148 lines
5.0 KiB
Java
148 lines
5.0 KiB
Java
|
/*
|
||
|
* Copyright 2015 Alexander Nozik.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
package inr.numass.models;
|
||
|
|
||
|
import hep.dataforge.exceptions.NotDefinedException;
|
||
|
import hep.dataforge.functions.AbstractParametricFunction;
|
||
|
import hep.dataforge.functions.ParametricFunction;
|
||
|
import hep.dataforge.maths.NamedDoubleSet;
|
||
|
import hep.dataforge.maths.integration.UnivariateIntegrator;
|
||
|
import inr.numass.NumassContext;
|
||
|
import java.util.List;
|
||
|
import org.apache.commons.math3.analysis.BivariateFunction;
|
||
|
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
* @author Darksnake
|
||
|
*/
|
||
|
public class VariableLossSpectrum extends AbstractParametricFunction {
|
||
|
|
||
|
public static String[] names = {"X", "shift", "exPos", "ionPos", "exW", "ionW", "exIonRatio"};
|
||
|
|
||
|
public static VariableLossSpectrum withGun(double eMax) {
|
||
|
return new VariableLossSpectrum(new GunSpectrum(), eMax);
|
||
|
}
|
||
|
|
||
|
public static VariableLossSpectrum withData(final UnivariateFunction transmission, double eMax) {
|
||
|
return new VariableLossSpectrum(new AbstractParametricFunction(new String[0]) {
|
||
|
|
||
|
@Override
|
||
|
public double derivValue(String parName, double x, NamedDoubleSet set) {
|
||
|
throw new NotDefinedException();
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public boolean providesDeriv(String name) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public double value(double x, NamedDoubleSet set) {
|
||
|
return transmission.value(x);
|
||
|
}
|
||
|
}, eMax);
|
||
|
}
|
||
|
|
||
|
private final ParametricFunction transmission;
|
||
|
private UnivariateFunction backgroundFunction;
|
||
|
private final double eMax;
|
||
|
|
||
|
protected VariableLossSpectrum(ParametricFunction transmission, double eMax) {
|
||
|
super(names);
|
||
|
this.transmission = transmission;
|
||
|
this.eMax = eMax;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public double derivValue(String parName, double x, NamedDoubleSet set) {
|
||
|
throw new NotDefinedException();
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public double value(double U, NamedDoubleSet set) {
|
||
|
if (U >= eMax) {
|
||
|
return 0;
|
||
|
}
|
||
|
double X = set.getValue("X");
|
||
|
final double shift = set.getValue("shift");
|
||
|
|
||
|
final LossCalculator loss = LossCalculator.instance();
|
||
|
|
||
|
final List<Double> probs = loss.getGunLossProbabilities(X);
|
||
|
final double noLossProb = probs.get(0);
|
||
|
|
||
|
UnivariateFunction scatter = singleScatterFunction(set);
|
||
|
|
||
|
final BivariateFunction lossFunction = (Ei, Ef) -> {
|
||
|
if (probs.size() == 1) {
|
||
|
return 0;
|
||
|
}
|
||
|
double sum = probs.get(1) * scatter.value(Ei - Ef);
|
||
|
for (int i = 2; i < probs.size(); i++) {
|
||
|
sum += probs.get(i) * loss.getLossValue(i, Ei, Ef);
|
||
|
}
|
||
|
return sum;
|
||
|
};
|
||
|
UnivariateFunction integrand = (double x) -> transmission.value(x, set) * lossFunction.value(x, U - shift);
|
||
|
UnivariateIntegrator integrator;
|
||
|
if (eMax - U > 150) {
|
||
|
integrator = NumassContext.highDensityIntegrator;
|
||
|
} else {
|
||
|
integrator = NumassContext.defaultIntegrator;
|
||
|
}
|
||
|
return noLossProb * transmission.value(U - shift, set) + integrator.integrate(integrand, U, eMax);
|
||
|
}
|
||
|
|
||
|
public UnivariateFunction singleScatterFunction(NamedDoubleSet set) {
|
||
|
|
||
|
final double exPos = set.getValue("exPos");
|
||
|
final double ionPos = set.getValue("ionPos");
|
||
|
final double exW = set.getValue("exW");
|
||
|
final double ionW = set.getValue("ionW");
|
||
|
final double exIonRatio = set.getValue("exIonRatio");
|
||
|
|
||
|
return singleScatterFunction(exPos, ionPos, exW, ionW, exIonRatio);
|
||
|
}
|
||
|
|
||
|
public UnivariateFunction singleScatterFunction(
|
||
|
final double exPos,
|
||
|
final double ionPos,
|
||
|
final double exW,
|
||
|
final double ionW,
|
||
|
final double exIonRatio) {
|
||
|
return LossCalculator.getSingleScatterFunction(exPos, ionPos, exW, ionW, exIonRatio);
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public boolean providesDeriv(String name) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
protected double getDefaultValue(String name) {
|
||
|
switch (name) {
|
||
|
case "shift":
|
||
|
return 0;
|
||
|
case "X":
|
||
|
return 0;
|
||
|
default:
|
||
|
return super.getDefaultValue(name);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|