2015-12-18 16:20:47 +03:00
|
|
|
/*
|
|
|
|
* Copyright 2015 Alexander Nozik.
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
package inr.numass.models;
|
|
|
|
|
|
|
|
import hep.dataforge.exceptions.NotDefinedException;
|
2017-01-11 11:56:30 +03:00
|
|
|
import hep.dataforge.maths.integration.UnivariateIntegrator;
|
2016-08-04 17:14:42 +03:00
|
|
|
import hep.dataforge.stat.parametric.AbstractParametricFunction;
|
|
|
|
import hep.dataforge.stat.parametric.ParametricFunction;
|
2016-05-31 20:05:15 +03:00
|
|
|
import hep.dataforge.values.NamedValueSet;
|
|
|
|
import hep.dataforge.values.ValueProvider;
|
2017-01-11 11:56:30 +03:00
|
|
|
import inr.numass.utils.NumassIntegrator;
|
2015-12-18 16:20:47 +03:00
|
|
|
import org.apache.commons.math3.analysis.BivariateFunction;
|
|
|
|
import org.apache.commons.math3.analysis.UnivariateFunction;
|
|
|
|
|
2017-01-11 11:56:30 +03:00
|
|
|
import java.util.List;
|
|
|
|
|
2015-12-18 16:20:47 +03:00
|
|
|
/**
|
|
|
|
*
|
|
|
|
* @author Darksnake
|
|
|
|
*/
|
|
|
|
public class VariableLossSpectrum extends AbstractParametricFunction {
|
|
|
|
|
|
|
|
public static String[] names = {"X", "shift", "exPos", "ionPos", "exW", "ionW", "exIonRatio"};
|
|
|
|
|
|
|
|
public static VariableLossSpectrum withGun(double eMax) {
|
|
|
|
return new VariableLossSpectrum(new GunSpectrum(), eMax);
|
|
|
|
}
|
|
|
|
|
|
|
|
public static VariableLossSpectrum withData(final UnivariateFunction transmission, double eMax) {
|
|
|
|
return new VariableLossSpectrum(new AbstractParametricFunction(new String[0]) {
|
|
|
|
|
|
|
|
@Override
|
2016-05-31 20:05:15 +03:00
|
|
|
public double derivValue(String parName, double x, NamedValueSet set) {
|
2015-12-18 16:20:47 +03:00
|
|
|
throw new NotDefinedException();
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public boolean providesDeriv(String name) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
2016-05-31 20:05:15 +03:00
|
|
|
public double value(double x, NamedValueSet set) {
|
2015-12-18 16:20:47 +03:00
|
|
|
return transmission.value(x);
|
|
|
|
}
|
|
|
|
}, eMax);
|
|
|
|
}
|
|
|
|
|
|
|
|
private final ParametricFunction transmission;
|
|
|
|
private UnivariateFunction backgroundFunction;
|
|
|
|
private final double eMax;
|
|
|
|
|
|
|
|
protected VariableLossSpectrum(ParametricFunction transmission, double eMax) {
|
|
|
|
super(names);
|
|
|
|
this.transmission = transmission;
|
|
|
|
this.eMax = eMax;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
2016-05-31 20:05:15 +03:00
|
|
|
public double derivValue(String parName, double x, NamedValueSet set) {
|
2015-12-18 16:20:47 +03:00
|
|
|
throw new NotDefinedException();
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
2016-05-31 20:05:15 +03:00
|
|
|
public double value(double U, NamedValueSet set) {
|
2015-12-18 16:20:47 +03:00
|
|
|
if (U >= eMax) {
|
|
|
|
return 0;
|
|
|
|
}
|
2016-05-31 20:05:15 +03:00
|
|
|
double X = set.getDouble("X");
|
|
|
|
final double shift = set.getDouble("shift");
|
2015-12-18 16:20:47 +03:00
|
|
|
|
|
|
|
final LossCalculator loss = LossCalculator.instance();
|
|
|
|
|
|
|
|
final List<Double> probs = loss.getGunLossProbabilities(X);
|
|
|
|
final double noLossProb = probs.get(0);
|
|
|
|
|
|
|
|
UnivariateFunction scatter = singleScatterFunction(set);
|
|
|
|
|
|
|
|
final BivariateFunction lossFunction = (Ei, Ef) -> {
|
|
|
|
if (probs.size() == 1) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
double sum = probs.get(1) * scatter.value(Ei - Ef);
|
|
|
|
for (int i = 2; i < probs.size(); i++) {
|
|
|
|
sum += probs.get(i) * loss.getLossValue(i, Ei, Ef);
|
|
|
|
}
|
|
|
|
return sum;
|
|
|
|
};
|
|
|
|
UnivariateFunction integrand = (double x) -> transmission.value(x, set) * lossFunction.value(x, U - shift);
|
|
|
|
UnivariateIntegrator integrator;
|
|
|
|
if (eMax - U > 150) {
|
2016-07-27 20:18:42 +03:00
|
|
|
integrator = NumassIntegrator.getHighDensityIntegrator();
|
2015-12-18 16:20:47 +03:00
|
|
|
} else {
|
2016-07-27 20:18:42 +03:00
|
|
|
integrator = NumassIntegrator.getDefaultIntegrator();
|
2015-12-18 16:20:47 +03:00
|
|
|
}
|
|
|
|
return noLossProb * transmission.value(U - shift, set) + integrator.integrate(integrand, U, eMax);
|
|
|
|
}
|
|
|
|
|
2016-05-31 20:05:15 +03:00
|
|
|
public UnivariateFunction singleScatterFunction(ValueProvider set) {
|
2015-12-18 16:20:47 +03:00
|
|
|
|
2016-05-31 20:05:15 +03:00
|
|
|
final double exPos = set.getDouble("exPos");
|
|
|
|
final double ionPos = set.getDouble("ionPos");
|
|
|
|
final double exW = set.getDouble("exW");
|
|
|
|
final double ionW = set.getDouble("ionW");
|
|
|
|
final double exIonRatio = set.getDouble("exIonRatio");
|
2015-12-18 16:20:47 +03:00
|
|
|
|
|
|
|
return singleScatterFunction(exPos, ionPos, exW, ionW, exIonRatio);
|
|
|
|
}
|
|
|
|
|
|
|
|
public UnivariateFunction singleScatterFunction(
|
|
|
|
final double exPos,
|
|
|
|
final double ionPos,
|
|
|
|
final double exW,
|
|
|
|
final double ionW,
|
|
|
|
final double exIonRatio) {
|
|
|
|
return LossCalculator.getSingleScatterFunction(exPos, ionPos, exW, ionW, exIonRatio);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public boolean providesDeriv(String name) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
2016-07-24 21:44:57 +03:00
|
|
|
protected double getDefaultParameter(String name) {
|
2015-12-18 16:20:47 +03:00
|
|
|
switch (name) {
|
|
|
|
case "shift":
|
|
|
|
return 0;
|
|
|
|
case "X":
|
|
|
|
return 0;
|
|
|
|
default:
|
2016-07-24 21:44:57 +03:00
|
|
|
return super.getDefaultParameter(name);
|
2015-12-18 16:20:47 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|