalar(index, value) }
} }
@ -53,9 +63,12 @@ private data class Nd4jArrayDoubleStructure(override val ndArray: INDArray) : Nd
*/ */
public fun INDArray.asDoubleStructure(): Nd4jArrayStructure<Double> = Nd4jArrayDoubleStructure(this) public fun INDArray.asDoubleStructure(): Nd4jArrayStructure<Double> = Nd4jArrayDoubleStructure(this)
private data class Nd4jArrayFloatStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Float>() { public data class Nd4jArrayFloatStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Float>() {
override fun elementsIterator(): Iterator<Pair<IntArray, Float>> = ndArray.floatIterator() override fun elementsIterator(): Iterator<Pair<IntArray, Float>> = ndArray.floatIterator()
@PerformancePitfall
override fun get(index: IntArray): Float = ndArray.getFloat(*index) override fun get(index: IntArray): Float = ndArray.getFloat(*index)
@PerformancePitfall
override fun set(index: IntArray, value: Float): Unit = run { ndArray.putScalar(index, value) } override fun set(index: IntArray, value: Float): Unit = run { ndArray.putScalar(index, value) }
} }

View File

@ -13,9 +13,8 @@ import org.nd4j.linalg.factory.Nd4j
import org.nd4j.linalg.factory.ops.NDBase import org.nd4j.linalg.factory.ops.NDBase
import org.nd4j.linalg.ops.transforms.Transforms import org.nd4j.linalg.ops.transforms.Transforms
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.ColumnStrides import space.kscience.kmath.misc.UnsafeKMathAPI
import space.kscience.kmath.nd.Shape import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.Field import space.kscience.kmath.operations.Field
import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra
@ -96,7 +95,7 @@ public sealed interface Nd4jTensorAlgebra<T : Number, A : Field<T>> : AnalyticTe
override fun StructureND<T>.unaryMinus(): Nd4jArrayStructure<T> = ndArray.neg().wrap() override fun StructureND<T>.unaryMinus(): Nd4jArrayStructure<T> = ndArray.neg().wrap()
override fun Tensor<T>.getTensor(i: Int): Nd4jArrayStructure<T> = ndArray.slice(i.toLong()).wrap() override fun Tensor<T>.getTensor(i: Int): Nd4jArrayStructure<T> = ndArray.slice(i.toLong()).wrap()
override fun Tensor<T>.transposed(i: Int, j: Int): Nd4jArrayStructure<T> = ndArray.swapAxes(i, j).wrap() override fun StructureND<T>.transposed(i: Int, j: Int): Nd4jArrayStructure<T> = ndArray.swapAxes(i, j).wrap()
override fun StructureND<T>.dot(other: StructureND<T>): Nd4jArrayStructure<T> = ndArray.mmul(other.ndArray).wrap() override fun StructureND<T>.dot(other: StructureND<T>): Nd4jArrayStructure<T> = ndArray.mmul(other.ndArray).wrap()
override fun StructureND<T>.min(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> = override fun StructureND<T>.min(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> =
@ -108,7 +107,9 @@ public sealed interface Nd4jTensorAlgebra<T : Number, A : Field<T>> : AnalyticTe
override fun StructureND<T>.max(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> = override fun StructureND<T>.max(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> =
ndArray.max(keepDim, dim).wrap() ndArray.max(keepDim, dim).wrap()
override fun Tensor<T>.view(shape: IntArray): Nd4jArrayStructure<T> = ndArray.reshape(shape).wrap() @OptIn(UnsafeKMathAPI::class)
override fun Tensor<T>.view(shape: Shape): Nd4jArrayStructure<T> = ndArray.reshape(shape.asArray()).wrap()
override fun Tensor<T>.viewAs(other: StructureND<T>): Nd4jArrayStructure<T> = view(other.shape) override fun Tensor<T>.viewAs(other: StructureND<T>): Nd4jArrayStructure<T> = view(other.shape)
override fun StructureND<T>.argMin(dim: Int, keepDim: Boolean): Tensor<Int> = override fun StructureND<T>.argMin(dim: Int, keepDim: Boolean): Tensor<Int> =
@ -176,8 +177,9 @@ public object DoubleNd4jTensorAlgebra : Nd4jTensorAlgebra<Double, DoubleField> {
override fun INDArray.wrap(): Nd4jArrayStructure<Double> = asDoubleStructure() override fun INDArray.wrap(): Nd4jArrayStructure<Double> = asDoubleStructure()
@OptIn(UnsafeKMathAPI::class)
override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): Nd4jArrayStructure<Double> { override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): Nd4jArrayStructure<Double> {
val array: INDArray = Nd4j.zeros(*shape) val array: INDArray = Nd4j.zeros(*shape.asArray())
val indices = ColumnStrides(shape) val indices = ColumnStrides(shape)
indices.asSequence().forEach { index -> indices.asSequence().forEach { index ->
array.putScalar(index, elementAlgebra.initializer(index)) array.putScalar(index, elementAlgebra.initializer(index))
@ -186,21 +188,21 @@ public object DoubleNd4jTensorAlgebra : Nd4jTensorAlgebra<Double, DoubleField> {
} }
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class, UnsafeKMathAPI::class)
override val StructureND<Double>.ndArray: INDArray override val StructureND<Double>.ndArray: INDArray
get() = when (this) { get() = when (this) {
is Nd4jArrayStructure<Double> -> ndArray is Nd4jArrayStructure<Double> -> ndArray
else -> Nd4j.zeros(*shape).also { else -> Nd4j.zeros(*shape.asArray()).also {
elements().forEach { (idx, value) -> it.putScalar(idx, value) } elements().forEach { (idx, value) -> it.putScalar(idx, value) }
} }
} }
override fun StructureND<Double>.valueOrNull(): Double? = override fun StructureND<Double>.valueOrNull(): Double? =
if (shape contentEquals intArrayOf(1)) ndArray.getDouble(0) else null if (shape contentEquals Shape(1)) ndArray.getDouble(0) else null
// TODO rewrite // TODO rewrite
override fun diagonalEmbedding( override fun diagonalEmbedding(
diagonalEntries: Tensor<Double>, diagonalEntries: StructureND<Double>,
offset: Int, offset: Int,
dim1: Int, dim1: Int,
dim2: Int, dim2: Int,

View File

@ -7,6 +7,7 @@ package space.kscience.kmath.nd4j
import org.nd4j.linalg.factory.Nd4j import org.nd4j.linalg.factory.Nd4j
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.asList
import space.kscience.kmath.nd.get import space.kscience.kmath.nd.get
import kotlin.test.Test import kotlin.test.Test
import kotlin.test.assertEquals import kotlin.test.assertEquals
@ -27,7 +28,7 @@ internal class Nd4jArrayStructureTest {
fun testShape() { fun testShape() {
val nd = Nd4j.rand(10, 2, 3, 6) ?: fail() val nd = Nd4j.rand(10, 2, 3, 6) ?: fail()
val struct = nd.asDoubleStructure() val struct = nd.asDoubleStructure()
assertEquals(intArrayOf(10, 2, 3, 6).toList(), struct.shape.toList()) assertEquals(intArrayOf(10, 2, 3, 6).toList(), struct.shape.asList())
} }
@Test @Test

View File

@ -28,6 +28,8 @@ public class DoubleTensorFlowOutput(
} }
internal fun Shape.toLongArray(): LongArray = LongArray(size) { get(it).toLong() }
public class DoubleTensorFlowAlgebra internal constructor( public class DoubleTensorFlowAlgebra internal constructor(
graph: Graph, graph: Graph,
) : TensorFlowAlgebra<Double, TFloat64, DoubleField>(graph), PowerOperations<StructureND<Double>> { ) : TensorFlowAlgebra<Double, TFloat64, DoubleField>(graph), PowerOperations<StructureND<Double>> {

View File

@ -18,9 +18,12 @@ import org.tensorflow.types.TInt32
import org.tensorflow.types.family.TNumber import org.tensorflow.types.family.TNumber
import org.tensorflow.types.family.TType import org.tensorflow.types.family.TType
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnsafeKMathAPI
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.Shape import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.asArray
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.tensors.api.Tensor import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.api.TensorAlgebra import space.kscience.kmath.tensors.api.TensorAlgebra
@ -38,7 +41,7 @@ public sealed interface TensorFlowTensor<T> : Tensor<T>
*/ */
@JvmInline @JvmInline
public value class TensorFlowArray<T>(public val tensor: NdArray<T>) : Tensor<T> { public value class TensorFlowArray<T>(public val tensor: NdArray<T>) : Tensor<T> {
override val shape: Shape get() = tensor.shape().asArray().toIntArray() override val shape: Shape get() = Shape(tensor.shape().asArray().toIntArray())
override fun get(index: IntArray): T = tensor.getObject(*index.toLongArray()) override fun get(index: IntArray): T = tensor.getObject(*index.toLongArray())
@ -62,7 +65,7 @@ public abstract class TensorFlowOutput<T, TT : TType>(
public var output: Output<TT> = output public var output: Output<TT> = output
internal set internal set
override val shape: Shape get() = output.shape().asArray().toIntArray() override val shape: Shape get() = Shape(output.shape().asArray().toIntArray())
protected abstract fun org.tensorflow.Tensor.actualizeTensor(): NdArray<T> protected abstract fun org.tensorflow.Tensor.actualizeTensor(): NdArray<T>
@ -96,8 +99,8 @@ public abstract class TensorFlowAlgebra<T, TT : TNumber, A : Ring<T>> internal c
protected abstract fun const(value: T): Constant<TT> protected abstract fun const(value: T): Constant<TT>
override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals intArrayOf(1)) override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals Shape(1))
get(Shape(0)) else null get(intArrayOf(0)) else null
/** /**
* Perform binary lazy operation on tensor. Both arguments are implicitly converted * Perform binary lazy operation on tensor. Both arguments are implicitly converted
@ -188,12 +191,13 @@ public abstract class TensorFlowAlgebra<T, TT : TNumber, A : Ring<T>> internal c
StridedSliceHelper.stridedSlice(ops.scope(), it, Indices.at(i.toLong())) StridedSliceHelper.stridedSlice(ops.scope(), it, Indices.at(i.toLong()))
} }
override fun Tensor<T>.transposed(i: Int, j: Int): Tensor<T> = operate { override fun StructureND<T>.transposed(i: Int, j: Int): Tensor<T> = operate {
ops.linalg.transpose(it, ops.constant(intArrayOf(i, j))) ops.linalg.transpose(it, ops.constant(intArrayOf(i, j)))
} }
override fun Tensor<T>.view(shape: IntArray): Tensor<T> = operate { override fun Tensor<T>.view(shape: Shape): Tensor<T> = operate {
ops.reshape(it, ops.constant(shape)) @OptIn(UnsafeKMathAPI::class)
ops.reshape(it, ops.constant(shape.asArray()))
} }
override fun Tensor<T>.viewAs(other: StructureND<T>): Tensor<T> = operate(other) { l, r -> override fun Tensor<T>.viewAs(other: StructureND<T>): Tensor<T> = operate(other) { l, r ->
@ -208,7 +212,7 @@ public abstract class TensorFlowAlgebra<T, TT : TNumber, A : Ring<T>> internal c
} }
override fun diagonalEmbedding( override fun diagonalEmbedding(
diagonalEntries: Tensor<T>, diagonalEntries: StructureND<T>,
offset: Int, offset: Int,
dim1: Int, dim1: Int,
dim2: Int, dim2: Int,

View File

@ -7,6 +7,7 @@ package space.kscience.kmath.tensorflow
import org.junit.jupiter.api.Test import org.junit.jupiter.api.Test
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.get import space.kscience.kmath.nd.get
import space.kscience.kmath.nd.structureND import space.kscience.kmath.nd.structureND
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
@ -31,8 +32,8 @@ class DoubleTensorFlowOps {
fun dot(){ fun dot(){
val dim = 1000 val dim = 1000
val tensor1 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12224) val tensor1 = DoubleTensorAlgebra.randomNormal(shape = Shape(dim, dim), 12224)
val tensor2 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12225) val tensor2 = DoubleTensorAlgebra.randomNormal(shape = Shape(dim, dim), 12225)
DoubleField.produceWithTF { DoubleField.produceWithTF {
tensor1 dot tensor2 tensor1 dot tensor2

View File

@ -21,7 +21,7 @@ public interface LinearOpsTensorAlgebra<T, A : Field<T>> : TensorPartialDivision
* *
* @return the determinant. * @return the determinant.
*/ */
public fun StructureND<T>.det(): Tensor<T> public fun StructureND<T>.det(): StructureND<T>
/** /**
* Computes the multiplicative inverse matrix of a square matrix input, or of each square matrix in a batched input. * Computes the multiplicative inverse matrix of a square matrix input, or of each square matrix in a batched input.
@ -31,7 +31,7 @@ public interface LinearOpsTensorAlgebra<T, A : Field<T>> : TensorPartialDivision
* *
* @return the multiplicative inverse of a matrix. * @return the multiplicative inverse of a matrix.
*/ */
public fun StructureND<T>.inv(): Tensor<T> public fun StructureND<T>.inv(): StructureND<T>
/** /**
* Cholesky decomposition. * Cholesky decomposition.
@ -47,7 +47,7 @@ public interface LinearOpsTensorAlgebra<T, A : Field<T>> : TensorPartialDivision
* @receiver the `input`. * @receiver the `input`.
* @return the batch of `L` matrices. * @return the batch of `L` matrices.
*/ */
public fun StructureND<T>.cholesky(): Tensor<T> public fun StructureND<T>.cholesky(): StructureND<T>
/** /**
* QR decomposition. * QR decomposition.
@ -61,7 +61,7 @@ public interface LinearOpsTensorAlgebra<T, A : Field<T>> : TensorPartialDivision
* @receiver the `input`. * @receiver the `input`.
* @return pair of `Q` and `R` tensors. * @return pair of `Q` and `R` tensors.
*/ */
public fun StructureND<T>.qr(): Pair<Tensor<T>, Tensor<T>> public fun StructureND<T>.qr(): Pair<StructureND<T>, StructureND<T>>
/** /**
* LUP decomposition * LUP decomposition
@ -75,7 +75,7 @@ public interface LinearOpsTensorAlgebra<T, A : Field<T>> : TensorPartialDivision
* @receiver the `input`. * @receiver the `input`.
* @return triple of P, L and U tensors * @return triple of P, L and U tensors
*/ */
public fun StructureND<T>.lu(): Triple<Tensor<T>, Tensor<T>, Tensor<T>> public fun StructureND<T>.lu(): Triple<StructureND<T>, StructureND<T>, StructureND<T>>
/** /**
* Singular Value Decomposition. * Singular Value Decomposition.
@ -91,7 +91,7 @@ public interface LinearOpsTensorAlgebra<T, A : Field<T>> : TensorPartialDivision
* @receiver the `input`. * @receiver the `input`.
* @return triple `Triple(U, S, V)`. * @return triple `Triple(U, S, V)`.
*/ */
public fun StructureND<T>.svd(): Triple<Tensor<T>, Tensor<T>, Tensor<T>> public fun StructureND<T>.svd(): Triple<StructureND<T>, StructureND<T>, StructureND<T>>
/** /**
* Returns eigenvalues and eigenvectors of a real symmetric matrix `input` or a batch of real symmetric matrices, * Returns eigenvalues and eigenvectors of a real symmetric matrix `input` or a batch of real symmetric matrices,
@ -101,6 +101,6 @@ public interface LinearOpsTensorAlgebra<T, A : Field<T>> : TensorPartialDivision
* @receiver the `input`. * @receiver the `input`.
* @return a pair `eigenvalues to eigenvectors` * @return a pair `eigenvalues to eigenvectors`
*/ */
public fun StructureND<T>.symEig(): Pair<Tensor<T>, Tensor<T>> public fun StructureND<T>.symEig(): Pair<StructureND<T>, StructureND<T>>
} }

View File

@ -6,6 +6,7 @@
package space.kscience.kmath.tensors.api package space.kscience.kmath.tensors.api
import space.kscience.kmath.nd.RingOpsND import space.kscience.kmath.nd.RingOpsND
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
@ -176,11 +177,13 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
* Returns a tensor that is a transposed version of this tensor. The given dimensions [i] and [j] are swapped. * Returns a tensor that is a transposed version of this tensor. The given dimensions [i] and [j] are swapped.
* For more information: https://pytorch.org/docs/stable/generated/torch.transpose.html * For more information: https://pytorch.org/docs/stable/generated/torch.transpose.html
* *
* If axis indices are negative, they are counted from shape end.
*
* @param i the first dimension to be transposed * @param i the first dimension to be transposed
* @param j the second dimension to be transposed * @param j the second dimension to be transposed
* @return transposed tensor * @return transposed tensor
*/ */
public fun Tensor<T>.transposed(i: Int = -2, j: Int = -1): Tensor<T> public fun StructureND<T>.transposed(i: Int = shape.size - 2, j: Int = shape.size - 1): Tensor<T>
/** /**
* Returns a new tensor with the same data as the self tensor but of a different shape. * Returns a new tensor with the same data as the self tensor but of a different shape.
@ -190,7 +193,7 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
* @param shape the desired size * @param shape the desired size
* @return tensor with new shape * @return tensor with new shape
*/ */
public fun Tensor<T>.view(shape: IntArray): Tensor<T> public fun Tensor<T>.view(shape: Shape): Tensor<T>
/** /**
* View this tensor as the same size as [other]. * View this tensor as the same size as [other].
@ -248,7 +251,7 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
* are filled by [diagonalEntries] * are filled by [diagonalEntries]
*/ */
public fun diagonalEmbedding( public fun diagonalEmbedding(
diagonalEntries: Tensor<T>, diagonalEntries: StructureND<T>,
offset: Int = 0, offset: Int = 0,
dim1: Int = -2, dim1: Int = -2,
dim2: Int = -1, dim2: Int = -1,

View File

@ -7,6 +7,7 @@ package space.kscience.kmath.tensors.core
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.RowStrides import space.kscience.kmath.nd.RowStrides
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.Strides import space.kscience.kmath.nd.Strides
import space.kscience.kmath.structures.MutableBuffer import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.tensors.api.Tensor import space.kscience.kmath.tensors.api.Tensor
@ -15,7 +16,7 @@ import space.kscience.kmath.tensors.api.Tensor
* Represents [Tensor] over a [MutableBuffer] intended to be used through [DoubleTensor] and [IntTensor] * Represents [Tensor] over a [MutableBuffer] intended to be used through [DoubleTensor] and [IntTensor]
*/ */
public abstract class BufferedTensor<T>( public abstract class BufferedTensor<T>(
override val shape: IntArray, override val shape: Shape,
) : Tensor<T> { ) : Tensor<T> {
public abstract val source: MutableBuffer<T> public abstract val source: MutableBuffer<T>

View File

@ -7,10 +7,7 @@ package space.kscience.kmath.tensors.core
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.MutableStructure2D import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.MutableStructureND
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.Strides
import space.kscience.kmath.structures.* import space.kscience.kmath.structures.*
import space.kscience.kmath.tensors.core.internal.toPrettyString import space.kscience.kmath.tensors.core.internal.toPrettyString
import kotlin.jvm.JvmInline import kotlin.jvm.JvmInline
@ -87,22 +84,30 @@ public inline fun OffsetDoubleBuffer.mapInPlace(operation: (Double) -> Double) {
* [DoubleTensor] always uses row-based strides * [DoubleTensor] always uses row-based strides
*/ */
public class DoubleTensor( public class DoubleTensor(
shape: IntArray, shape: Shape,
override val source: OffsetDoubleBuffer, override val source: OffsetDoubleBuffer,
) : BufferedTensor<Double>(shape) { ) : BufferedTensor<Double>(shape), MutableStructureNDOfDouble {
init { init {
require(linearSize == source.size) { "Source buffer size must be equal tensor size" } require(linearSize == source.size) { "Source buffer size must be equal tensor size" }
} }
public constructor(shape: IntArray, buffer: DoubleBuffer) : this(shape, OffsetDoubleBuffer(buffer, 0, buffer.size)) public constructor(shape: Shape, buffer: DoubleBuffer) : this(shape, OffsetDoubleBuffer(buffer, 0, buffer.size))
override fun get(index: IntArray): Double = this.source[indices.offset(index)]
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): Double = source[indices.offset(index)]
@OptIn(PerformancePitfall::class)
override fun set(index: IntArray, value: Double) { override fun set(index: IntArray, value: Double) {
source[indices.offset(index)] = value source[indices.offset(index)] = value
} }
override fun getDouble(index: IntArray): Double = get(index)
override fun setDouble(index: IntArray, value: Double) {
set(index, value)
}
override fun toString(): String = toPrettyString() override fun toString(): String = toPrettyString()
} }
@ -140,25 +145,26 @@ public value class DoubleTensor2D(public val tensor: DoubleTensor) : MutableStru
@PerformancePitfall @PerformancePitfall
override fun elements(): Sequence<Pair<IntArray, Double>> = tensor.elements() override fun elements(): Sequence<Pair<IntArray, Double>> = tensor.elements()
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): Double = tensor[index] override fun get(index: IntArray): Double = tensor[index]
override val shape: Shape get() = tensor.shape override val shape: Shape get() = tensor.shape
} }
public fun DoubleTensor.asDoubleTensor2D(): DoubleTensor2D = DoubleTensor2D(this) public fun DoubleTensor.asDoubleTensor2D(): DoubleTensor2D = DoubleTensor2D(this)
public fun DoubleTensor.asDoubleBuffer(): OffsetDoubleBuffer = if(shape.size == 1){ public fun DoubleTensor.asDoubleBuffer(): OffsetDoubleBuffer = if (shape.size == 1) {
source source
} else { } else {
error("Only 1D tensors could be cast to 1D" ) error("Only 1D tensors could be cast to 1D")
} }
public inline fun DoubleTensor.forEachMatrix(block: (index: IntArray, matrix: DoubleTensor2D) -> Unit) { public inline fun DoubleTensor.forEachMatrix(block: (index: IntArray, matrix: DoubleTensor2D) -> Unit) {
val n = shape.size val n = shape.size
check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" } check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" }
val matrixOffset = shape[n - 1] * shape[n - 2] val matrixOffset = shape[n - 1] * shape[n - 2]
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1]) val matrixShape = Shape(shape[n - 2], shape[n - 1])
val size = Strides.linearSizeOf(matrixShape) val size = matrixShape.linearSize
for (i in 0 until linearSize / matrixOffset) { for (i in 0 until linearSize / matrixOffset) {
val offset = i * matrixOffset val offset = i * matrixOffset
val index = indices.index(offset).sliceArray(0 until (shape.size - 2)) val index = indices.index(offset).sliceArray(0 until (shape.size - 2))

View File

@ -11,7 +11,6 @@ package space.kscience.kmath.tensors.core
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.Strides.Companion.linearSizeOf
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.* import space.kscience.kmath.structures.*
import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra
@ -93,7 +92,7 @@ public open class DoubleTensorAlgebra :
override fun StructureND<Double>.valueOrNull(): Double? { override fun StructureND<Double>.valueOrNull(): Double? {
val dt = asDoubleTensor() val dt = asDoubleTensor()
return if (dt.shape contentEquals intArrayOf(1)) dt.source[0] else null return if (dt.shape contentEquals Shape(1)) dt.source[0] else null
} }
override fun StructureND<Double>.value(): Double = valueOrNull() override fun StructureND<Double>.value(): Double = valueOrNull()
@ -106,7 +105,7 @@ public open class DoubleTensorAlgebra :
* @param array one-dimensional data array. * @param array one-dimensional data array.
* @return tensor with the [shape] shape and [array] data. * @return tensor with the [shape] shape and [array] data.
*/ */
public fun fromArray(shape: IntArray, array: DoubleArray): DoubleTensor { public fun fromArray(shape: Shape, array: DoubleArray): DoubleTensor {
checkNotEmptyShape(shape) checkNotEmptyShape(shape)
checkEmptyDoubleBuffer(array) checkEmptyDoubleBuffer(array)
checkBufferShapeConsistency(shape, array) checkBufferShapeConsistency(shape, array)
@ -120,18 +119,18 @@ public open class DoubleTensorAlgebra :
* @param initializer mapping tensor indices to values. * @param initializer mapping tensor indices to values.
* @return tensor with the [shape] shape and data generated by the [initializer]. * @return tensor with the [shape] shape and data generated by the [initializer].
*/ */
override fun structureND(shape: IntArray, initializer: DoubleField.(IntArray) -> Double): DoubleTensor = fromArray( override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): DoubleTensor = fromArray(
shape, shape,
RowStrides(shape).asSequence().map { DoubleField.initializer(it) }.toMutableList().toDoubleArray() RowStrides(shape).asSequence().map { DoubleField.initializer(it) }.toMutableList().toDoubleArray()
) )
override fun Tensor<Double>.getTensor(i: Int): DoubleTensor { override fun Tensor<Double>.getTensor(i: Int): DoubleTensor {
val dt = asDoubleTensor() val dt = asDoubleTensor()
val lastShape = shape.drop(1).toIntArray() val lastShape = shape.last(shape.size - 1)
val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1) val newShape: Shape = if (lastShape.isNotEmpty()) lastShape else Shape(1)
return DoubleTensor( return DoubleTensor(
newShape, newShape,
dt.source.view(newShape.reduce(Int::times) * i, linearSizeOf(newShape)) dt.source.view(newShape.linearSize * i, newShape.linearSize)
) )
} }
@ -142,9 +141,9 @@ public open class DoubleTensorAlgebra :
* @param shape array of integers defining the shape of the output tensor. * @param shape array of integers defining the shape of the output tensor.
* @return tensor with the [shape] shape and filled with [value]. * @return tensor with the [shape] shape and filled with [value].
*/ */
public fun full(value: Double, shape: IntArray): DoubleTensor { public fun full(value: Double, shape: Shape): DoubleTensor {
checkNotEmptyShape(shape) checkNotEmptyShape(shape)
val buffer = DoubleBuffer(shape.reduce(Int::times)) { value } val buffer = DoubleBuffer(shape.linearSize) { value }
return DoubleTensor(shape, buffer) return DoubleTensor(shape, buffer)
} }
@ -166,7 +165,7 @@ public open class DoubleTensorAlgebra :
* @param shape array of integers defining the shape of the output tensor. * @param shape array of integers defining the shape of the output tensor.
* @return tensor filled with the scalar value `0.0`, with the [shape] shape. * @return tensor filled with the scalar value `0.0`, with the [shape] shape.
*/ */
public fun zeros(shape: IntArray): DoubleTensor = full(0.0, shape) public fun zeros(shape: Shape): DoubleTensor = full(0.0, shape)
/** /**
* Returns a tensor filled with the scalar value `0.0`, with the same shape as a given array. * Returns a tensor filled with the scalar value `0.0`, with the same shape as a given array.
@ -181,7 +180,7 @@ public open class DoubleTensorAlgebra :
* @param shape array of integers defining the shape of the output tensor. * @param shape array of integers defining the shape of the output tensor.
* @return tensor filled with the scalar value `1.0`, with the [shape] shape. * @return tensor filled with the scalar value `1.0`, with the [shape] shape.
*/ */
public fun ones(shape: IntArray): DoubleTensor = full(1.0, shape) public fun ones(shape: Shape): DoubleTensor = full(1.0, shape)
/** /**
* Returns a tensor filled with the scalar value `1.0`, with the same shape as a given array. * Returns a tensor filled with the scalar value `1.0`, with the same shape as a given array.
@ -197,7 +196,7 @@ public open class DoubleTensorAlgebra :
* @return a 2-D tensor with ones on the diagonal and zeros elsewhere. * @return a 2-D tensor with ones on the diagonal and zeros elsewhere.
*/ */
public fun eye(n: Int): DoubleTensor { public fun eye(n: Int): DoubleTensor {
val shape = intArrayOf(n, n) val shape = Shape(n, n)
val buffer = DoubleBuffer(n * n) { 0.0 } val buffer = DoubleBuffer(n * n) { 0.0 }
val res = DoubleTensor(shape, buffer) val res = DoubleTensor(shape, buffer)
for (i in 0 until n) { for (i in 0 until n) {
@ -235,7 +234,7 @@ public open class DoubleTensorAlgebra :
override fun Tensor<Double>.minusAssign(arg: StructureND<Double>) { override fun Tensor<Double>.minusAssign(arg: StructureND<Double>) {
checkShapesCompatible(this, arg) checkShapesCompatible(this, arg)
mapIndexedInPlace { index, value -> value - arg[index] } mapIndexedInPlace { index, value -> value - arg.getDouble(index) }
} }
override fun Double.times(arg: StructureND<Double>): DoubleTensor = arg.map { this@times * it } override fun Double.times(arg: StructureND<Double>): DoubleTensor = arg.map { this@times * it }
@ -270,32 +269,44 @@ public open class DoubleTensorAlgebra :
override fun StructureND<Double>.unaryMinus(): DoubleTensor = map { -it } override fun StructureND<Double>.unaryMinus(): DoubleTensor = map { -it }
override fun Tensor<Double>.transposed(i: Int, j: Int): DoubleTensor { override fun StructureND<Double>.transposed(i: Int, j: Int): Tensor<Double> {
// TODO change strides instead of changing content val actualI = if (i >= 0) i else shape.size + i
val dt = asDoubleTensor() val actualJ = if(j>=0) j else shape.size + j
val ii = dt.minusIndex(i) return asDoubleTensor().permute(
val jj = dt.minusIndex(j) shape.transposed(actualI, actualJ)
checkTranspose(dt.dimension, ii, jj) ) { originIndex ->
val n = dt.linearSize originIndex.copyOf().apply {
val resBuffer = DoubleArray(n) val ith = get(actualI)
val jth = get(actualJ)
val resShape = dt.shape.copyOf() set(actualI, jth)
resShape[ii] = resShape[jj].also { resShape[jj] = resShape[ii] } set(actualJ, ith)
}
val resTensor = DoubleTensor(resShape, resBuffer.asBuffer())
for (offset in 0 until n) {
val oldMultiIndex = dt.indices.index(offset)
val newMultiIndex = oldMultiIndex.copyOf()
newMultiIndex[ii] = newMultiIndex[jj].also { newMultiIndex[jj] = newMultiIndex[ii] }
val linearIndex = resTensor.indices.offset(newMultiIndex)
resTensor.source[linearIndex] = dt.source[offset]
} }
return resTensor // // TODO change strides instead of changing content
// val dt = asDoubleTensor()
// val ii = dt.minusIndex(i)
// val jj = dt.minusIndex(j)
// checkTranspose(dt.dimension, ii, jj)
// val n = dt.linearSize
// val resBuffer = DoubleArray(n)
//
// val resShape = dt.shape.copyOf()
// resShape[ii] = resShape[jj].also { resShape[jj] = resShape[ii] }
//
// val resTensor = DoubleTensor(resShape, resBuffer.asBuffer())
//
// for (offset in 0 until n) {
// val oldMultiIndex = dt.indices.index(offset)
// val newMultiIndex = oldMultiIndex.copyOf()
// newMultiIndex[ii] = newMultiIndex[jj].also { newMultiIndex[jj] = newMultiIndex[ii] }
//
// val linearIndex = resTensor.indices.offset(newMultiIndex)
// resTensor.source[linearIndex] = dt.source[offset]
// }
// return resTensor
} }
override fun Tensor<Double>.view(shape: IntArray): DoubleTensor { override fun Tensor<Double>.view(shape: Shape): DoubleTensor {
checkView(asDoubleTensor(), shape) checkView(asDoubleTensor(), shape)
return DoubleTensor(shape, asDoubleTensor().source) return DoubleTensor(shape, asDoubleTensor().source)
} }
@ -335,7 +346,7 @@ public open class DoubleTensorAlgebra :
@UnstableKMathAPI @UnstableKMathAPI
public infix fun StructureND<Double>.matmul(other: StructureND<Double>): DoubleTensor { public infix fun StructureND<Double>.matmul(other: StructureND<Double>): DoubleTensor {
if (shape.size == 1 && other.shape.size == 1) { if (shape.size == 1 && other.shape.size == 1) {
return DoubleTensor(intArrayOf(1), DoubleBuffer(times(other).sum())) return DoubleTensor(Shape(1), DoubleBuffer(times(other).sum()))
} }
var penultimateDim = false var penultimateDim = false
@ -347,7 +358,7 @@ public open class DoubleTensorAlgebra :
if (shape.size == 1) { if (shape.size == 1) {
penultimateDim = true penultimateDim = true
newThis = newThis.view(intArrayOf(1) + shape) newThis = newThis.view(Shape(1) + shape)
} }
if (other.shape.size == 1) { if (other.shape.size == 1) {
@ -367,8 +378,8 @@ public open class DoubleTensorAlgebra :
"Tensors dot operation dimension mismatch: ($l, $m1) x ($m2, $n)" "Tensors dot operation dimension mismatch: ($l, $m1) x ($m2, $n)"
} }
val resShape = newThis.shape.sliceArray(0..(newThis.shape.size - 2)) + intArrayOf(newOther.shape.last()) val resShape = newThis.shape.slice(0..(newThis.shape.size - 2)) + intArrayOf(newOther.shape.last())
val resSize = resShape.reduce { acc, i -> acc * i } val resSize = resShape.linearSize
val resTensor = DoubleTensor(resShape, DoubleArray(resSize).asBuffer()) val resTensor = DoubleTensor(resShape, DoubleArray(resSize).asBuffer())
val resMatrices = resTensor.matrices val resMatrices = resTensor.matrices
@ -385,9 +396,9 @@ public open class DoubleTensorAlgebra :
// } // }
return if (penultimateDim) { return if (penultimateDim) {
resTensor.view(resTensor.shape.dropLast(2).toIntArray() + intArrayOf(resTensor.shape.last())) resTensor.view(resTensor.shape.first(resTensor.shape.size - 2) + Shape(resTensor.shape.last()))
} else if (lastDim) { } else if (lastDim) {
resTensor.view(resTensor.shape.dropLast(1).toIntArray()) resTensor.view(resTensor.shape.first(resTensor.shape.size - 1))
} else { } else {
resTensor resTensor
} }
@ -399,7 +410,7 @@ public open class DoubleTensorAlgebra :
} }
override fun diagonalEmbedding( override fun diagonalEmbedding(
diagonalEntries: Tensor<Double>, diagonalEntries: StructureND<Double>,
offset: Int, offset: Int,
dim1: Int, dim1: Int,
dim2: Int, dim2: Int,
@ -423,11 +434,11 @@ public open class DoubleTensorAlgebra :
lessDim = greaterDim.also { greaterDim = lessDim } lessDim = greaterDim.also { greaterDim = lessDim }
} }
val resShape = diagonalEntries.shape.slice(0 until lessDim).toIntArray() + val resShape = diagonalEntries.shape.slice(0 until lessDim) +
intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) + intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) +
diagonalEntries.shape.slice(lessDim until greaterDim - 1).toIntArray() + diagonalEntries.shape.slice(lessDim until greaterDim - 1) +
intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) + intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) +
diagonalEntries.shape.slice(greaterDim - 1 until n - 1).toIntArray() diagonalEntries.shape.slice(greaterDim - 1 until n - 1)
val resTensor: DoubleTensor = zeros(resShape) val resTensor: DoubleTensor = zeros(resShape)
for (i in 0 until diagonalEntries.indices.linearSize) { for (i in 0 until diagonalEntries.indices.linearSize) {
@ -495,8 +506,8 @@ public open class DoubleTensorAlgebra :
* @return tensor of a given shape filled with numbers from the normal distribution * @return tensor of a given shape filled with numbers from the normal distribution
* with `0.0` mean and `1.0` standard deviation. * with `0.0` mean and `1.0` standard deviation.
*/ */
public fun randomNormal(shape: IntArray, seed: Long = 0): DoubleTensor = public fun randomNormal(shape: Shape, seed: Long = 0): DoubleTensor =
DoubleTensor(shape, DoubleBuffer.randomNormals(shape.reduce(Int::times), seed)) DoubleTensor(shape, DoubleBuffer.randomNormals(shape.linearSize, seed))
/** /**
* Returns a tensor with the same shape as `input` of random numbers drawn from normal distributions * Returns a tensor with the same shape as `input` of random numbers drawn from normal distributions
@ -508,7 +519,7 @@ public open class DoubleTensorAlgebra :
* with `0.0` mean and `1.0` standard deviation. * with `0.0` mean and `1.0` standard deviation.
*/ */
public fun Tensor<Double>.randomNormalLike(seed: Long = 0): DoubleTensor = public fun Tensor<Double>.randomNormalLike(seed: Long = 0): DoubleTensor =
DoubleTensor(shape, DoubleBuffer.randomNormals(shape.reduce(Int::times), seed)) DoubleTensor(shape, DoubleBuffer.randomNormals(shape.linearSize, seed))
/** /**
* Concatenates a sequence of tensors with equal shapes along the first dimension. * Concatenates a sequence of tensors with equal shapes along the first dimension.
@ -520,7 +531,7 @@ public open class DoubleTensorAlgebra :
check(tensors.isNotEmpty()) { "List must have at least 1 element" } check(tensors.isNotEmpty()) { "List must have at least 1 element" }
val shape = tensors[0].shape val shape = tensors[0].shape
check(tensors.all { it.shape contentEquals shape }) { "Tensors must have same shapes" } check(tensors.all { it.shape contentEquals shape }) { "Tensors must have same shapes" }
val resShape = intArrayOf(tensors.size) + shape val resShape = Shape(tensors.size) + shape
// val resBuffer: List<Double> = tensors.flatMap { // val resBuffer: List<Double> = tensors.flatMap {
// it.asDoubleTensor().source.array.drop(it.asDoubleTensor().bufferStart) // it.asDoubleTensor().source.array.drop(it.asDoubleTensor().bufferStart)
// .take(it.asDoubleTensor().linearSize) // .take(it.asDoubleTensor().linearSize)
@ -545,11 +556,11 @@ public open class DoubleTensorAlgebra :
): DoubleTensor { ): DoubleTensor {
check(dim < dimension) { "Dimension $dim out of range $dimension" } check(dim < dimension) { "Dimension $dim out of range $dimension" }
val resShape = if (keepDim) { val resShape = if (keepDim) {
shape.take(dim).toIntArray() + intArrayOf(1) + shape.takeLast(dimension - dim - 1).toIntArray() shape.first(dim) + intArrayOf(1) + shape.last(dimension - dim - 1)
} else { } else {
shape.take(dim).toIntArray() + shape.takeLast(dimension - dim - 1).toIntArray() shape.first(dim) + shape.last(dimension - dim - 1)
} }
val resNumElements = resShape.reduce(Int::times) val resNumElements = resShape.linearSize
val init = foldFunction(DoubleArray(1) { 0.0 }) val init = foldFunction(DoubleArray(1) { 0.0 })
val resTensor = DoubleTensor( val resTensor = DoubleTensor(
resShape, resShape,
@ -573,11 +584,11 @@ public open class DoubleTensorAlgebra :
): IntTensor { ): IntTensor {
check(dim < dimension) { "Dimension $dim out of range $dimension" } check(dim < dimension) { "Dimension $dim out of range $dimension" }
val resShape = if (keepDim) { val resShape = if (keepDim) {
shape.take(dim).toIntArray() + intArrayOf(1) + shape.takeLast(dimension - dim - 1).toIntArray() shape.first(dim) + intArrayOf(1) + shape.last(dimension - dim - 1)
} else { } else {
shape.take(dim).toIntArray() + shape.takeLast(dimension - dim - 1).toIntArray() shape.first(dim) + shape.last(dimension - dim - 1)
} }
val resNumElements = resShape.reduce(Int::times) val resNumElements = resShape.linearSize
val init = foldFunction(DoubleArray(1) { 0.0 }) val init = foldFunction(DoubleArray(1) { 0.0 })
val resTensor = IntTensor( val resTensor = IntTensor(
resShape, resShape,
@ -674,9 +685,9 @@ public open class DoubleTensorAlgebra :
check(tensors.isNotEmpty()) { "List must have at least 1 element" } check(tensors.isNotEmpty()) { "List must have at least 1 element" }
val n = tensors.size val n = tensors.size
val m = tensors[0].shape[0] val m = tensors[0].shape[0]
check(tensors.all { it.shape contentEquals intArrayOf(m) }) { "Tensors must have same shapes" } check(tensors.all { it.shape contentEquals Shape(m) }) { "Tensors must have same shapes" }
val resTensor = DoubleTensor( val resTensor = DoubleTensor(
intArrayOf(n, n), Shape(n, n),
DoubleBuffer(n * n) { 0.0 } DoubleBuffer(n * n) { 0.0 }
) )
for (i in 0 until n) { for (i in 0 until n) {
@ -772,7 +783,7 @@ public open class DoubleTensorAlgebra :
): Triple<DoubleTensor, DoubleTensor, DoubleTensor> { ): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
checkSquareMatrix(luTensor.shape) checkSquareMatrix(luTensor.shape)
check( check(
luTensor.shape.dropLast(2).toIntArray() contentEquals pivotsTensor.shape.dropLast(1).toIntArray() || luTensor.shape.first(luTensor.shape.size - 2) contentEquals pivotsTensor.shape.first(pivotsTensor.shape.size - 1) ||
luTensor.shape.last() == pivotsTensor.shape.last() - 1 luTensor.shape.last() == pivotsTensor.shape.last() - 1
) { "Inappropriate shapes of input tensors" } ) { "Inappropriate shapes of input tensors" }
@ -843,9 +854,10 @@ public open class DoubleTensorAlgebra :
return qTensor to rTensor return qTensor to rTensor
} }
override fun StructureND<Double>.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> = override fun StructureND<Double>.svd(): Triple<StructureND<Double>, StructureND<Double>, StructureND<Double>> =
svd(epsilon = 1e-10) svd(epsilon = 1e-10)
/** /**
* Singular Value Decomposition. * Singular Value Decomposition.
* *
@ -859,13 +871,13 @@ public open class DoubleTensorAlgebra :
* i.e., the precision with which the cosine approaches 1 in an iterative algorithm. * i.e., the precision with which the cosine approaches 1 in an iterative algorithm.
* @return a triple `Triple(U, S, V)`. * @return a triple `Triple(U, S, V)`.
*/ */
public fun StructureND<Double>.svd(epsilon: Double): Triple<DoubleTensor, DoubleTensor, DoubleTensor> { public fun StructureND<Double>.svd(epsilon: Double): Triple<StructureND<Double>, StructureND<Double>, StructureND<Double>> {
val size = dimension val size = dimension
val commonShape = shape.sliceArray(0 until size - 2) val commonShape = shape.slice(0 until size - 2)
val (n, m) = shape.sliceArray(size - 2 until size) val (n, m) = shape.slice(size - 2 until size)
val uTensor = zeros(commonShape + intArrayOf(min(n, m), n)) val uTensor = zeros(commonShape + Shape(min(n, m), n))
val sTensor = zeros(commonShape + intArrayOf(min(n, m))) val sTensor = zeros(commonShape + Shape(min(n, m)))
val vTensor = zeros(commonShape + intArrayOf(min(n, m), m)) val vTensor = zeros(commonShape + Shape(min(n, m), m))
val matrices = asDoubleTensor().matrices val matrices = asDoubleTensor().matrices
val uTensors = uTensor.matrices val uTensors = uTensor.matrices
@ -879,7 +891,7 @@ public open class DoubleTensorAlgebra :
sTensorVectors[index], sTensorVectors[index],
vTensors[index] vTensors[index]
) )
val matrixSize = matrix.shape.reduce { acc, i -> acc * i } val matrixSize = matrix.shape.linearSize
val curMatrix = DoubleTensor( val curMatrix = DoubleTensor(
matrix.shape, matrix.shape,
matrix.source.view(0, matrixSize) matrix.source.view(0, matrixSize)
@ -901,7 +913,7 @@ public open class DoubleTensorAlgebra :
* and when the cosine approaches 1 in the SVD algorithm. * and when the cosine approaches 1 in the SVD algorithm.
* @return a pair `eigenvalues to eigenvectors`. * @return a pair `eigenvalues to eigenvectors`.
*/ */
public fun StructureND<Double>.symEigSvd(epsilon: Double): Pair<DoubleTensor, DoubleTensor> { public fun StructureND<Double>.symEigSvd(epsilon: Double): Pair<DoubleTensor, StructureND<Double>> {
//TODO optimize conversion //TODO optimize conversion
checkSymmetric(asDoubleTensor(), epsilon) checkSymmetric(asDoubleTensor(), epsilon)
@ -925,7 +937,7 @@ public open class DoubleTensorAlgebra :
matrix.asDoubleTensor2D().cleanSym(n) matrix.asDoubleTensor2D().cleanSym(n)
} }
val eig = (utv dot s.view(shp)).view(s.shape) val eig = (utv dot s.asDoubleTensor().view(shp)).view(s.shape)
return eig to v return eig to v
} }
@ -934,8 +946,8 @@ public open class DoubleTensorAlgebra :
checkSymmetric(asDoubleTensor(), epsilon) checkSymmetric(asDoubleTensor(), epsilon)
val size = this.dimension val size = this.dimension
val eigenvectors = zeros(this.shape) val eigenvectors = zeros(shape)
val eigenvalues = zeros(this.shape.sliceArray(0 until size - 1)) val eigenvalues = zeros(shape.slice(0 until size - 1))
var eigenvalueStart = 0 var eigenvalueStart = 0
var eigenvectorStart = 0 var eigenvectorStart = 0
@ -976,9 +988,11 @@ public open class DoubleTensorAlgebra :
val n = shape.size val n = shape.size
val detTensorShape = IntArray(n - 1) { i -> shape[i] } val detTensorShape = Shape(IntArray(n - 1) { i -> shape[i] }.apply {
detTensorShape[n - 2] = 1 set(n - 2, 1)
val resBuffer = DoubleBuffer(detTensorShape.reduce(Int::times)) { 0.0 } })
val resBuffer = DoubleBuffer(detTensorShape.linearSize) { 0.0 }
val detTensor = DoubleTensor( val detTensor = DoubleTensor(
detTensorShape, detTensorShape,

View File

@ -5,6 +5,8 @@
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.structures.* import space.kscience.kmath.structures.*
/** /**
@ -73,7 +75,7 @@ public inline fun OffsetIntBuffer.mapInPlace(operation: (Int) -> Int) {
* Default [BufferedTensor] implementation for [Int] values * Default [BufferedTensor] implementation for [Int] values
*/ */
public class IntTensor( public class IntTensor(
shape: IntArray, shape: Shape,
override val source: OffsetIntBuffer, override val source: OffsetIntBuffer,
) : BufferedTensor<Int>(shape) { ) : BufferedTensor<Int>(shape) {
@ -81,10 +83,12 @@ public class IntTensor(
require(linearSize == source.size) { "Source buffer size must be equal tensor size" } require(linearSize == source.size) { "Source buffer size must be equal tensor size" }
} }
public constructor(shape: IntArray, buffer: IntBuffer) : this(shape, OffsetIntBuffer(buffer, 0, buffer.size)) public constructor(shape: Shape, buffer: IntBuffer) : this(shape, OffsetIntBuffer(buffer, 0, buffer.size))
@OptIn(PerformancePitfall::class)
override fun get(index: IntArray): Int = this.source[indices.offset(index)] override fun get(index: IntArray): Int = this.source[indices.offset(index)]
@OptIn(PerformancePitfall::class)
override fun set(index: IntArray, value: Int) { override fun set(index: IntArray, value: Int) {
source[indices.offset(index)] = value source[indices.offset(index)] = value
} }

View File

@ -23,6 +23,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
public companion object : IntTensorAlgebra() public companion object : IntTensorAlgebra()
override val elementAlgebra: IntRing get() = IntRing override val elementAlgebra: IntRing get() = IntRing
@ -88,7 +89,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
override fun StructureND<Int>.valueOrNull(): Int? { override fun StructureND<Int>.valueOrNull(): Int? {
val dt = asIntTensor() val dt = asIntTensor()
return if (dt.shape contentEquals intArrayOf(1)) dt.source[0] else null return if (dt.shape contentEquals Shape(1)) dt.source[0] else null
} }
override fun StructureND<Int>.value(): Int = valueOrNull() override fun StructureND<Int>.value(): Int = valueOrNull()
@ -101,11 +102,11 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
* @param array one-dimensional data array. * @param array one-dimensional data array.
* @return tensor with the [shape] shape and [array] data. * @return tensor with the [shape] shape and [array] data.
*/ */
public fun fromArray(shape: IntArray, array: IntArray): IntTensor { public fun fromArray(shape: Shape, array: IntArray): IntTensor {
checkNotEmptyShape(shape) checkNotEmptyShape(shape)
check(array.isNotEmpty()) { "Illegal empty buffer provided" } check(array.isNotEmpty()) { "Illegal empty buffer provided" }
check(array.size == shape.reduce(Int::times)) { check(array.size == shape.linearSize) {
"Inconsistent shape ${shape.toList()} for buffer of size ${array.size} provided" "Inconsistent shape ${shape} for buffer of size ${array.size} provided"
} }
return IntTensor(shape, array.asBuffer()) return IntTensor(shape, array.asBuffer())
} }
@ -117,16 +118,16 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
* @param initializer mapping tensor indices to values. * @param initializer mapping tensor indices to values.
* @return tensor with the [shape] shape and data generated by the [initializer]. * @return tensor with the [shape] shape and data generated by the [initializer].
*/ */
override fun structureND(shape: IntArray, initializer: IntRing.(IntArray) -> Int): IntTensor = fromArray( override fun structureND(shape: Shape, initializer: IntRing.(IntArray) -> Int): IntTensor = fromArray(
shape, shape,
RowStrides(shape).asSequence().map { IntRing.initializer(it) }.toMutableList().toIntArray() RowStrides(shape).asSequence().map { IntRing.initializer(it) }.toMutableList().toIntArray()
) )
override fun Tensor<Int>.getTensor(i: Int): IntTensor { override fun Tensor<Int>.getTensor(i: Int): IntTensor {
val dt = asIntTensor() val dt = asIntTensor()
val lastShape = shape.drop(1).toIntArray() val lastShape = shape.last(shape.size - 1)
val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1) val newShape = if (lastShape.isNotEmpty()) lastShape else Shape(1)
return IntTensor(newShape, dt.source.view(newShape.reduce(Int::times) * i)) return IntTensor(newShape, dt.source.view(newShape.linearSize * i))
} }
/** /**
@ -136,9 +137,9 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
* @param shape array of integers defining the shape of the output tensor. * @param shape array of integers defining the shape of the output tensor.
* @return tensor with the [shape] shape and filled with [value]. * @return tensor with the [shape] shape and filled with [value].
*/ */
public fun full(value: Int, shape: IntArray): IntTensor { public fun full(value: Int, shape: Shape): IntTensor {
checkNotEmptyShape(shape) checkNotEmptyShape(shape)
val buffer = IntBuffer(shape.reduce(Int::times)) { value } val buffer = IntBuffer(shape.linearSize) { value }
return IntTensor(shape, buffer) return IntTensor(shape, buffer)
} }
@ -160,7 +161,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
* @param shape array of integers defining the shape of the output tensor. * @param shape array of integers defining the shape of the output tensor.
* @return tensor filled with the scalar value `0`, with the [shape] shape. * @return tensor filled with the scalar value `0`, with the [shape] shape.
*/ */
public fun zeros(shape: IntArray): IntTensor = full(0, shape) public fun zeros(shape: Shape): IntTensor = full(0, shape)
/** /**
* Returns a tensor filled with the scalar value `0`, with the same shape as a given array. * Returns a tensor filled with the scalar value `0`, with the same shape as a given array.
@ -175,7 +176,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
* @param shape array of integers defining the shape of the output tensor. * @param shape array of integers defining the shape of the output tensor.
* @return tensor filled with the scalar value `1`, with the [shape] shape. * @return tensor filled with the scalar value `1`, with the [shape] shape.
*/ */
public fun ones(shape: IntArray): IntTensor = full(1, shape) public fun ones(shape: Shape): IntTensor = full(1, shape)
/** /**
* Returns a tensor filled with the scalar value `1`, with the same shape as a given array. * Returns a tensor filled with the scalar value `1`, with the same shape as a given array.
@ -191,7 +192,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
* @return a 2-D tensor with ones on the diagonal and zeros elsewhere. * @return a 2-D tensor with ones on the diagonal and zeros elsewhere.
*/ */
public fun eye(n: Int): IntTensor { public fun eye(n: Int): IntTensor {
val shape = intArrayOf(n, n) val shape = Shape(n, n)
val buffer = IntBuffer(n * n) { 0 } val buffer = IntBuffer(n * n) { 0 }
val res = IntTensor(shape, buffer) val res = IntTensor(shape, buffer)
for (i in 0 until n) { for (i in 0 until n) {
@ -249,32 +250,44 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
override fun StructureND<Int>.unaryMinus(): IntTensor = map { -it } override fun StructureND<Int>.unaryMinus(): IntTensor = map { -it }
override fun Tensor<Int>.transposed(i: Int, j: Int): IntTensor { override fun StructureND<Int>.transposed(i: Int, j: Int): Tensor<Int> {
// TODO change strides instead of changing content val actualI = if (i >= 0) i else shape.size + i
val dt = asIntTensor() val actualJ = if(j>=0) j else shape.size + j
val ii = dt.minusIndex(i) return asIntTensor().permute(
val jj = dt.minusIndex(j) shape.transposed(actualI, actualJ)
checkTranspose(dt.dimension, ii, jj) ) { originIndex ->
val n = dt.linearSize originIndex.copyOf().apply {
val resBuffer = IntArray(n) val ith = get(actualI)
val jth = get(actualJ)
val resShape = dt.shape.copyOf() set(actualI, jth)
resShape[ii] = resShape[jj].also { resShape[jj] = resShape[ii] } set(actualJ, ith)
}
val resTensor = IntTensor(resShape, resBuffer.asBuffer())
for (offset in 0 until n) {
val oldMultiIndex = dt.indices.index(offset)
val newMultiIndex = oldMultiIndex.copyOf()
newMultiIndex[ii] = newMultiIndex[jj].also { newMultiIndex[jj] = newMultiIndex[ii] }
val linearIndex = resTensor.indices.offset(newMultiIndex)
resTensor.source[linearIndex] = dt.source[offset]
} }
return resTensor // // TODO change strides instead of changing content
// val dt = asIntTensor()
// val ii = dt.minusIndex(i)
// val jj = dt.minusIndex(j)
// checkTranspose(dt.dimension, ii, jj)
// val n = dt.linearSize
// val resBuffer = IntArray(n)
//
// val resShape = dt.shape.toArray()
// resShape[ii] = resShape[jj].also { resShape[jj] = resShape[ii] }
//
// val resTensor = IntTensor(Shape(resShape), resBuffer.asBuffer())
//
// for (offset in 0 until n) {
// val oldMultiIndex = dt.indices.index(offset)
// val newMultiIndex = oldMultiIndex.copyOf()
// newMultiIndex[ii] = newMultiIndex[jj].also { newMultiIndex[jj] = newMultiIndex[ii] }
//
// val linearIndex = resTensor.indices.offset(newMultiIndex)
// resTensor.source[linearIndex] = dt.source[offset]
// }
// return resTensor
} }
override fun Tensor<Int>.view(shape: IntArray): IntTensor { override fun Tensor<Int>.view(shape: Shape): IntTensor {
checkView(asIntTensor(), shape) checkView(asIntTensor(), shape)
return IntTensor(shape, asIntTensor().source) return IntTensor(shape, asIntTensor().source)
} }
@ -287,7 +300,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
} }
override fun diagonalEmbedding( override fun diagonalEmbedding(
diagonalEntries: Tensor<Int>, diagonalEntries: StructureND<Int>,
offset: Int, offset: Int,
dim1: Int, dim1: Int,
dim2: Int, dim2: Int,
@ -311,11 +324,11 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
lessDim = greaterDim.also { greaterDim = lessDim } lessDim = greaterDim.also { greaterDim = lessDim }
} }
val resShape = diagonalEntries.shape.slice(0 until lessDim).toIntArray() + val resShape = diagonalEntries.shape.slice(0 until lessDim) +
intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) + intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) +
diagonalEntries.shape.slice(lessDim until greaterDim - 1).toIntArray() + diagonalEntries.shape.slice(lessDim until greaterDim - 1) +
intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) + intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) +
diagonalEntries.shape.slice(greaterDim - 1 until n - 1).toIntArray() diagonalEntries.shape.slice(greaterDim - 1 until n - 1)
val resTensor = zeros(resShape) val resTensor = zeros(resShape)
for (i in 0 until diagonalEntries.asIntTensor().linearSize) { for (i in 0 until diagonalEntries.asIntTensor().linearSize) {
@ -375,7 +388,7 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
check(tensors.isNotEmpty()) { "List must have at least 1 element" } check(tensors.isNotEmpty()) { "List must have at least 1 element" }
val shape = tensors[0].shape val shape = tensors[0].shape
check(tensors.all { it.shape contentEquals shape }) { "Tensors must have same shapes" } check(tensors.all { it.shape contentEquals shape }) { "Tensors must have same shapes" }
val resShape = intArrayOf(tensors.size) + shape val resShape = Shape(tensors.size) + shape
// val resBuffer: List<Int> = tensors.flatMap { // val resBuffer: List<Int> = tensors.flatMap {
// it.asIntTensor().source.array.drop(it.asIntTensor().bufferStart) // it.asIntTensor().source.array.drop(it.asIntTensor().bufferStart)
// .take(it.asIntTensor().linearSize) // .take(it.asIntTensor().linearSize)
@ -399,11 +412,11 @@ public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
): IntTensor { ): IntTensor {
check(dim < dimension) { "Dimension $dim out of range $dimension" } check(dim < dimension) { "Dimension $dim out of range $dimension" }
val resShape = if (keepDim) { val resShape = if (keepDim) {
shape.take(dim).toIntArray() + intArrayOf(1) + shape.takeLast(dimension - dim - 1).toIntArray() shape.first(dim) + intArrayOf(1) + shape.last(dimension - dim - 1)
} else { } else {
shape.take(dim).toIntArray() + shape.takeLast(dimension - dim - 1).toIntArray() shape.first(dim) + shape.last(dimension - dim - 1)
} }
val resNumElements = resShape.reduce(Int::times) val resNumElements = resShape.linearSize
val init = foldFunction(IntArray(1) { 0 }) val init = foldFunction(IntArray(1) { 0 })
val resTensor = IntTensor( val resTensor = IntTensor(
resShape, resShape,

View File

@ -5,6 +5,8 @@
package space.kscience.kmath.tensors.core.internal package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.misc.UnsafeKMathAPI
import space.kscience.kmath.nd.*
import space.kscience.kmath.structures.asBuffer import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.tensors.core.DoubleTensor import space.kscience.kmath.tensors.core.DoubleTensor
import kotlin.math.max import kotlin.math.max
@ -12,7 +14,7 @@ import kotlin.math.max
internal fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: DoubleTensor, linearSize: Int) { internal fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: DoubleTensor, linearSize: Int) {
for (linearIndex in 0 until linearSize) { for (linearIndex in 0 until linearSize) {
val totalMultiIndex = resTensor.indices.index(linearIndex) val totalMultiIndex = resTensor.indices.index(linearIndex)
val curMultiIndex = tensor.shape.copyOf() val curMultiIndex = tensor.shape.toArray()
val offset = totalMultiIndex.size - curMultiIndex.size val offset = totalMultiIndex.size - curMultiIndex.size
@ -30,7 +32,7 @@ internal fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: DoubleTenso
} }
} }
internal fun broadcastShapes(vararg shapes: IntArray): IntArray { internal fun broadcastShapes(shapes: List<Shape>): Shape {
var totalDim = 0 var totalDim = 0
for (shape in shapes) { for (shape in shapes) {
totalDim = max(totalDim, shape.size) totalDim = max(totalDim, shape.size)
@ -55,15 +57,15 @@ internal fun broadcastShapes(vararg shapes: IntArray): IntArray {
} }
} }
return totalShape return Shape(totalShape)
} }
internal fun broadcastTo(tensor: DoubleTensor, newShape: IntArray): DoubleTensor { internal fun broadcastTo(tensor: DoubleTensor, newShape: Shape): DoubleTensor {
require(tensor.shape.size <= newShape.size) { require(tensor.shape.size <= newShape.size) {
"Tensor is not compatible with the new shape" "Tensor is not compatible with the new shape"
} }
val n = newShape.reduce { acc, i -> acc * i } val n = newShape.linearSize
val resTensor = DoubleTensor(newShape, DoubleArray(n).asBuffer()) val resTensor = DoubleTensor(newShape, DoubleArray(n).asBuffer())
for (i in tensor.shape.indices) { for (i in tensor.shape.indices) {
@ -79,8 +81,8 @@ internal fun broadcastTo(tensor: DoubleTensor, newShape: IntArray): DoubleTensor
} }
internal fun broadcastTensors(vararg tensors: DoubleTensor): List<DoubleTensor> { internal fun broadcastTensors(vararg tensors: DoubleTensor): List<DoubleTensor> {
val totalShape = broadcastShapes(*(tensors.map { it.shape }).toTypedArray()) val totalShape = broadcastShapes(tensors.map { it.shape })
val n = totalShape.reduce { acc, i -> acc * i } val n = totalShape.linearSize
return tensors.map { tensor -> return tensors.map { tensor ->
val resTensor = DoubleTensor(totalShape, DoubleArray(n).asBuffer()) val resTensor = DoubleTensor(totalShape, DoubleArray(n).asBuffer())
@ -100,12 +102,12 @@ internal fun broadcastOuterTensors(vararg tensors: DoubleTensor): List<DoubleTen
return tensors.asList() return tensors.asList()
} }
val totalShape = broadcastShapes(*(tensors.map { it.shape.sliceArray(0..it.shape.size - 3) }).toTypedArray()) val totalShape = broadcastShapes(tensors.map { it.shape.slice(0..it.shape.size - 3) })
val n = totalShape.reduce { acc, i -> acc * i } val n = totalShape.linearSize
return buildList { return buildList {
for (tensor in tensors) { for (tensor in tensors) {
val matrixShape = tensor.shape.sliceArray(tensor.shape.size - 2 until tensor.shape.size).copyOf() val matrixShape = tensor.shape.slice(tensor.shape.size - 2 until tensor.shape.size)
val matrixSize = matrixShape[0] * matrixShape[1] val matrixSize = matrixShape[0] * matrixShape[1]
val matrix = DoubleTensor(matrixShape, DoubleArray(matrixSize).asBuffer()) val matrix = DoubleTensor(matrixShape, DoubleArray(matrixSize).asBuffer())
@ -114,10 +116,11 @@ internal fun broadcastOuterTensors(vararg tensors: DoubleTensor): List<DoubleTen
for (linearIndex in 0 until n) { for (linearIndex in 0 until n) {
val totalMultiIndex = outerTensor.indices.index(linearIndex) val totalMultiIndex = outerTensor.indices.index(linearIndex)
var curMultiIndex = tensor.shape.sliceArray(0..tensor.shape.size - 3).copyOf() @OptIn(UnsafeKMathAPI::class)
var curMultiIndex = tensor.shape.slice(0..tensor.shape.size - 3).asArray()
curMultiIndex = IntArray(totalMultiIndex.size - curMultiIndex.size) { 1 } + curMultiIndex curMultiIndex = IntArray(totalMultiIndex.size - curMultiIndex.size) { 1 } + curMultiIndex
val newTensor = DoubleTensor(curMultiIndex + matrixShape, tensor.source) val newTensor = DoubleTensor(Shape(curMultiIndex) + matrixShape, tensor.source)
for (i in curMultiIndex.indices) { for (i in curMultiIndex.indices) {
if (curMultiIndex[i] != 1) { if (curMultiIndex[i] != 1) {

View File

@ -5,15 +5,18 @@
package space.kscience.kmath.tensors.core.internal package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.nd.linearSize
import space.kscience.kmath.tensors.api.Tensor import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.DoubleTensor import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.asDoubleTensor import space.kscience.kmath.tensors.core.asDoubleTensor
internal fun checkNotEmptyShape(shape: IntArray) = internal fun checkNotEmptyShape(shape: Shape) =
check(shape.isNotEmpty()) { check(shape.size > 0) {
"Illegal empty shape provided" "Illegal empty shape provided"
} }
@ -21,15 +24,15 @@ internal fun checkEmptyDoubleBuffer(buffer: DoubleArray) = check(buffer.isNotEmp
"Illegal empty buffer provided" "Illegal empty buffer provided"
} }
internal fun checkBufferShapeConsistency(shape: IntArray, buffer: DoubleArray) = internal fun checkBufferShapeConsistency(shape: Shape, buffer: DoubleArray) =
check(buffer.size == shape.reduce(Int::times)) { check(buffer.size == shape.linearSize) {
"Inconsistent shape ${shape.toList()} for buffer of size ${buffer.size} provided" "Inconsistent shape ${shape} for buffer of size ${buffer.size} provided"
} }
@PublishedApi @PublishedApi
internal fun <T> checkShapesCompatible(a: StructureND<T>, b: StructureND<T>): Unit = internal fun <T> checkShapesCompatible(a: StructureND<T>, b: StructureND<T>): Unit =
check(a.shape contentEquals b.shape) { check(a.shape contentEquals b.shape) {
"Incompatible shapes ${a.shape.toList()} and ${b.shape.toList()} " "Incompatible shapes ${a.shape} and ${b.shape} "
} }
internal fun checkTranspose(dim: Int, i: Int, j: Int) = internal fun checkTranspose(dim: Int, i: Int, j: Int) =
@ -37,10 +40,10 @@ internal fun checkTranspose(dim: Int, i: Int, j: Int) =
"Cannot transpose $i to $j for a tensor of dim $dim" "Cannot transpose $i to $j for a tensor of dim $dim"
} }
internal fun <T> checkView(a: Tensor<T>, shape: IntArray) = internal fun <T> checkView(a: Tensor<T>, shape: Shape) =
check(a.shape.reduce(Int::times) == shape.reduce(Int::times)) check(a.shape.linearSize == shape.linearSize)
internal fun checkSquareMatrix(shape: IntArray) { internal fun checkSquareMatrix(shape: Shape) {
val n = shape.size val n = shape.size
check(n >= 2) { check(n >= 2) {
"Expected tensor with 2 or more dimensions, got size $n instead" "Expected tensor with 2 or more dimensions, got size $n instead"

View File

@ -6,7 +6,6 @@
package space.kscience.kmath.tensors.core.internal package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.Strides.Companion.linearSizeOf
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.asBuffer import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.structures.indices import space.kscience.kmath.structures.indices
@ -40,7 +39,7 @@ internal fun MutableStructure2D<Double>.jacobiHelper(
source[i * shape[0] + j] = value source[i * shape[0] + j] = value
} }
fun maxOffDiagonal(matrix: BufferedTensor<Double>): Double { fun maxOffDiagonal(matrix: DoubleTensor): Double {
var maxOffDiagonalElement = 0.0 var maxOffDiagonalElement = 0.0
for (i in 0 until n - 1) { for (i in 0 until n - 1) {
for (j in i + 1 until n) { for (j in i + 1 until n) {
@ -50,7 +49,7 @@ internal fun MutableStructure2D<Double>.jacobiHelper(
return maxOffDiagonalElement return maxOffDiagonalElement
} }
fun rotate(a: BufferedTensor<Double>, s: Double, tau: Double, i: Int, j: Int, k: Int, l: Int) { fun rotate(a: DoubleTensor, s: Double, tau: Double, i: Int, j: Int, k: Int, l: Int) {
val g = a[i, j] val g = a[i, j]
val h = a[k, l] val h = a[k, l]
a[i, j] = g - s * (h + g * tau) a[i, j] = g - s * (h + g * tau)
@ -58,8 +57,8 @@ internal fun MutableStructure2D<Double>.jacobiHelper(
} }
fun jacobiIteration( fun jacobiIteration(
a: BufferedTensor<Double>, a: DoubleTensor,
v: BufferedTensor<Double>, v: DoubleTensor,
d: DoubleBuffer, d: DoubleBuffer,
z: DoubleBuffer, z: DoubleBuffer,
) { ) {
@ -157,7 +156,7 @@ internal val DoubleTensor.vectors: List<DoubleTensor>
get() { get() {
val n = shape.size val n = shape.size
val vectorOffset = shape[n - 1] val vectorOffset = shape[n - 1]
val vectorShape = intArrayOf(shape.last()) val vectorShape = Shape(shape.last())
return List(linearSize / vectorOffset) { index -> return List(linearSize / vectorOffset) { index ->
val offset = index * vectorOffset val offset = index * vectorOffset
@ -174,9 +173,9 @@ internal val DoubleTensor.matrices: List<DoubleTensor>
val n = shape.size val n = shape.size
check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" } check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" }
val matrixOffset = shape[n - 1] * shape[n - 2] val matrixOffset = shape[n - 1] * shape[n - 2]
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1]) val matrixShape = Shape(shape[n - 2], shape[n - 1])
val size = linearSizeOf(matrixShape) val size = matrixShape.linearSize
return List(linearSize / matrixOffset) { index -> return List(linearSize / matrixOffset) { index ->
val offset = index * matrixOffset val offset = index * matrixOffset

View File

@ -5,6 +5,9 @@
package space.kscience.kmath.tensors.core.internal package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.first
import space.kscience.kmath.nd.last
import space.kscience.kmath.operations.asSequence import space.kscience.kmath.operations.asSequence
import space.kscience.kmath.structures.IntBuffer import space.kscience.kmath.structures.IntBuffer
import space.kscience.kmath.structures.VirtualBuffer import space.kscience.kmath.structures.VirtualBuffer
@ -35,7 +38,7 @@ internal fun List<OffsetIntBuffer>.concat(): IntBuffer {
internal fun IntTensor.vectors(): VirtualBuffer<IntTensor> { internal fun IntTensor.vectors(): VirtualBuffer<IntTensor> {
val n = shape.size val n = shape.size
val vectorOffset = shape[n - 1] val vectorOffset = shape[n - 1]
val vectorShape = intArrayOf(shape.last()) val vectorShape = shape.last(1)
return VirtualBuffer(linearSize / vectorOffset) { index -> return VirtualBuffer(linearSize / vectorOffset) { index ->
val offset = index * vectorOffset val offset = index * vectorOffset
@ -52,7 +55,7 @@ internal val IntTensor.matrices: VirtualBuffer<IntTensor>
val n = shape.size val n = shape.size
check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" } check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" }
val matrixOffset = shape[n - 1] * shape[n - 2] val matrixOffset = shape[n - 1] * shape[n - 2]
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1]) val matrixShape = Shape(shape[n - 2], shape[n - 1])
return VirtualBuffer(linearSize / matrixOffset) { index -> return VirtualBuffer(linearSize / matrixOffset) { index ->
val offset = index * matrixOffset val offset = index * matrixOffset

View File

@ -5,10 +5,7 @@
package space.kscience.kmath.tensors.core.internal package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.MutableStructure1D import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.MutableStructure2D
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.as1D
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.IntBuffer import space.kscience.kmath.structures.IntBuffer
@ -98,7 +95,7 @@ internal fun <T> StructureND<T>.setUpPivots(): IntTensor {
pivotsShape[n - 2] = m + 1 pivotsShape[n - 2] = m + 1
return IntTensor( return IntTensor(
pivotsShape, Shape(pivotsShape),
IntBuffer(pivotsShape.reduce(Int::times)) { 0 } IntBuffer(pivotsShape.reduce(Int::times)) { 0 }
) )
} }
@ -243,10 +240,10 @@ internal fun DoubleTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10)
val b: DoubleTensor val b: DoubleTensor
if (n > m) { if (n > m) {
b = a.transposed(0, 1).dot(a) b = a.transposed(0, 1).dot(a)
v = DoubleTensor(intArrayOf(m), DoubleBuffer.randomUnitVector(m, 0)) v = DoubleTensor(Shape(m), DoubleBuffer.randomUnitVector(m, 0))
} else { } else {
b = a.dot(a.transposed(0, 1)) b = a.dot(a.transposed(0, 1))
v = DoubleTensor(intArrayOf(n), DoubleBuffer.randomUnitVector(n, 0)) v = DoubleTensor(Shape(n), DoubleBuffer.randomUnitVector(n, 0))
} }
var lastV: DoubleTensor var lastV: DoubleTensor
@ -278,7 +275,7 @@ internal fun DoubleTensorAlgebra.svdHelper(
outerProduct[i * v.shape[0] + j] = u.getTensor(i).value() * v.getTensor(j).value() outerProduct[i * v.shape[0] + j] = u.getTensor(i).value() * v.getTensor(j).value()
} }
} }
a = a - singularValue.times(DoubleTensor(intArrayOf(u.shape[0], v.shape[0]), outerProduct.asBuffer())) a = a - singularValue.times(DoubleTensor(Shape(u.shape[0], v.shape[0]), outerProduct.asBuffer()))
} }
var v: DoubleTensor var v: DoubleTensor
var u: DoubleTensor var u: DoubleTensor

View File

@ -6,6 +6,8 @@
package space.kscience.kmath.tensors.core.internal package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.asList
import space.kscience.kmath.nd.last
import space.kscience.kmath.operations.DoubleBufferOps.Companion.map import space.kscience.kmath.operations.DoubleBufferOps.Companion.map
import space.kscience.kmath.random.RandomGenerator import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.samplers.GaussianSampler import space.kscience.kmath.samplers.GaussianSampler
@ -92,7 +94,7 @@ public fun DoubleTensor.toPrettyString(): String = buildString {
append(']') append(']')
charOffset -= 1 charOffset -= 1
index.reversed().zip(shape.reversed()).drop(1).forEach { (ind, maxInd) -> index.reversed().zip(shape.asList().reversed()).drop(1).forEach { (ind, maxInd) ->
if (ind != maxInd - 1) { if (ind != maxInd - 1) {
return@forEach return@forEach
} }

View File

@ -12,11 +12,11 @@ import space.kscience.kmath.nd.Shape
import kotlin.jvm.JvmName import kotlin.jvm.JvmName
@JvmName("varArgOne") @JvmName("varArgOne")
public fun DoubleTensorAlgebra.one(vararg shape: Int): DoubleTensor = ones(intArrayOf(*shape)) public fun DoubleTensorAlgebra.one(vararg shape: Int): DoubleTensor = ones(Shape(shape))
public fun DoubleTensorAlgebra.one(shape: Shape): DoubleTensor = ones(shape) public fun DoubleTensorAlgebra.one(shape: Shape): DoubleTensor = ones(shape)
@JvmName("varArgZero") @JvmName("varArgZero")
public fun DoubleTensorAlgebra.zero(vararg shape: Int): DoubleTensor = zeros(intArrayOf(*shape)) public fun DoubleTensorAlgebra.zero(vararg shape: Int): DoubleTensor = zeros(Shape(shape))
public fun DoubleTensorAlgebra.zero(shape: Shape): DoubleTensor = zeros(shape) public fun DoubleTensorAlgebra.zero(shape: Shape): DoubleTensor = zeros(shape)

View File

@ -5,9 +5,7 @@
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.nd.DoubleBufferND import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.RowStrides
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.asBuffer import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.tensors.api.Tensor import space.kscience.kmath.tensors.api.Tensor
@ -23,7 +21,7 @@ public fun StructureND<Double>.copyToTensor(): DoubleTensor = if (this is Double
} else { } else {
DoubleTensor( DoubleTensor(
shape, shape,
RowStrides(this.shape).map(this::get).toDoubleArray().asBuffer(), RowStrides(this.shape).map(this::getDouble).toDoubleArray().asBuffer(),
) )
} }
@ -36,7 +34,7 @@ public fun StructureND<Int>.toDoubleTensor(): DoubleTensor {
} else { } else {
val tensor = DoubleTensorAlgebra.zeroesLike(this) val tensor = DoubleTensorAlgebra.zeroesLike(this)
indices.forEach { indices.forEach {
tensor[it] = get(it).toDouble() tensor[it] = getInt(it).toDouble()
} }
return tensor return tensor
} }
@ -59,7 +57,7 @@ public fun StructureND<Double>.asDoubleTensor(): DoubleTensor = if (this is Doub
public fun StructureND<Int>.asIntTensor(): IntTensor = when (this) { public fun StructureND<Int>.asIntTensor(): IntTensor = when (this) {
is IntTensor -> this is IntTensor -> this
else -> IntTensor( else -> IntTensor(
this.shape, shape,
RowStrides(this.shape).map(this::get).toIntArray().asBuffer() RowStrides(shape).map(this::getInt).toIntArray().asBuffer()
) )
} }

View File

@ -5,6 +5,8 @@
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.internal.broadcastOuterTensors import space.kscience.kmath.tensors.core.internal.broadcastOuterTensors
import space.kscience.kmath.tensors.core.internal.broadcastShapes import space.kscience.kmath.tensors.core.internal.broadcastShapes
@ -19,38 +21,38 @@ internal class TestBroadcasting {
fun testBroadcastShapes() = DoubleTensorAlgebra { fun testBroadcastShapes() = DoubleTensorAlgebra {
assertTrue( assertTrue(
broadcastShapes( broadcastShapes(
intArrayOf(2, 3), intArrayOf(1, 3), intArrayOf(1, 1, 1) listOf(Shape(2, 3), Shape(1, 3), Shape(1, 1, 1))
) contentEquals intArrayOf(1, 2, 3) ) contentEquals Shape(1, 2, 3)
) )
assertTrue( assertTrue(
broadcastShapes( broadcastShapes(
intArrayOf(6, 7), intArrayOf(5, 6, 1), intArrayOf(7), intArrayOf(5, 1, 7) listOf(Shape(6, 7), Shape(5, 6, 1), Shape(7), Shape(5, 1, 7))
) contentEquals intArrayOf(5, 6, 7) ) contentEquals Shape(5, 6, 7)
) )
} }
@Test @Test
fun testBroadcastTo() = DoubleTensorAlgebra { fun testBroadcastTo() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor1 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0)) val tensor2 = fromArray(Shape(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val res = broadcastTo(tensor2, tensor1.shape) val res = broadcastTo(tensor2, tensor1.shape)
assertTrue(res.shape contentEquals intArrayOf(2, 3)) assertTrue(res.shape contentEquals Shape(2, 3))
assertTrue(res.source contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0)) assertTrue(res.source contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0))
} }
@Test @Test
fun testBroadcastTensors() = DoubleTensorAlgebra { fun testBroadcastTensors() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor1 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0)) val tensor2 = fromArray(Shape(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor3 = fromArray(intArrayOf(1, 1, 1), doubleArrayOf(500.0)) val tensor3 = fromArray(Shape(1, 1, 1), doubleArrayOf(500.0))
val res = broadcastTensors(tensor1, tensor2, tensor3) val res = broadcastTensors(tensor1, tensor2, tensor3)
assertTrue(res[0].shape contentEquals intArrayOf(1, 2, 3)) assertTrue(res[0].shape contentEquals Shape(1, 2, 3))
assertTrue(res[1].shape contentEquals intArrayOf(1, 2, 3)) assertTrue(res[1].shape contentEquals Shape(1, 2, 3))
assertTrue(res[2].shape contentEquals intArrayOf(1, 2, 3)) assertTrue(res[2].shape contentEquals Shape(1, 2, 3))
assertTrue(res[0].source contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) assertTrue(res[0].source contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
assertTrue(res[1].source contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0)) assertTrue(res[1].source contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0))
@ -59,15 +61,15 @@ internal class TestBroadcasting {
@Test @Test
fun testBroadcastOuterTensors() = DoubleTensorAlgebra { fun testBroadcastOuterTensors() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor1 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0)) val tensor2 = fromArray(Shape(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor3 = fromArray(intArrayOf(1, 1, 1), doubleArrayOf(500.0)) val tensor3 = fromArray(Shape(1, 1, 1), doubleArrayOf(500.0))
val res = broadcastOuterTensors(tensor1, tensor2, tensor3) val res = broadcastOuterTensors(tensor1, tensor2, tensor3)
assertTrue(res[0].shape contentEquals intArrayOf(1, 2, 3)) assertTrue(res[0].shape contentEquals Shape(1, 2, 3))
assertTrue(res[1].shape contentEquals intArrayOf(1, 1, 3)) assertTrue(res[1].shape contentEquals Shape(1, 1, 3))
assertTrue(res[2].shape contentEquals intArrayOf(1, 1, 1)) assertTrue(res[2].shape contentEquals Shape(1, 1, 1))
assertTrue(res[0].source contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) assertTrue(res[0].source contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
assertTrue(res[1].source contentEquals doubleArrayOf(10.0, 20.0, 30.0)) assertTrue(res[1].source contentEquals doubleArrayOf(10.0, 20.0, 30.0))
@ -76,37 +78,37 @@ internal class TestBroadcasting {
@Test @Test
fun testBroadcastOuterTensorsShapes() = DoubleTensorAlgebra { fun testBroadcastOuterTensorsShapes() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 1, 3, 2, 3), DoubleArray(2 * 1 * 3 * 2 * 3) { 0.0 }) val tensor1 = fromArray(Shape(2, 1, 3, 2, 3), DoubleArray(2 * 1 * 3 * 2 * 3) { 0.0 })
val tensor2 = fromArray(intArrayOf(4, 2, 5, 1, 3, 3), DoubleArray(4 * 2 * 5 * 1 * 3 * 3) { 0.0 }) val tensor2 = fromArray(Shape(4, 2, 5, 1, 3, 3), DoubleArray(4 * 2 * 5 * 1 * 3 * 3) { 0.0 })
val tensor3 = fromArray(intArrayOf(1, 1), doubleArrayOf(500.0)) val tensor3 = fromArray(Shape(1, 1), doubleArrayOf(500.0))
val res = broadcastOuterTensors(tensor1, tensor2, tensor3) val res = broadcastOuterTensors(tensor1, tensor2, tensor3)
assertTrue(res[0].shape contentEquals intArrayOf(4, 2, 5, 3, 2, 3)) assertTrue(res[0].shape contentEquals Shape(4, 2, 5, 3, 2, 3))
assertTrue(res[1].shape contentEquals intArrayOf(4, 2, 5, 3, 3, 3)) assertTrue(res[1].shape contentEquals Shape(4, 2, 5, 3, 3, 3))
assertTrue(res[2].shape contentEquals intArrayOf(4, 2, 5, 3, 1, 1)) assertTrue(res[2].shape contentEquals Shape(4, 2, 5, 3, 1, 1))
} }
@Test @Test
fun testMinusTensor() = BroadcastDoubleTensorAlgebra.invoke { fun testMinusTensor() = BroadcastDoubleTensorAlgebra.invoke {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor1 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0)) val tensor2 = fromArray(Shape(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor3 = fromArray(intArrayOf(1, 1, 1), doubleArrayOf(500.0)) val tensor3 = fromArray(Shape(1, 1, 1), doubleArrayOf(500.0))
val tensor21 = tensor2 - tensor1 val tensor21 = tensor2 - tensor1
val tensor31 = tensor3 - tensor1 val tensor31 = tensor3 - tensor1
val tensor32 = tensor3 - tensor2 val tensor32 = tensor3 - tensor2
assertTrue(tensor21.shape contentEquals intArrayOf(2, 3)) assertTrue(tensor21.shape contentEquals Shape(2, 3))
assertTrue(tensor21.source contentEquals doubleArrayOf(9.0, 18.0, 27.0, 6.0, 15.0, 24.0)) assertTrue(tensor21.source contentEquals doubleArrayOf(9.0, 18.0, 27.0, 6.0, 15.0, 24.0))
assertTrue(tensor31.shape contentEquals intArrayOf(1, 2, 3)) assertTrue(tensor31.shape contentEquals Shape(1, 2, 3))
assertTrue( assertTrue(
tensor31.source tensor31.source
contentEquals doubleArrayOf(499.0, 498.0, 497.0, 496.0, 495.0, 494.0) contentEquals doubleArrayOf(499.0, 498.0, 497.0, 496.0, 495.0, 494.0)
) )
assertTrue(tensor32.shape contentEquals intArrayOf(1, 1, 3)) assertTrue(tensor32.shape contentEquals Shape(1, 1, 3))
assertTrue(tensor32.source contentEquals doubleArrayOf(490.0, 480.0, 470.0)) assertTrue(tensor32.source contentEquals doubleArrayOf(490.0, 480.0, 470.0))
} }

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.asBuffer import space.kscience.kmath.structures.asBuffer
import kotlin.math.* import kotlin.math.*
@ -13,7 +14,7 @@ import kotlin.test.assertTrue
internal class TestDoubleAnalyticTensorAlgebra { internal class TestDoubleAnalyticTensorAlgebra {
val shape = intArrayOf(2, 1, 3, 2) val shape = Shape(2, 1, 3, 2)
val buffer = doubleArrayOf( val buffer = doubleArrayOf(
27.1, 20.0, 19.84, 27.1, 20.0, 19.84,
23.123, 3.0, 2.0, 23.123, 3.0, 2.0,
@ -102,7 +103,7 @@ internal class TestDoubleAnalyticTensorAlgebra {
assertTrue { tensor.floor() eq expectedTensor(::floor) } assertTrue { tensor.floor() eq expectedTensor(::floor) }
} }
val shape2 = intArrayOf(2, 2) val shape2 = Shape(2, 2)
val buffer2 = doubleArrayOf( val buffer2 = doubleArrayOf(
1.0, 2.0, 1.0, 2.0,
-3.0, 4.0 -3.0, 4.0
@ -114,13 +115,13 @@ internal class TestDoubleAnalyticTensorAlgebra {
assertTrue { tensor2.min() == -3.0 } assertTrue { tensor2.min() == -3.0 }
assertTrue { assertTrue {
tensor2.min(0, true) eq fromArray( tensor2.min(0, true) eq fromArray(
intArrayOf(1, 2), Shape(1, 2),
doubleArrayOf(-3.0, 2.0) doubleArrayOf(-3.0, 2.0)
) )
} }
assertTrue { assertTrue {
tensor2.min(1, false) eq fromArray( tensor2.min(1, false) eq fromArray(
intArrayOf(2), Shape(2),
doubleArrayOf(1.0, -3.0) doubleArrayOf(1.0, -3.0)
) )
} }
@ -131,13 +132,13 @@ internal class TestDoubleAnalyticTensorAlgebra {
assertTrue { tensor2.max() == 4.0 } assertTrue { tensor2.max() == 4.0 }
assertTrue { assertTrue {
tensor2.max(0, true) eq fromArray( tensor2.max(0, true) eq fromArray(
intArrayOf(1, 2), Shape(1, 2),
doubleArrayOf(1.0, 4.0) doubleArrayOf(1.0, 4.0)
) )
} }
assertTrue { assertTrue {
tensor2.max(1, false) eq fromArray( tensor2.max(1, false) eq fromArray(
intArrayOf(2), Shape(2),
doubleArrayOf(2.0, 4.0) doubleArrayOf(2.0, 4.0)
) )
} }
@ -148,13 +149,13 @@ internal class TestDoubleAnalyticTensorAlgebra {
assertTrue { tensor2.sum() == 4.0 } assertTrue { tensor2.sum() == 4.0 }
assertTrue { assertTrue {
tensor2.sum(0, true) eq fromArray( tensor2.sum(0, true) eq fromArray(
intArrayOf(1, 2), Shape(1, 2),
doubleArrayOf(-2.0, 6.0) doubleArrayOf(-2.0, 6.0)
) )
} }
assertTrue { assertTrue {
tensor2.sum(1, false) eq fromArray( tensor2.sum(1, false) eq fromArray(
intArrayOf(2), Shape(2),
doubleArrayOf(3.0, 1.0) doubleArrayOf(3.0, 1.0)
) )
} }
@ -165,13 +166,13 @@ internal class TestDoubleAnalyticTensorAlgebra {
assertTrue { tensor2.mean() == 1.0 } assertTrue { tensor2.mean() == 1.0 }
assertTrue { assertTrue {
tensor2.mean(0, true) eq fromArray( tensor2.mean(0, true) eq fromArray(
intArrayOf(1, 2), Shape(1, 2),
doubleArrayOf(-1.0, 3.0) doubleArrayOf(-1.0, 3.0)
) )
} }
assertTrue { assertTrue {
tensor2.mean(1, false) eq fromArray( tensor2.mean(1, false) eq fromArray(
intArrayOf(2), Shape(2),
doubleArrayOf(1.5, 0.5) doubleArrayOf(1.5, 0.5)
) )
} }

View File

@ -5,6 +5,8 @@
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.internal.svd1d import space.kscience.kmath.tensors.core.internal.svd1d
import kotlin.math.abs import kotlin.math.abs
@ -17,7 +19,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
@Test @Test
fun testDetLU() = DoubleTensorAlgebra { fun testDetLU() = DoubleTensorAlgebra {
val tensor = fromArray( val tensor = fromArray(
intArrayOf(2, 2, 2), Shape(2, 2, 2),
doubleArrayOf( doubleArrayOf(
1.0, 3.0, 1.0, 3.0,
1.0, 2.0, 1.0, 2.0,
@ -27,7 +29,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
) )
val expectedTensor = fromArray( val expectedTensor = fromArray(
intArrayOf(2, 1), Shape(2, 1),
doubleArrayOf( doubleArrayOf(
-1.0, -1.0,
-7.0 -7.0
@ -43,7 +45,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
fun testDet() = DoubleTensorAlgebra { fun testDet() = DoubleTensorAlgebra {
val expectedValue = 0.019827417 val expectedValue = 0.019827417
val m = fromArray( val m = fromArray(
intArrayOf(3, 3), doubleArrayOf( Shape(3, 3), doubleArrayOf(
2.1843, 1.4391, -0.4845, 2.1843, 1.4391, -0.4845,
1.4391, 1.7772, 0.4055, 1.4391, 1.7772, 0.4055,
-0.4845, 0.4055, 0.7519 -0.4845, 0.4055, 0.7519
@ -57,7 +59,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
fun testDetSingle() = DoubleTensorAlgebra { fun testDetSingle() = DoubleTensorAlgebra {
val expectedValue = 48.151623 val expectedValue = 48.151623
val m = fromArray( val m = fromArray(
intArrayOf(1, 1), doubleArrayOf( Shape(1, 1), doubleArrayOf(
expectedValue expectedValue
) )
) )
@ -68,7 +70,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
@Test @Test
fun testInvLU() = DoubleTensorAlgebra { fun testInvLU() = DoubleTensorAlgebra {
val tensor = fromArray( val tensor = fromArray(
intArrayOf(2, 2, 2), Shape(2, 2, 2),
doubleArrayOf( doubleArrayOf(
1.0, 0.0, 1.0, 0.0,
0.0, 2.0, 0.0, 2.0,
@ -78,7 +80,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
) )
val expectedTensor = fromArray( val expectedTensor = fromArray(
intArrayOf(2, 2, 2), doubleArrayOf( Shape(2, 2, 2), doubleArrayOf(
1.0, 0.0, 1.0, 0.0,
0.0, 0.5, 0.0, 0.5,
0.0, 1.0, 0.0, 1.0,
@ -92,14 +94,14 @@ internal class TestDoubleLinearOpsTensorAlgebra {
@Test @Test
fun testScalarProduct() = DoubleTensorAlgebra { fun testScalarProduct() = DoubleTensorAlgebra {
val a = fromArray(intArrayOf(3), doubleArrayOf(1.8, 2.5, 6.8)) val a = fromArray(Shape(3), doubleArrayOf(1.8, 2.5, 6.8))
val b = fromArray(intArrayOf(3), doubleArrayOf(5.5, 2.6, 6.4)) val b = fromArray(Shape(3), doubleArrayOf(5.5, 2.6, 6.4))
assertEquals(a.dot(b).value(), 59.92) assertEquals(a.dot(b).value(), 59.92)
} }
@Test @Test
fun testQR() = DoubleTensorAlgebra { fun testQR() = DoubleTensorAlgebra {
val shape = intArrayOf(2, 2, 2) val shape = Shape(2, 2, 2)
val buffer = doubleArrayOf( val buffer = doubleArrayOf(
1.0, 3.0, 1.0, 3.0,
1.0, 2.0, 1.0, 2.0,
@ -120,7 +122,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
@Test @Test
fun testLU() = DoubleTensorAlgebra { fun testLU() = DoubleTensorAlgebra {
val shape = intArrayOf(2, 2, 2) val shape = Shape(2, 2, 2)
val buffer = doubleArrayOf( val buffer = doubleArrayOf(
1.0, 3.0, 1.0, 3.0,
1.0, 2.0, 1.0, 2.0,
@ -140,9 +142,9 @@ internal class TestDoubleLinearOpsTensorAlgebra {
@Test @Test
fun testCholesky() = DoubleTensorAlgebra { fun testCholesky() = DoubleTensorAlgebra {
val tensor = randomNormal(intArrayOf(2, 5, 5), 0) val tensor = randomNormal(Shape(2, 5, 5), 0)
val sigma = (tensor matmul tensor.transposed()) + diagonalEmbedding( val sigma = (tensor matmul tensor.transposed()) + diagonalEmbedding(
fromArray(intArrayOf(2, 5), DoubleArray(10) { 0.1 }) fromArray(Shape(2, 5), DoubleArray(10) { 0.1 })
) )
val low = sigma.cholesky() val low = sigma.cholesky()
val sigmChol = low matmul low.transposed() val sigmChol = low matmul low.transposed()
@ -151,24 +153,24 @@ internal class TestDoubleLinearOpsTensorAlgebra {
@Test @Test
fun testSVD1D() = DoubleTensorAlgebra { fun testSVD1D() = DoubleTensorAlgebra {
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor2 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val res = svd1d(tensor2) val res = svd1d(tensor2)
assertTrue(res.shape contentEquals intArrayOf(2)) assertTrue(res.shape contentEquals Shape(2))
assertTrue { abs(abs(res.source[0]) - 0.386) < 0.01 } assertTrue { abs(abs(res.source[0]) - 0.386) < 0.01 }
assertTrue { abs(abs(res.source[1]) - 0.922) < 0.01 } assertTrue { abs(abs(res.source[1]) - 0.922) < 0.01 }
} }
@Test @Test
fun testSVD() = DoubleTensorAlgebra { fun testSVD() = DoubleTensorAlgebra {
testSVDFor(fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))) testSVDFor(fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)))
testSVDFor(fromArray(intArrayOf(2, 2), doubleArrayOf(-1.0, 0.0, 239.0, 238.0))) testSVDFor(fromArray(Shape(2, 2), doubleArrayOf(-1.0, 0.0, 239.0, 238.0)))
} }
@Test @Test
fun testBatchedSVD() = DoubleTensorAlgebra { fun testBatchedSVD() = DoubleTensorAlgebra {
val tensor = randomNormal(intArrayOf(2, 5, 3), 0) val tensor = randomNormal(Shape(2, 5, 3), 0)
val (tensorU, tensorS, tensorV) = tensor.svd() val (tensorU, tensorS, tensorV) = tensor.svd()
val tensorSVD = tensorU matmul (diagonalEmbedding(tensorS) matmul tensorV.transposed()) val tensorSVD = tensorU matmul (diagonalEmbedding(tensorS) matmul tensorV.transposed())
assertTrue(tensor.eq(tensorSVD)) assertTrue(tensor.eq(tensorSVD))
@ -176,7 +178,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
@Test @Test
fun testBatchedSymEig() = DoubleTensorAlgebra { fun testBatchedSymEig() = DoubleTensorAlgebra {
val tensor = randomNormal(shape = intArrayOf(2, 3, 3), 0) val tensor = randomNormal(shape = Shape(2, 3, 3), 0)
val tensorSigma = tensor + tensor.transposed() val tensorSigma = tensor + tensor.transposed()
val (tensorS, tensorV) = tensorSigma.symEig() val (tensorS, tensorV) = tensorSigma.symEig()
val tensorSigmaCalc = tensorV matmul (diagonalEmbedding(tensorS) matmul tensorV.transposed()) val tensorSigmaCalc = tensorV matmul (diagonalEmbedding(tensorS) matmul tensorV.transposed())

View File

@ -21,14 +21,14 @@ internal class TestDoubleTensor {
@Test @Test
fun testValue() = DoubleTensorAlgebra { fun testValue() = DoubleTensorAlgebra {
val value = 12.5 val value = 12.5
val tensor = fromArray(intArrayOf(1), doubleArrayOf(value)) val tensor = fromArray(Shape(1), doubleArrayOf(value))
assertEquals(tensor.value(), value) assertEquals(tensor.value(), value)
} }
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class)
@Test @Test
fun testStrides() = DoubleTensorAlgebra { fun testStrides() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(2, 2), doubleArrayOf(3.5, 5.8, 58.4, 2.4)) val tensor = fromArray(Shape(2, 2), doubleArrayOf(3.5, 5.8, 58.4, 2.4))
assertEquals(tensor[intArrayOf(0, 1)], 5.8) assertEquals(tensor[intArrayOf(0, 1)], 5.8)
assertTrue( assertTrue(
tensor.elements().map { it.second }.toList() tensor.elements().map { it.second }.toList()
@ -38,7 +38,7 @@ internal class TestDoubleTensor {
@Test @Test
fun testGet() = DoubleTensorAlgebra { fun testGet() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(1, 2, 2), doubleArrayOf(3.5, 5.8, 58.4, 2.4)) val tensor = fromArray(Shape(1, 2, 2), doubleArrayOf(3.5, 5.8, 58.4, 2.4))
val matrix = tensor.getTensor(0).asDoubleTensor2D() val matrix = tensor.getTensor(0).asDoubleTensor2D()
assertEquals(matrix[0, 1], 5.8) assertEquals(matrix[0, 1], 5.8)
@ -67,7 +67,7 @@ internal class TestDoubleTensor {
val doubleArray = DoubleBuffer(1.0, 2.0, 3.0) val doubleArray = DoubleBuffer(1.0, 2.0, 3.0)
// create ND buffers, no data is copied // create ND buffers, no data is copied
val ndArray: MutableBufferND<Double> = DoubleBufferND(ColumnStrides(intArrayOf(3)), doubleArray) val ndArray: MutableBufferND<Double> = DoubleBufferND(ColumnStrides(Shape(3)), doubleArray)
// map to tensors // map to tensors
val tensorArray = ndArray.asDoubleTensor() // Data is copied because of strides change. val tensorArray = ndArray.asDoubleTensor() // Data is copied because of strides change.
@ -91,7 +91,7 @@ internal class TestDoubleTensor {
@Test @Test
fun test2D() = with(DoubleTensorAlgebra) { fun test2D() = with(DoubleTensorAlgebra) {
val tensor: DoubleTensor = structureND(intArrayOf(3, 3)) { (i, j) -> (i - j).toDouble() } val tensor: DoubleTensor = structureND(Shape(3, 3)) { (i, j) -> (i - j).toDouble() }
//println(tensor.toPrettyString()) //println(tensor.toPrettyString())
val tensor2d = tensor.asDoubleTensor2D() val tensor2d = tensor.asDoubleTensor2D()
assertBufferEquals(DoubleBuffer(1.0, 0.0, -1.0), tensor2d.rows[1]) assertBufferEquals(DoubleBuffer(1.0, 0.0, -1.0), tensor2d.rows[1])
@ -100,7 +100,7 @@ internal class TestDoubleTensor {
@Test @Test
fun testMatrixIteration() = with(DoubleTensorAlgebra) { fun testMatrixIteration() = with(DoubleTensorAlgebra) {
val tensor = structureND(intArrayOf(3, 3, 3, 3)) { index -> index.sum().toDouble() } val tensor = structureND(Shape(3, 3, 3, 3)) { index -> index.sum().toDouble() }
tensor.forEachMatrix { index, matrix -> tensor.forEachMatrix { index, matrix ->
println(index.joinToString { it.toString() }) println(index.joinToString { it.toString() })
println(matrix) println(matrix)

View File

@ -6,6 +6,8 @@
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.nd.Shape
import space.kscience.kmath.nd.contentEquals
import space.kscience.kmath.nd.get import space.kscience.kmath.nd.get
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.testutils.assertBufferEquals import space.kscience.kmath.testutils.assertBufferEquals
@ -18,62 +20,62 @@ internal class TestDoubleTensorAlgebra {
@Test @Test
fun testDoublePlus() = DoubleTensorAlgebra { fun testDoublePlus() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(2), doubleArrayOf(1.0, 2.0)) val tensor = fromArray(Shape(2), doubleArrayOf(1.0, 2.0))
val res = 10.0 + tensor val res = 10.0 + tensor
assertTrue(res.source contentEquals doubleArrayOf(11.0, 12.0)) assertTrue(res.source contentEquals doubleArrayOf(11.0, 12.0))
} }
@Test @Test
fun testDoubleDiv() = DoubleTensorAlgebra { fun testDoubleDiv() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(2), doubleArrayOf(2.0, 4.0)) val tensor = fromArray(Shape(2), doubleArrayOf(2.0, 4.0))
val res = 2.0 / tensor val res = 2.0 / tensor
assertTrue(res.source contentEquals doubleArrayOf(1.0, 0.5)) assertTrue(res.source contentEquals doubleArrayOf(1.0, 0.5))
} }
@Test @Test
fun testDivDouble() = DoubleTensorAlgebra { fun testDivDouble() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(2), doubleArrayOf(10.0, 5.0)) val tensor = fromArray(Shape(2), doubleArrayOf(10.0, 5.0))
val res = tensor / 2.5 val res = tensor / 2.5
assertTrue(res.source contentEquals doubleArrayOf(4.0, 2.0)) assertTrue(res.source contentEquals doubleArrayOf(4.0, 2.0))
} }
@Test @Test
fun testTranspose1x1() = DoubleTensorAlgebra { fun testTranspose1x1() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(1), doubleArrayOf(0.0)) val tensor = fromArray(Shape(1), doubleArrayOf(0.0))
val res = tensor.transposed(0, 0) val res = tensor.transposed(0, 0)
assertTrue(res.source contentEquals doubleArrayOf(0.0)) assertTrue(res.asDoubleTensor().source contentEquals doubleArrayOf(0.0))
assertTrue(res.shape contentEquals intArrayOf(1)) assertTrue(res.shape contentEquals Shape(1))
} }
@Test @Test
fun testTranspose3x2() = DoubleTensorAlgebra { fun testTranspose3x2() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(3, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor = fromArray(Shape(3, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val res = tensor.transposed(1, 0) val res = tensor.transposed(1, 0)
assertTrue(res.source contentEquals doubleArrayOf(1.0, 3.0, 5.0, 2.0, 4.0, 6.0)) assertTrue(res.asDoubleTensor().source contentEquals doubleArrayOf(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))
assertTrue(res.shape contentEquals intArrayOf(2, 3)) assertTrue(res.shape contentEquals Shape(2, 3))
} }
@Test @Test
fun testTranspose1x2x3() = DoubleTensorAlgebra { fun testTranspose1x2x3() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(1, 2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor = fromArray(Shape(1, 2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val res01 = tensor.transposed(0, 1) val res01 = tensor.transposed(0, 1)
val res02 = tensor.transposed(-3, 2) val res02 = tensor.transposed(-3, 2)
val res12 = tensor.transposed() val res12 = tensor.transposed()
assertTrue(res01.shape contentEquals intArrayOf(2, 1, 3)) assertTrue(res01.shape contentEquals Shape(2, 1, 3))
assertTrue(res02.shape contentEquals intArrayOf(3, 2, 1)) assertTrue(res02.shape contentEquals Shape(3, 2, 1))
assertTrue(res12.shape contentEquals intArrayOf(1, 3, 2)) assertTrue(res12.shape contentEquals Shape(1, 3, 2))
assertTrue(res01.source contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) assertTrue(res01.asDoubleTensor().source contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
assertTrue(res02.source contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0)) assertTrue(res02.asDoubleTensor().source contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
assertTrue(res12.source contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0)) assertTrue(res12.asDoubleTensor().source contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
} }
@Test @Test
fun testLinearStructure() = DoubleTensorAlgebra { fun testLinearStructure() = DoubleTensorAlgebra {
val shape = intArrayOf(3) val shape = Shape(3)
val tensorA = full(value = -4.5, shape = shape) val tensorA = full(value = -4.5, shape = shape)
val tensorB = full(value = 10.9, shape = shape) val tensorB = full(value = 10.9, shape = shape)
val tensorC = full(value = 789.3, shape = shape) val tensorC = full(value = 789.3, shape = shape)
@ -105,28 +107,28 @@ internal class TestDoubleTensorAlgebra {
@Test @Test
fun testDot() = DoubleTensorAlgebra { fun testDot() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor1 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor11 = fromArray(intArrayOf(3, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor11 = fromArray(Shape(3, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(3), doubleArrayOf(10.0, 20.0, 30.0)) val tensor2 = fromArray(Shape(3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor3 = fromArray(intArrayOf(1, 1, 3), doubleArrayOf(-1.0, -2.0, -3.0)) val tensor3 = fromArray(Shape(1, 1, 3), doubleArrayOf(-1.0, -2.0, -3.0))
val tensor4 = fromArray(intArrayOf(2, 3, 3), (1..18).map { it.toDouble() }.toDoubleArray()) val tensor4 = fromArray(Shape(2, 3, 3), (1..18).map { it.toDouble() }.toDoubleArray())
val tensor5 = fromArray(intArrayOf(2, 3, 3), (1..18).map { 1 + it.toDouble() }.toDoubleArray()) val tensor5 = fromArray(Shape(2, 3, 3), (1..18).map { 1 + it.toDouble() }.toDoubleArray())
val res12 = tensor1.dot(tensor2) val res12 = tensor1.dot(tensor2)
assertTrue(res12.source contentEquals doubleArrayOf(140.0, 320.0)) assertTrue(res12.source contentEquals doubleArrayOf(140.0, 320.0))
assertTrue(res12.shape contentEquals intArrayOf(2)) assertTrue(res12.shape contentEquals Shape(2))
val res32 = tensor3.matmul(tensor2) val res32 = tensor3.matmul(tensor2)
assertTrue(res32.source contentEquals doubleArrayOf(-140.0)) assertTrue(res32.source contentEquals doubleArrayOf(-140.0))
assertTrue(res32.shape contentEquals intArrayOf(1, 1)) assertTrue(res32.shape contentEquals Shape(1, 1))
val res22 = tensor2.dot(tensor2) val res22 = tensor2.dot(tensor2)
assertTrue(res22.source contentEquals doubleArrayOf(1400.0)) assertTrue(res22.source contentEquals doubleArrayOf(1400.0))
assertTrue(res22.shape contentEquals intArrayOf(1)) assertTrue(res22.shape contentEquals Shape(1))
val res11 = tensor1.dot(tensor11) val res11 = tensor1.dot(tensor11)
assertTrue(res11.source contentEquals doubleArrayOf(22.0, 28.0, 49.0, 64.0)) assertTrue(res11.source contentEquals doubleArrayOf(22.0, 28.0, 49.0, 64.0))
assertTrue(res11.shape contentEquals intArrayOf(2, 2)) assertTrue(res11.shape contentEquals Shape(2, 2))
val res45 = tensor4.matmul(tensor5) val res45 = tensor4.matmul(tensor5)
assertTrue( assertTrue(
@ -135,44 +137,44 @@ internal class TestDoubleTensorAlgebra {
468.0, 501.0, 534.0, 594.0, 636.0, 678.0, 720.0, 771.0, 822.0 468.0, 501.0, 534.0, 594.0, 636.0, 678.0, 720.0, 771.0, 822.0
) )
) )
assertTrue(res45.shape contentEquals intArrayOf(2, 3, 3)) assertTrue(res45.shape contentEquals Shape(2, 3, 3))
} }
@Test @Test
fun testDiagonalEmbedding() = DoubleTensorAlgebra { fun testDiagonalEmbedding() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(3), doubleArrayOf(10.0, 20.0, 30.0)) val tensor1 = fromArray(Shape(3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor2 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor3 = zeros(intArrayOf(2, 3, 4, 5)) val tensor3 = zeros(Shape(2, 3, 4, 5))
assertTrue( assertTrue(
diagonalEmbedding(tensor3, 0, 3, 4).shape contentEquals diagonalEmbedding(tensor3, 0, 3, 4).shape contentEquals
intArrayOf(2, 3, 4, 5, 5) Shape(2, 3, 4, 5, 5)
) )
assertTrue( assertTrue(
diagonalEmbedding(tensor3, 1, 3, 4).shape contentEquals diagonalEmbedding(tensor3, 1, 3, 4).shape contentEquals
intArrayOf(2, 3, 4, 6, 6) Shape(2, 3, 4, 6, 6)
) )
assertTrue( assertTrue(
diagonalEmbedding(tensor3, 2, 0, 3).shape contentEquals diagonalEmbedding(tensor3, 2, 0, 3).shape contentEquals
intArrayOf(7, 2, 3, 7, 4) Shape(7, 2, 3, 7, 4)
) )
val diagonal1 = diagonalEmbedding(tensor1, 0, 1, 0) val diagonal1 = diagonalEmbedding(tensor1, 0, 1, 0)
assertTrue(diagonal1.shape contentEquals intArrayOf(3, 3)) assertTrue(diagonal1.shape contentEquals Shape(3, 3))
assertTrue( assertTrue(
diagonal1.source contentEquals diagonal1.source contentEquals
doubleArrayOf(10.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 30.0) doubleArrayOf(10.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 30.0)
) )
val diagonal1Offset = diagonalEmbedding(tensor1, 1, 1, 0) val diagonal1Offset = diagonalEmbedding(tensor1, 1, 1, 0)
assertTrue(diagonal1Offset.shape contentEquals intArrayOf(4, 4)) assertTrue(diagonal1Offset.shape contentEquals Shape(4, 4))
assertTrue( assertTrue(
diagonal1Offset.source contentEquals diagonal1Offset.source contentEquals
doubleArrayOf(0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 0.0, 30.0, 0.0) doubleArrayOf(0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 0.0, 30.0, 0.0)
) )
val diagonal2 = diagonalEmbedding(tensor2, 1, 0, 2) val diagonal2 = diagonalEmbedding(tensor2, 1, 0, 2)
assertTrue(diagonal2.shape contentEquals intArrayOf(4, 2, 4)) assertTrue(diagonal2.shape contentEquals Shape(4, 2, 4))
assertTrue( assertTrue(
diagonal2.source contentEquals diagonal2.source contentEquals
doubleArrayOf( doubleArrayOf(
@ -186,9 +188,9 @@ internal class TestDoubleTensorAlgebra {
@Test @Test
fun testEq() = DoubleTensorAlgebra { fun testEq() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor1 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)) val tensor2 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor3 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 5.0)) val tensor3 = fromArray(Shape(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 5.0))
assertTrue(tensor1 eq tensor1) assertTrue(tensor1 eq tensor1)
assertTrue(tensor1 eq tensor2) assertTrue(tensor1 eq tensor2)
@ -202,7 +204,7 @@ internal class TestDoubleTensorAlgebra {
val l = tensor.getTensor(0).map { it + 1.0 } val l = tensor.getTensor(0).map { it + 1.0 }
val r = tensor.getTensor(1).map { it - 1.0 } val r = tensor.getTensor(1).map { it - 1.0 }
val res = l + r val res = l + r
assertTrue { intArrayOf(5, 5) contentEquals res.shape } assertTrue { Shape(5, 5) contentEquals res.shape }
assertEquals(2.0, res[4, 4]) assertEquals(2.0, res[4, 4])
} }
} }

View File

@ -9,6 +9,7 @@ package space.kscience.kmath.viktor
import org.jetbrains.bio.viktor.F64Array import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnsafeKMathAPI
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
@ -31,8 +32,9 @@ public open class ViktorFieldOpsND :
override val elementAlgebra: DoubleField get() = DoubleField override val elementAlgebra: DoubleField get() = DoubleField
override fun structureND(shape: IntArray, initializer: DoubleField.(IntArray) -> Double): ViktorStructureND = @OptIn(UnsafeKMathAPI::class)
F64Array(*shape).apply { override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): ViktorStructureND =
F64Array(*shape.asArray()).apply {
ColumnStrides(shape).asSequence().forEach { index -> ColumnStrides(shape).asSequence().forEach { index ->
set(value = DoubleField.initializer(index), indices = index) set(value = DoubleField.initializer(index), indices = index)
} }
@ -40,23 +42,26 @@ public open class ViktorFieldOpsND :
override fun StructureND<Double>.unaryMinus(): StructureND<Double> = -1 * this override fun StructureND<Double>.unaryMinus(): StructureND<Double> = -1 * this
@OptIn(UnsafeKMathAPI::class)
@PerformancePitfall @PerformancePitfall
override fun StructureND<Double>.map(transform: DoubleField.(Double) -> Double): ViktorStructureND = override fun StructureND<Double>.map(transform: DoubleField.(Double) -> Double): ViktorStructureND =
F64Array(*shape).apply { F64Array(*shape.asArray()).apply {
ColumnStrides(shape).asSequence().forEach { index -> ColumnStrides(Shape(shape)).asSequence().forEach { index ->
set(value = DoubleField.transform(this@map[index]), indices = index) set(value = DoubleField.transform(this@map[index]), indices = index)
} }
}.asStructure() }.asStructure()
@OptIn(UnsafeKMathAPI::class)
@PerformancePitfall @PerformancePitfall
override fun StructureND<Double>.mapIndexed( override fun StructureND<Double>.mapIndexed(
transform: DoubleField.(index: IntArray, Double) -> Double, transform: DoubleField.(index: IntArray, Double) -> Double,
): ViktorStructureND = F64Array(*shape).apply { ): ViktorStructureND = F64Array(*shape.asArray()).apply {
ColumnStrides(shape).asSequence().forEach { index -> ColumnStrides(Shape(shape)).asSequence().forEach { index ->
set(value = DoubleField.transform(index, this@mapIndexed[index]), indices = index) set(value = DoubleField.transform(index, this@mapIndexed[index]), indices = index)
} }
}.asStructure() }.asStructure()
@OptIn(UnsafeKMathAPI::class)
@PerformancePitfall @PerformancePitfall
override fun zip( override fun zip(
left: StructureND<Double>, left: StructureND<Double>,
@ -64,7 +69,7 @@ public open class ViktorFieldOpsND :
transform: DoubleField.(Double, Double) -> Double, transform: DoubleField.(Double, Double) -> Double,
): ViktorStructureND { ): ViktorStructureND {
require(left.shape.contentEquals(right.shape)) require(left.shape.contentEquals(right.shape))
return F64Array(*left.shape).apply { return F64Array(*left.shape.asArray()).apply {
ColumnStrides(left.shape).asSequence().forEach { index -> ColumnStrides(left.shape).asSequence().forEach { index ->
set(value = DoubleField.transform(left[index], right[index]), indices = index) set(value = DoubleField.transform(left[index], right[index]), indices = index)
} }
@ -119,13 +124,17 @@ public val DoubleField.viktorAlgebra: ViktorFieldOpsND get() = ViktorFieldOpsND
@OptIn(UnstableKMathAPI::class) @OptIn(UnstableKMathAPI::class)
public open class ViktorFieldND( public open class ViktorFieldND(
override val shape: Shape, private val shapeAsArray: IntArray,
) : ViktorFieldOpsND(), FieldND<Double, DoubleField>, NumbersAddOps<StructureND<Double>> { ) : ViktorFieldOpsND(), FieldND<Double, DoubleField>, NumbersAddOps<StructureND<Double>> {
override val zero: ViktorStructureND by lazy { F64Array.full(init = 0.0, shape = shape).asStructure() }
override val one: ViktorStructureND by lazy { F64Array.full(init = 1.0, shape = shape).asStructure() } override val shape: Shape = Shape(shapeAsArray)
override val zero: ViktorStructureND by lazy { F64Array.full(init = 0.0, shape = shapeAsArray).asStructure() }
override val one: ViktorStructureND by lazy { F64Array.full(init = 1.0, shape = shapeAsArray).asStructure() }
override fun number(value: Number): ViktorStructureND = override fun number(value: Number): ViktorStructureND =
F64Array.full(init = value.toDouble(), shape = shape).asStructure() F64Array.full(init = value.toDouble(), shape = shapeAsArray).asStructure()
} }
public fun DoubleField.viktorAlgebra(vararg shape: Int): ViktorFieldND = ViktorFieldND(shape) public fun DoubleField.viktorAlgebra(vararg shape: Int): ViktorFieldND = ViktorFieldND(shape)

View File

@ -9,13 +9,16 @@ import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.ColumnStrides import space.kscience.kmath.nd.ColumnStrides
import space.kscience.kmath.nd.MutableStructureND import space.kscience.kmath.nd.MutableStructureND
import space.kscience.kmath.nd.Shape
@Suppress("OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE") @Suppress("OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
public class ViktorStructureND(public val f64Buffer: F64Array) : MutableStructureND<Double> { public class ViktorStructureND(public val f64Buffer: F64Array) : MutableStructureND<Double> {
override val shape: IntArray get() = f64Buffer.shape override val shape: Shape get() = Shape(f64Buffer.shape)
@OptIn(PerformancePitfall::class)
override inline fun get(index: IntArray): Double = f64Buffer.get(*index) override inline fun get(index: IntArray): Double = f64Buffer.get(*index)
@OptIn(PerformancePitfall::class)
override inline fun set(index: IntArray, value: Double) { override inline fun set(index: IntArray, value: Double) {
f64Buffer.set(*index, value = value) f64Buffer.set(*index, value = value)
} }