numass-framework/numass-main/src/main/java/inr/numass/actions/ShowLossSpectrumAction.java

280 lines
12 KiB
Java
Raw Normal View History

2015-12-18 16:20:47 +03:00
/*
* Copyright 2015 Alexander Nozik.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package inr.numass.actions;
import hep.dataforge.actions.OneToOneAction;
import hep.dataforge.context.Context;
import hep.dataforge.datafitter.FitState;
import hep.dataforge.datafitter.FitTaskResult;
import hep.dataforge.datafitter.Param;
import hep.dataforge.datafitter.ParamSet;
import hep.dataforge.datafitter.models.Histogram;
import hep.dataforge.description.TypedActionDef;
import hep.dataforge.io.ColumnedDataWriter;
import hep.dataforge.io.PrintFunction;
2016-04-30 21:57:46 +03:00
import hep.dataforge.io.reports.Reportable;
2015-12-18 16:20:47 +03:00
import hep.dataforge.maths.GridCalculator;
import hep.dataforge.maths.NamedDoubleSet;
import hep.dataforge.maths.NamedMatrix;
import hep.dataforge.maths.integration.UnivariateIntegrator;
2016-03-27 20:40:50 +03:00
import hep.dataforge.meta.Laminate;
2015-12-18 16:20:47 +03:00
import hep.dataforge.meta.MetaBuilder;
import hep.dataforge.plots.PlotsPlugin;
import hep.dataforge.plots.XYPlotFrame;
import hep.dataforge.plots.data.PlottableData;
import hep.dataforge.plots.data.PlottableFunction;
import hep.dataforge.simulation.GaussianParameterGenerator;
2016-04-30 21:57:46 +03:00
import hep.dataforge.tables.ListTable;
import hep.dataforge.tables.MapPoint;
import hep.dataforge.tables.Table;
import hep.dataforge.tables.XYAdapter;
2015-12-18 16:20:47 +03:00
import inr.numass.NumassContext;
import inr.numass.models.ExperimentalVariableLossSpectrum;
import inr.numass.models.LossCalculator;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.nio.charset.Charset;
import java.util.Arrays;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.interpolation.LinearInterpolator;
import org.apache.commons.math3.analysis.interpolation.UnivariateInterpolator;
import org.apache.commons.math3.stat.StatUtils;
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
import org.slf4j.LoggerFactory;
/**
*
* @author darksnake
*/
@TypedActionDef(name = "showLoss", inputType = FitState.class, outputType = FitState.class,
2016-04-30 16:13:50 +03:00
info = "Show loss spectrum for fit with loss model. Calculate excitation to ionisation ratio.")
2015-12-18 16:20:47 +03:00
public class ShowLossSpectrumAction extends OneToOneAction<FitState, FitState> {
private static final String[] names = {"X", "exPos", "ionPos", "exW", "ionW", "exIonRatio"};
@Override
2016-04-30 16:13:50 +03:00
protected FitState execute(Context context, Reportable log, String name, Laminate meta, FitState input) {
2015-12-18 16:20:47 +03:00
ParamSet pars = input.getParameters();
if (!pars.names().contains(names)) {
LoggerFactory.getLogger(getClass()).error("Wrong input FitState. Must be loss spectrum fit.");
throw new RuntimeException("Wrong input FitState");
}
UnivariateFunction scatterFunction;
boolean calculateRatio = false;
2016-03-27 20:40:50 +03:00
XYPlotFrame frame = (XYPlotFrame) PlotsPlugin.buildFrom(context)
2016-03-21 15:29:31 +03:00
.buildPlotFrame(getName(), name + ".loss",
2015-12-18 16:20:47 +03:00
new MetaBuilder("plot")
2016-03-21 15:29:31 +03:00
.setValue("plotTitle", "Differential scattering crossection for " + name)
2015-12-18 16:20:47 +03:00
);
switch (input.getModel().getName()) {
case "scatter-variable":
scatterFunction = LossCalculator.getSingleScatterFunction(pars);
calculateRatio = true;
LossCalculator.plotScatter(frame, pars);
break;
case "scatter-empiric-experimental":
scatterFunction = new ExperimentalVariableLossSpectrum.Loss(0.3).total(pars);
2016-02-15 17:00:27 +03:00
frame.add(new PlottableFunction("Cross-section", scatterFunction, 0, 100, 1000));
2015-12-18 16:20:47 +03:00
break;
default:
throw new RuntimeException("Can work only with variable loss spectra");
}
double threshold = 0;
double ionRatio = -1;
double ionRatioError = -1;
if (calculateRatio) {
2016-03-27 20:40:50 +03:00
threshold = meta.getDouble("ionThreshold", 17);
2015-12-18 16:20:47 +03:00
ionRatio = calcultateIonRatio(pars, threshold);
2016-04-30 16:13:50 +03:00
log.report("The ionization ratio (using threshold {}) is {}", threshold, ionRatio);
2016-03-27 20:40:50 +03:00
ionRatioError = calultateIonRatioError(context, name, input, threshold);
2016-04-30 16:13:50 +03:00
log.report("the ionization ration standard deviation (using threshold {}) is {}", threshold, ionRatioError);
2015-12-18 16:20:47 +03:00
}
2016-03-27 20:40:50 +03:00
if (meta.getBoolean("printResult", false)) {
PrintWriter writer = new PrintWriter(new OutputStreamWriter(buildActionOutput(context, name), Charset.forName("UTF-8")));
2015-12-18 16:20:47 +03:00
// writer.println("*** FIT PARAMETERS ***");
input.print(writer);
// for (Param param : pars.getSubSet(names).getParams()) {
// writer.println(param.toString());
// }
// writer.println();
// out.printf("Chi squared over degrees of freedom: %g/%d = %g", input.getChi2(), input.ndf(), chi2 / this.ndf());
writer.println();
writer.println("*** LOSS SPECTRUM INFORMATION ***");
writer.println();
if (calculateRatio) {
writer.printf("The ionization ratio (using threshold %f) is %f%n", threshold, ionRatio);
writer.printf("The ionization ratio standard deviation (using threshold %f) is %f%n", threshold, ionRatioError);
writer.println();
}
// double integralThreshold = reader.getDouble("numass.eGun", 19005d) - reader.getDouble("integralThreshold", 14.82);
// double integralRatio = calculateIntegralExIonRatio(input.getDataSet(), input.getParameters().getValue("X"), integralThreshold);
// writer.printf("The excitation to ionization ratio from integral spectrum (using threshold %f) is %f%n", integralThreshold, integralRatio);
writer.println();
writer.println("*** SUMMARY ***");
writer.printf("%s\t", "name");
for (String parName : names) {
writer.printf("%s\t%s\t", parName, parName + "_err");
}
if (calculateRatio) {
writer.printf("%s\t", "ionRatio");
writer.printf("%s\t", "ionRatioErr");
}
writer.printf("%s%n", "chi2");
2016-03-21 15:29:31 +03:00
writer.printf("%s\t", name);
2015-12-18 16:20:47 +03:00
for (Param param : pars.getSubSet(names).getParams()) {
writer.printf("%f\t%f\t", param.value(), param.getErr());
}
if (calculateRatio) {
writer.printf("%f\t", ionRatio);
writer.printf("%f\t", ionRatioError);
}
writer.printf("%f%n", input.getChi2() / ((FitTaskResult) input).ndf());
writer.println();
writer.println("***LOSS SPECTRUM***");
writer.println();
PrintFunction.printFunctionSimple(writer, scatterFunction, 0, 100, 500);
2016-03-27 20:40:50 +03:00
if (meta.getBoolean("showSpread", false)) {
2015-12-18 16:20:47 +03:00
writer.println("***SPECTRUM SPREAD***");
writer.println();
ParamSet parameters = input.getParameters().getSubSet(new String[]{"exPos", "ionPos", "exW", "ionW", "exIonRatio"});
NamedMatrix covariance = input.getCovariance();
Table spreadData = generateSpread(writer, name, parameters, covariance);
ColumnedDataWriter.writeDataSet(System.out, spreadData, "", spreadData.getFormat().namesAsArray());
2015-12-18 16:20:47 +03:00
}
}
return input;
}
public static double calcultateIonRatio(NamedDoubleSet set, double threshold) {
UnivariateIntegrator integrator = NumassContext.highDensityIntegrator;
UnivariateFunction integrand = LossCalculator.getSingleScatterFunction(set);
return 1d - integrator.integrate(integrand, 5d, threshold);
}
private double calculateIntegralExIonRatio(Table data, double X, double integralThreshold) {
2015-12-18 16:20:47 +03:00
double scatterProb = 1 - Math.exp(-X);
double[] x = data.getColumn("Uset").asList().stream().mapToDouble((val) -> val.doubleValue()).toArray();
double[] y = data.getColumn("CR").asList().stream().mapToDouble((val) -> val.doubleValue()).toArray();
double yMax = StatUtils.max(y);
UnivariateInterpolator interpolator = new LinearInterpolator();
UnivariateFunction interpolated = interpolator.interpolate(x, y);
double thresholdValue = interpolated.value(integralThreshold);
double one = 1 - X * Math.exp(-X);
double ionProb = (one - thresholdValue / yMax);
double exProb = (thresholdValue / yMax - one + scatterProb);
return exProb / ionProb;
}
2016-03-27 20:40:50 +03:00
public double calultateIonRatioError(Context context, String dataNeme, FitState state, double threshold) {
2015-12-18 16:20:47 +03:00
ParamSet parameters = state.getParameters().getSubSet(new String[]{"exPos", "ionPos", "exW", "ionW", "exIonRatio"});
NamedMatrix covariance = state.getCovariance();
2016-03-27 20:40:50 +03:00
return calultateIonRatioError(context, dataNeme, parameters, covariance, threshold);
2015-12-18 16:20:47 +03:00
}
@SuppressWarnings("Unchecked")
2016-03-27 20:40:50 +03:00
public double calultateIonRatioError(Context context, String name, NamedDoubleSet parameters, NamedMatrix covariance, double threshold) {
2015-12-18 16:20:47 +03:00
int number = 10000;
double[] res = new GaussianParameterGenerator(parameters, covariance)
.generate(number)
.stream()
.mapToDouble((vector) -> calcultateIonRatio(vector, threshold))
.filter(d -> !Double.isNaN(d))
.toArray();
2016-03-21 15:29:31 +03:00
Histogram hist = new Histogram(0.3, 0.5, 0.002);
2015-12-18 16:20:47 +03:00
hist.fill(res);
2016-03-27 20:40:50 +03:00
XYPlotFrame frame = (XYPlotFrame) PlotsPlugin.buildFrom(context)
2016-03-21 15:29:31 +03:00
.buildPlotFrame(getName(), name + ".ionRatio",
2015-12-18 16:20:47 +03:00
new MetaBuilder("plot").setValue("plotTitle", "Ion ratio Distribution for " + name)
);
// XYPlotFrame frame = JFreeChartFrame.drawFrame("Ion ratio Distribution for " + name, null);
2016-03-21 15:29:31 +03:00
frame.add(PlottableData.plot("ionRatio", hist, new XYAdapter("binCenter", "count")));
2015-12-18 16:20:47 +03:00
return new DescriptiveStatistics(res).getStandardDeviation();
}
public static Table generateSpread(PrintWriter writer, String name, NamedDoubleSet parameters, NamedMatrix covariance) {
2015-12-18 16:20:47 +03:00
int numCalls = 1000;
int gridPoints = 200;
double a = 8;
double b = 32;
double[] grid = GridCalculator.getUniformUnivariateGrid(a, b, gridPoints);
double[] upper = new double[gridPoints];
double[] lower = new double[gridPoints];
double[] dispersion = new double[gridPoints];
double[] central = new double[gridPoints];
UnivariateFunction func = LossCalculator.getSingleScatterFunction(parameters);
for (int j = 0; j < gridPoints; j++) {
central[j] = func.value(grid[j]);
}
Arrays.fill(upper, Double.NEGATIVE_INFINITY);
Arrays.fill(lower, Double.POSITIVE_INFINITY);
Arrays.fill(dispersion, 0);
GaussianParameterGenerator generator = new GaussianParameterGenerator(parameters, covariance);
for (int i = 0; i < numCalls; i++) {
func = LossCalculator.getSingleScatterFunction(generator.generate());
for (int j = 0; j < gridPoints; j++) {
double val = func.value(grid[j]);
upper[j] = Math.max(upper[j], val);
lower[j] = Math.min(lower[j], val);
dispersion[j] += (val - central[j]) * (val - central[j]) / numCalls;
}
}
String[] pointNames = {"e", "central", "lower", "upper", "dispersion"};
ListTable.Builder res = new ListTable.Builder(pointNames);
2015-12-18 16:20:47 +03:00
for (int i = 0; i < gridPoints; i++) {
res.addRow(new MapPoint(pointNames, grid[i], central[i], lower[i], upper[i], dispersion[i]));
2015-12-18 16:20:47 +03:00
}
return res.build();
2015-12-18 16:20:47 +03:00
}
}