Completely rework Expression API to expose direct unaryOperation and binaryOperation, improve ASM API accordingly

This commit is contained in:
Iaroslav 2020-06-10 00:44:56 +07:00
parent 33a519c10b
commit 1b6a0a13d8
No known key found for this signature in database
GPG Key ID: 46E15E4A31B3BCD7
11 changed files with 301 additions and 306 deletions

View File

@ -1,38 +0,0 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.Space
import scientifik.kmath.operations.invoke
open class AsmExpressionSpace<T>(private val space: Space<T>) :
Space<AsmExpression<T>>,
ExpressionContext<T, AsmExpression<T>> {
override val zero: AsmExpression<T> = AsmConstantExpression(space.zero)
override fun const(value: T): AsmExpression<T> = AsmConstantExpression(value)
override fun variable(name: String, default: T?): AsmExpression<T> = AsmVariableExpression(name, default)
override fun add(a: AsmExpression<T>, b: AsmExpression<T>): AsmExpression<T> = AsmSumExpression(space, a, b)
override fun multiply(a: AsmExpression<T>, k: Number): AsmExpression<T> = AsmConstProductExpression(space, a, k)
operator fun AsmExpression<T>.plus(arg: T): AsmExpression<T> = this + const(arg)
operator fun AsmExpression<T>.minus(arg: T): AsmExpression<T> = this - const(arg)
operator fun T.plus(arg: AsmExpression<T>): AsmExpression<T> = arg + this
operator fun T.minus(arg: AsmExpression<T>): AsmExpression<T> = arg - this
}
class AsmExpressionField<T>(private val field: Field<T>) :
ExpressionContext<T, AsmExpression<T>>,
Field<AsmExpression<T>>,
AsmExpressionSpace<T>(field) {
override val one: AsmExpression<T>
get() = const(this.field.one)
fun number(value: Number): AsmExpression<T> = const(field { one * value })
override fun multiply(a: AsmExpression<T>, b: AsmExpression<T>): AsmExpression<T> =
AsmProductExpression(field, a, b)
override fun divide(a: AsmExpression<T>, b: AsmExpression<T>): AsmExpression<T> = AsmDivExpression(field, a, b)
operator fun AsmExpression<T>.times(arg: T): AsmExpression<T> = this * const(arg)
operator fun AsmExpression<T>.div(arg: T): AsmExpression<T> = this / const(arg)
operator fun T.times(arg: AsmExpression<T>): AsmExpression<T> = arg * this
operator fun T.div(arg: AsmExpression<T>): AsmExpression<T> = arg / this
}

View File

@ -1,123 +0,0 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.*
abstract class AsmCompiledExpression<T> internal constructor(
@JvmField protected val algebra: Algebra<T>,
@JvmField protected val constants: MutableList<out Any>
) : Expression<T> {
abstract override fun invoke(arguments: Map<String, T>): T
}
interface AsmExpression<T> {
fun tryEvaluate(): T? = null
fun invoke(gen: AsmGenerationContext<T>)
}
internal class AsmVariableExpression<T>(val name: String, val default: T? = null) :
AsmExpression<T> {
override fun invoke(gen: AsmGenerationContext<T>): Unit = gen.visitLoadFromVariables(name, default)
}
internal class AsmConstantExpression<T>(val value: T) :
AsmExpression<T> {
override fun tryEvaluate(): T = value
override fun invoke(gen: AsmGenerationContext<T>): Unit = gen.visitLoadFromConstants(value)
}
internal class AsmSumExpression<T>(
private val algebra: SpaceOperations<T>,
first: AsmExpression<T>,
second: AsmExpression<T>
) : AsmExpression<T> {
private val first: AsmExpression<T> = first.optimize()
private val second: AsmExpression<T> = second.optimize()
override fun tryEvaluate(): T? = algebra {
(first.tryEvaluate() ?: return@algebra null) + (second.tryEvaluate() ?: return@algebra null)
}
override fun invoke(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
first.invoke(gen)
second.invoke(gen)
gen.visitAlgebraOperation(
owner = AsmGenerationContext.SPACE_OPERATIONS_CLASS,
method = "add",
descriptor = "(L${AsmGenerationContext.OBJECT_CLASS};L${AsmGenerationContext.OBJECT_CLASS};)L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal class AsmProductExpression<T>(
private val algebra: RingOperations<T>,
first: AsmExpression<T>,
second: AsmExpression<T>
) : AsmExpression<T> {
private val first: AsmExpression<T> = first.optimize()
private val second: AsmExpression<T> = second.optimize()
override fun tryEvaluate(): T? = algebra {
(first.tryEvaluate() ?: return@algebra null) * (second.tryEvaluate() ?: return@algebra null)
}
override fun invoke(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
first.invoke(gen)
second.invoke(gen)
gen.visitAlgebraOperation(
owner = AsmGenerationContext.RING_OPERATIONS_CLASS,
method = "multiply",
descriptor = "(L${AsmGenerationContext.OBJECT_CLASS};L${AsmGenerationContext.OBJECT_CLASS};)L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal class AsmConstProductExpression<T>(
private val algebra: SpaceOperations<T>,
expr: AsmExpression<T>,
private val const: Number
) : AsmExpression<T> {
private val expr: AsmExpression<T> = expr.optimize()
override fun tryEvaluate(): T? = algebra { (expr.tryEvaluate() ?: return@algebra null) * const }
override fun invoke(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
gen.visitNumberConstant(const)
expr.invoke(gen)
gen.visitAlgebraOperation(
owner = AsmGenerationContext.SPACE_OPERATIONS_CLASS,
method = "multiply",
descriptor = "(L${AsmGenerationContext.OBJECT_CLASS};L${AsmGenerationContext.NUMBER_CLASS};)L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal class AsmDivExpression<T>(
private val algebra: FieldOperations<T>,
expr: AsmExpression<T>,
second: AsmExpression<T>
) : AsmExpression<T> {
private val expr: AsmExpression<T> = expr.optimize()
private val second: AsmExpression<T> = second.optimize()
override fun tryEvaluate(): T? = algebra {
(expr.tryEvaluate() ?: return@algebra null) / (second.tryEvaluate() ?: return@algebra null)
}
override fun invoke(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
expr.invoke(gen)
second.invoke(gen)
gen.visitAlgebraOperation(
owner = AsmGenerationContext.FIELD_OPERATIONS_CLASS,
method = "divide",
descriptor = "(L${AsmGenerationContext.OBJECT_CLASS};L${AsmGenerationContext.OBJECT_CLASS};)L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}

View File

@ -1,6 +0,0 @@
package scientifik.kmath.expressions
fun <T> AsmExpression<T>.optimize(): AsmExpression<T> {
val a = tryEvaluate()
return if (a == null) this else AsmConstantExpression(a)
}

View File

@ -0,0 +1,74 @@
package scientifik.kmath.expressions.asm
import scientifik.kmath.expressions.ExpressionContext
import scientifik.kmath.operations.*
open class AsmExpressionAlgebra<T>(val algebra: Algebra<T>) :
Algebra<AsmExpression<T>>,
ExpressionContext<T, AsmExpression<T>> {
override fun unaryOperation(operation: String, arg: AsmExpression<T>): AsmExpression<T> =
AsmUnaryOperation(algebra, operation, arg)
override fun binaryOperation(operation: String, left: AsmExpression<T>, right: AsmExpression<T>): AsmExpression<T> =
AsmBinaryOperation(algebra, operation, left, right)
override fun const(value: T): AsmExpression<T> = AsmConstantExpression(value)
override fun variable(name: String, default: T?): AsmExpression<T> = AsmVariableExpression(name, default)
}
open class AsmExpressionSpace<T>(
val space: Space<T>
) : AsmExpressionAlgebra<T>(space), Space<AsmExpression<T>> {
override fun unaryOperation(operation: String, arg: AsmExpression<T>): AsmExpression<T> =
AsmUnaryOperation(algebra, operation, arg)
override fun binaryOperation(operation: String, left: AsmExpression<T>, right: AsmExpression<T>): AsmExpression<T> =
AsmBinaryOperation(algebra, operation, left, right)
override val zero: AsmExpression<T> = AsmConstantExpression(space.zero)
override fun add(a: AsmExpression<T>, b: AsmExpression<T>): AsmExpression<T> =
AsmBinaryOperation(space, SpaceOperations.PLUS_OPERATION, a, b)
override fun multiply(a: AsmExpression<T>, k: Number): AsmExpression<T> = AsmConstProductExpression(space, a, k)
operator fun AsmExpression<T>.plus(arg: T) = this + const(arg)
operator fun AsmExpression<T>.minus(arg: T) = this - const(arg)
operator fun T.plus(arg: AsmExpression<T>) = arg + this
operator fun T.minus(arg: AsmExpression<T>) = arg - this
}
open class AsmExpressionRing<T>(private val ring: Ring<T>) : AsmExpressionSpace<T>(ring), Ring<AsmExpression<T>> {
override val one: AsmExpression<T>
get() = const(this.ring.one)
override fun unaryOperation(operation: String, arg: AsmExpression<T>): AsmExpression<T> =
AsmUnaryOperation(algebra, operation, arg)
override fun binaryOperation(operation: String, left: AsmExpression<T>, right: AsmExpression<T>): AsmExpression<T> =
AsmBinaryOperation(algebra, operation, left, right)
fun number(value: Number): AsmExpression<T> = const(ring { one * value })
override fun multiply(a: AsmExpression<T>, b: AsmExpression<T>): AsmExpression<T> =
AsmBinaryOperation(space, RingOperations.TIMES_OPERATION, a, b)
operator fun AsmExpression<T>.times(arg: T) = this * const(arg)
operator fun T.times(arg: AsmExpression<T>) = arg * this
}
open class AsmExpressionField<T>(private val field: Field<T>) :
AsmExpressionRing<T>(field),
Field<AsmExpression<T>> {
override fun unaryOperation(operation: String, arg: AsmExpression<T>): AsmExpression<T> =
AsmUnaryOperation(algebra, operation, arg)
override fun binaryOperation(operation: String, left: AsmExpression<T>, right: AsmExpression<T>): AsmExpression<T> =
AsmBinaryOperation(algebra, operation, left, right)
override fun divide(a: AsmExpression<T>, b: AsmExpression<T>): AsmExpression<T> =
AsmBinaryOperation(space, FieldOperations.DIV_OPERATION, a, b)
operator fun AsmExpression<T>.div(arg: T) = this / const(arg)
operator fun T.div(arg: AsmExpression<T>) = arg / this
}

View File

@ -0,0 +1,106 @@
package scientifik.kmath.expressions.asm
import scientifik.kmath.expressions.Expression
import scientifik.kmath.operations.Algebra
import scientifik.kmath.operations.Space
import scientifik.kmath.operations.invoke
interface AsmExpression<T> {
fun tryEvaluate(): T? = null
fun invoke(gen: AsmGenerationContext<T>)
}
internal class AsmUnaryOperation<T>(private val context: Algebra<T>, private val name: String, expr: AsmExpression<T>) :
AsmExpression<T> {
private val expr: AsmExpression<T> = expr.optimize()
override fun tryEvaluate(): T? = context {
unaryOperation(
name,
expr.tryEvaluate() ?: return@context null
)
}
override fun invoke(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
gen.visitStringConstant(name)
expr.invoke(gen)
gen.visitAlgebraOperation(
owner = AsmGenerationContext.ALGEBRA_CLASS,
method = "unaryOperation",
descriptor = "(L${AsmGenerationContext.STRING_CLASS};" +
"L${AsmGenerationContext.OBJECT_CLASS};)" +
"L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal class AsmBinaryOperation<T>(
private val context: Algebra<T>,
private val name: String,
first: AsmExpression<T>,
second: AsmExpression<T>
) : AsmExpression<T> {
private val first: AsmExpression<T> = first.optimize()
private val second: AsmExpression<T> = second.optimize()
override fun tryEvaluate(): T? = context {
binaryOperation(
name,
first.tryEvaluate() ?: return@context null,
second.tryEvaluate() ?: return@context null
)
}
override fun invoke(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
gen.visitStringConstant(name)
first.invoke(gen)
second.invoke(gen)
gen.visitAlgebraOperation(
owner = AsmGenerationContext.ALGEBRA_CLASS,
method = "binaryOperation",
descriptor = "(L${AsmGenerationContext.STRING_CLASS};" +
"L${AsmGenerationContext.OBJECT_CLASS};" +
"L${AsmGenerationContext.OBJECT_CLASS};)" +
"L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal class AsmVariableExpression<T>(private val name: String, private val default: T? = null) : AsmExpression<T> {
override fun invoke(gen: AsmGenerationContext<T>): Unit = gen.visitLoadFromVariables(name, default)
}
internal class AsmConstantExpression<T>(private val value: T) : AsmExpression<T> {
override fun tryEvaluate(): T = value
override fun invoke(gen: AsmGenerationContext<T>): Unit = gen.visitLoadFromConstants(value)
}
internal class AsmConstProductExpression<T>(private val context: Space<T>, expr: AsmExpression<T>, private val const: Number) :
AsmExpression<T> {
private val expr: AsmExpression<T> = expr.optimize()
override fun tryEvaluate(): T? = context { (expr.tryEvaluate() ?: return@context null) * const }
override fun invoke(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
gen.visitNumberConstant(const)
expr.invoke(gen)
gen.visitAlgebraOperation(
owner = AsmGenerationContext.SPACE_OPERATIONS_CLASS,
method = "multiply",
descriptor = "(L${AsmGenerationContext.OBJECT_CLASS};L${AsmGenerationContext.NUMBER_CLASS};)L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal abstract class FunctionalCompiledExpression<T> internal constructor(
@JvmField protected val algebra: Algebra<T>,
@JvmField protected val constants: MutableList<out Any>
) : Expression<T> {
abstract override fun invoke(arguments: Map<String, T>): T
}

View File

@ -1,4 +1,4 @@
package scientifik.kmath.expressions
package scientifik.kmath.expressions.asm
import org.objectweb.asm.ClassWriter
import org.objectweb.asm.Label
@ -33,15 +33,15 @@ class AsmGenerationContext<T>(
private val invokeMethodVisitor: MethodVisitor
private val invokeL0: Label
private lateinit var invokeL1: Label
private var generatedInstance: AsmCompiledExpression<T>? = null
private var generatedInstance: FunctionalCompiledExpression<T>? = null
init {
asmCompiledClassWriter.visit(
Opcodes.V1_8,
Opcodes.ACC_PUBLIC or Opcodes.ACC_FINAL or Opcodes.ACC_SUPER,
slashesClassName,
"L$ASM_COMPILED_EXPRESSION_CLASS<L$T_CLASS;>;",
ASM_COMPILED_EXPRESSION_CLASS,
"L$FUNCTIONAL_COMPILED_EXPRESSION_CLASS<L$T_CLASS;>;",
FUNCTIONAL_COMPILED_EXPRESSION_CLASS,
arrayOf()
)
@ -58,7 +58,7 @@ class AsmGenerationContext<T>(
visitMethodInsn(
Opcodes.INVOKESPECIAL,
ASM_COMPILED_EXPRESSION_CLASS,
FUNCTIONAL_COMPILED_EXPRESSION_CLASS,
"<init>",
"(L$ALGEBRA_CLASS;L$LIST_CLASS;)V",
false
@ -103,7 +103,7 @@ class AsmGenerationContext<T>(
@PublishedApi
@Suppress("UNCHECKED_CAST")
internal fun generate(): AsmCompiledExpression<T> {
internal fun generate(): FunctionalCompiledExpression<T> {
generatedInstance?.let { return it }
invokeMethodVisitor.run {
@ -170,7 +170,7 @@ class AsmGenerationContext<T>(
.defineClass(className, asmCompiledClassWriter.toByteArray())
.constructors
.first()
.newInstance(algebra, constants) as AsmCompiledExpression<T>
.newInstance(algebra, constants) as FunctionalCompiledExpression<T>
generatedInstance = new
return new
@ -245,7 +245,7 @@ class AsmGenerationContext<T>(
invokeMethodVisitor.visitFieldInsn(
Opcodes.GETFIELD,
ASM_COMPILED_EXPRESSION_CLASS, "algebra", "L$ALGEBRA_CLASS;"
FUNCTIONAL_COMPILED_EXPRESSION_CLASS, "algebra", "L$ALGEBRA_CLASS;"
)
invokeMethodVisitor.visitTypeInsn(Opcodes.CHECKCAST, T_ALGEBRA_CLASS)
@ -259,6 +259,10 @@ class AsmGenerationContext<T>(
private fun visitCastToT(): Unit = invokeMethodVisitor.visitTypeInsn(Opcodes.CHECKCAST, T_CLASS)
internal fun visitStringConstant(string: String) {
invokeMethodVisitor.visitLdcInsn(string)
}
internal companion object {
private val SIGNATURE_LETTERS = mapOf(
java.lang.Byte::class.java to "B",
@ -269,15 +273,13 @@ class AsmGenerationContext<T>(
java.lang.Double::class.java to "D"
)
internal const val ASM_COMPILED_EXPRESSION_CLASS = "scientifik/kmath/expressions/AsmCompiledExpression"
internal const val FUNCTIONAL_COMPILED_EXPRESSION_CLASS = "scientifik/kmath/expressions/asm/FunctionalCompiledExpression"
internal const val LIST_CLASS = "java/util/List"
internal const val MAP_CLASS = "java/util/Map"
internal const val OBJECT_CLASS = "java/lang/Object"
internal const val ALGEBRA_CLASS = "scientifik/kmath/operations/Algebra"
internal const val SPACE_OPERATIONS_CLASS = "scientifik/kmath/operations/SpaceOperations"
internal const val STRING_CLASS = "java/lang/String"
internal const val FIELD_OPERATIONS_CLASS = "scientifik/kmath/operations/FieldOperations"
internal const val RING_OPERATIONS_CLASS = "scientifik/kmath/operations/RingOperations"
internal const val NUMBER_CLASS = "java/lang/Number"
}
}

View File

@ -1,7 +1,9 @@
package scientifik.kmath.expressions
package scientifik.kmath.expressions.asm
import scientifik.kmath.expressions.Expression
import scientifik.kmath.operations.Algebra
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.Space
@PublishedApi
@ -25,11 +27,21 @@ inline fun <reified T, I> asm(i: I, algebra: Algebra<T>, block: I.() -> AsmExpre
return ctx.generate()
}
inline fun <reified T> asmAlgebra(
algebra: Algebra<T>,
block: AsmExpressionAlgebra<T>.() -> AsmExpression<T>
): Expression<T> = asm(AsmExpressionAlgebra(algebra), algebra, block)
inline fun <reified T> asmSpace(
algebra: Space<T>,
block: AsmExpressionSpace<T>.() -> AsmExpression<T>
): Expression<T> = asm(AsmExpressionSpace(algebra), algebra, block)
inline fun <reified T> asmRing(
algebra: Ring<T>,
block: AsmExpressionRing<T>.() -> AsmExpression<T>
): Expression<T> = asm(AsmExpressionRing(algebra), algebra, block)
inline fun <reified T> asmField(
algebra: Field<T>,
block: AsmExpressionField<T>.() -> AsmExpression<T>

View File

@ -1,4 +1,4 @@
package scientifik.kmath.expressions
package scientifik.kmath.expressions.asm
import org.objectweb.asm.MethodVisitor
import org.objectweb.asm.Opcodes.*

View File

@ -0,0 +1,9 @@
package scientifik.kmath.expressions.asm
import scientifik.kmath.expressions.asm.AsmConstantExpression
import scientifik.kmath.expressions.asm.AsmExpression
fun <T> AsmExpression<T>.optimize(): AsmExpression<T> {
val a = tryEvaluate()
return if (a == null) this else AsmConstantExpression(a)
}

View File

@ -1,103 +1,40 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.Algebra
import scientifik.kmath.expressions.asm.AsmExpression
import scientifik.kmath.expressions.asm.AsmExpressionField
import scientifik.kmath.expressions.asm.asmField
import scientifik.kmath.operations.RealField
import kotlin.test.Test
import kotlin.test.assertEquals
class AsmTest {
private fun <T> testExpressionValue(
expectedValue: T,
expr: AsmExpression<T>,
arguments: Map<String, T>,
algebra: Algebra<T>,
clazz: Class<*>
): Unit = assertEquals(
expectedValue, AsmGenerationContext(clazz, algebra, "TestAsmCompiled")
.also(expr::invoke)
.generate()
.invoke(arguments)
)
@Suppress("UNCHECKED_CAST")
private fun testDoubleExpressionValue(
expectedValue: Double,
expr: AsmExpression<Double>,
arguments: Map<String, Double>,
algebra: Algebra<Double> = RealField,
clazz: Class<Double> = java.lang.Double::class.java as Class<Double>
): Unit = testExpressionValue(expectedValue, expr, arguments, algebra, clazz)
private fun testDoubleExpression(
expected: Double?,
arguments: Map<String, Double> = emptyMap(),
block: AsmExpressionField<Double>.() -> AsmExpression<Double>
): Unit = assertEquals(expected = expected, actual = asmField(RealField, block)(arguments))
@Test
fun testSum() = testDoubleExpressionValue(
25.0,
AsmSumExpression(RealField, AsmConstantExpression(1.0), AsmVariableExpression("x")),
mapOf("x" to 24.0)
)
fun testConstantsSum() = testDoubleExpression(16.0) { const(8.0) + 8.0 }
@Test
fun testConst(): Unit = testDoubleExpressionValue(
123.0,
AsmConstantExpression(123.0),
mapOf()
)
fun testVarsSum() = testDoubleExpression(1000.0, mapOf("x" to 500.0)) { variable("x") + 500.0 }
@Test
fun testDiv(): Unit = testDoubleExpressionValue(
0.5,
AsmDivExpression(RealField, AsmConstantExpression(1.0), AsmConstantExpression(2.0)),
mapOf()
)
fun testProduct() = testDoubleExpression(24.0) { const(4.0) * const(6.0) }
@Test
fun testProduct(): Unit = testDoubleExpressionValue(
25.0,
AsmProductExpression(RealField,AsmVariableExpression("x"), AsmVariableExpression("x")),
mapOf("x" to 5.0)
)
fun testConstantProduct() = testDoubleExpression(984.0) { const(8.0) * 123 }
@Test
fun testCProduct(): Unit = testDoubleExpressionValue(
25.0,
AsmConstProductExpression(RealField,AsmVariableExpression("x"), 5.0),
mapOf("x" to 5.0)
)
fun testSubtraction() = testDoubleExpression(2.0) { const(4.0) - 2.0 }
@Test
fun testCProductWithOtherTypeNumber(): Unit = testDoubleExpressionValue(
25.0,
AsmConstProductExpression(RealField,AsmVariableExpression("x"), 5f),
mapOf("x" to 5.0)
)
object CustomZero : Number() {
override fun toByte(): Byte = 0
override fun toChar(): Char = 0.toChar()
override fun toDouble(): Double = 0.0
override fun toFloat(): Float = 0f
override fun toInt(): Int = 0
override fun toLong(): Long = 0L
override fun toShort(): Short = 0
}
fun testDivision() = testDoubleExpression(64.0) { const(128.0) / 2 }
@Test
fun testCProductWithCustomTypeNumber(): Unit = testDoubleExpressionValue(
0.0,
AsmConstProductExpression(RealField,AsmVariableExpression("x"), CustomZero),
mapOf("x" to 5.0)
)
fun testDirectCall() = testDoubleExpression(4096.0) { binaryOperation("*", const(64.0), const(64.0)) }
@Test
fun testVar(): Unit = testDoubleExpressionValue(
10000.0,
AsmVariableExpression("x"),
mapOf("x" to 10000.0)
)
@Test
fun testVarWithDefault(): Unit = testDoubleExpressionValue(
10000.0,
AsmVariableExpression("x", 10000.0),
mapOf()
)
// @Test
// fun testSine() = testDoubleExpression(0.0) { unaryOperation("sin", const(PI)) }
}

View File

@ -1,80 +1,102 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.Space
import scientifik.kmath.operations.*
internal class VariableExpression<T>(val name: String, val default: T? = null) : Expression<T> {
internal class FunctionalUnaryOperation<T>(val context: Algebra<T>, val name: String, val expr: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.unaryOperation(name, expr.invoke(arguments))
}
internal class FunctionalBinaryOperation<T>(
val context: Algebra<T>,
val name: String,
val first: Expression<T>,
val second: Expression<T>
) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
context.binaryOperation(name, first.invoke(arguments), second.invoke(arguments))
}
internal class FunctionalVariableExpression<T>(val name: String, val default: T? = null) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
arguments[name] ?: default ?: error("Parameter not found: $name")
}
internal class ConstantExpression<T>(val value: T) : Expression<T> {
internal class FunctionalConstantExpression<T>(val value: T) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = value
}
internal class SumExpression<T>(
val context: Space<T>,
val first: Expression<T>,
val second: Expression<T>
) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.add(first.invoke(arguments), second.invoke(arguments))
}
internal class ProductExpression<T>(val context: Ring<T>, val first: Expression<T>, val second: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
context.multiply(first.invoke(arguments), second.invoke(arguments))
}
internal class ConstProductExpession<T>(val context: Space<T>, val expr: Expression<T>, val const: Number) :
internal class FunctionalConstProductExpression<T>(val context: Space<T>, val expr: Expression<T>, val const: Number) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.multiply(expr.invoke(arguments), const)
}
internal class DivExpession<T>(val context: Field<T>, val expr: Expression<T>, val second: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.divide(expr.invoke(arguments), second.invoke(arguments))
open class FunctionalExpressionAlgebra<T>(val algebra: Algebra<T>) :
Algebra<Expression<T>>,
ExpressionContext<T, Expression<T>> {
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
FunctionalUnaryOperation(algebra, operation, arg)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, operation, left, right)
override fun const(value: T): Expression<T> = FunctionalConstantExpression(value)
override fun variable(name: String, default: T?): Expression<T> = FunctionalVariableExpression(name, default)
}
open class FunctionalExpressionSpace<T>(
val space: Space<T>
) : Space<Expression<T>>, ExpressionContext<T, Expression<T>> {
open class FunctionalExpressionSpace<T>(val space: Space<T>) :
FunctionalExpressionAlgebra<T>(space),
Space<Expression<T>> {
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
FunctionalUnaryOperation(algebra, operation, arg)
override val zero: Expression<T> = ConstantExpression(space.zero)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, operation, left, right)
override fun const(value: T): Expression<T> = ConstantExpression(value)
override fun variable(name: String, default: T?): Expression<T> = VariableExpression(name, default)
override fun add(a: Expression<T>, b: Expression<T>): Expression<T> = SumExpression(space, a, b)
override fun multiply(a: Expression<T>, k: Number): Expression<T> = ConstProductExpession(space, a, k)
override val zero: Expression<T> = FunctionalConstantExpression(space.zero)
override fun add(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(space, SpaceOperations.PLUS_OPERATION, a, b)
override fun multiply(a: Expression<T>, k: Number): Expression<T> = FunctionalConstProductExpression(space, a, k)
operator fun Expression<T>.plus(arg: T) = this + const(arg)
operator fun Expression<T>.minus(arg: T) = this - const(arg)
operator fun T.plus(arg: Expression<T>) = arg + this
operator fun T.minus(arg: Expression<T>) = arg - this
}
open class FunctionalExpressionField<T>(
val field: Field<T>
) : Field<Expression<T>>, ExpressionContext<T, Expression<T>>, FunctionalExpressionSpace<T>(field) {
open class FunctionalExpressionRing<T>(val ring: Ring<T>) : FunctionalExpressionSpace<T>(ring), Ring<Expression<T>> {
override val one: Expression<T>
get() = const(this.field.one)
get() = const(this.ring.one)
fun number(value: Number): Expression<T> = const(field.run { one * value })
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
FunctionalUnaryOperation(algebra, operation, arg)
override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> = ProductExpression(field, a, b)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, operation, left, right)
override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> = DivExpession(field, a, b)
fun number(value: Number): Expression<T> = const(ring { one * value })
override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(space, RingOperations.TIMES_OPERATION, a, b)
operator fun Expression<T>.times(arg: T) = this * const(arg)
operator fun Expression<T>.div(arg: T) = this / const(arg)
operator fun T.times(arg: Expression<T>) = arg * this
}
open class FunctionalExpressionField<T>(val field: Field<T>) :
FunctionalExpressionRing<T>(field),
Field<Expression<T>> {
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
FunctionalUnaryOperation(algebra, operation, arg)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, operation, left, right)
override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(space, FieldOperations.DIV_OPERATION, a, b)
operator fun Expression<T>.div(arg: T) = this / const(arg)
operator fun T.div(arg: Expression<T>) = arg / this
}
}