/* * Copyright 2015 Alexander Nozik. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package inr.numass.actions; import hep.dataforge.actions.OneToOneAction; import hep.dataforge.context.Context; import hep.dataforge.datafitter.FitState; import hep.dataforge.datafitter.FitTaskResult; import hep.dataforge.datafitter.Param; import hep.dataforge.datafitter.ParamSet; import hep.dataforge.datafitter.models.Histogram; import hep.dataforge.description.TypedActionDef; import hep.dataforge.io.ColumnedDataWriter; import hep.dataforge.io.PrintFunction; import hep.dataforge.io.reports.Reportable; import hep.dataforge.maths.GridCalculator; import hep.dataforge.maths.NamedDoubleSet; import hep.dataforge.maths.NamedMatrix; import hep.dataforge.maths.integration.UnivariateIntegrator; import hep.dataforge.meta.Laminate; import hep.dataforge.meta.MetaBuilder; import hep.dataforge.plots.PlotsPlugin; import hep.dataforge.plots.XYPlotFrame; import hep.dataforge.plots.data.PlottableData; import hep.dataforge.plots.data.PlottableFunction; import hep.dataforge.simulation.GaussianParameterGenerator; import hep.dataforge.tables.ListTable; import hep.dataforge.tables.MapPoint; import hep.dataforge.tables.Table; import hep.dataforge.tables.XYAdapter; import inr.numass.NumassContext; import inr.numass.models.ExperimentalVariableLossSpectrum; import inr.numass.models.LossCalculator; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.nio.charset.Charset; import java.util.Arrays; import org.apache.commons.math3.analysis.UnivariateFunction; import org.apache.commons.math3.analysis.interpolation.LinearInterpolator; import org.apache.commons.math3.analysis.interpolation.UnivariateInterpolator; import org.apache.commons.math3.stat.StatUtils; import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics; import org.slf4j.LoggerFactory; /** * * @author darksnake */ @TypedActionDef(name = "showLoss", inputType = FitState.class, outputType = FitState.class, info = "Show loss spectrum for fit with loss model. Calculate excitation to ionisation ratio.") public class ShowLossSpectrumAction extends OneToOneAction { private static final String[] names = {"X", "exPos", "ionPos", "exW", "ionW", "exIonRatio"}; @Override protected FitState execute(Context context, Reportable log, String name, Laminate meta, FitState input) { ParamSet pars = input.getParameters(); if (!pars.names().contains(names)) { LoggerFactory.getLogger(getClass()).error("Wrong input FitState. Must be loss spectrum fit."); throw new RuntimeException("Wrong input FitState"); } UnivariateFunction scatterFunction; boolean calculateRatio = false; XYPlotFrame frame = (XYPlotFrame) PlotsPlugin.buildFrom(context) .buildPlotFrame(getName(), name + ".loss", new MetaBuilder("plot") .setValue("plotTitle", "Differential scattering crossection for " + name) ); switch (input.getModel().getName()) { case "scatter-variable": scatterFunction = LossCalculator.getSingleScatterFunction(pars); calculateRatio = true; LossCalculator.plotScatter(frame, pars); break; case "scatter-empiric-experimental": scatterFunction = new ExperimentalVariableLossSpectrum.Loss(0.3).total(pars); frame.add(new PlottableFunction("Cross-section", scatterFunction, 0, 100, 1000)); break; default: throw new RuntimeException("Can work only with variable loss spectra"); } double threshold = 0; double ionRatio = -1; double ionRatioError = -1; if (calculateRatio) { threshold = meta.getDouble("ionThreshold", 17); ionRatio = calcultateIonRatio(pars, threshold); log.report("The ionization ratio (using threshold {}) is {}", threshold, ionRatio); ionRatioError = calultateIonRatioError(context, name, input, threshold); log.report("the ionization ration standard deviation (using threshold {}) is {}", threshold, ionRatioError); } if (meta.getBoolean("printResult", false)) { PrintWriter writer = new PrintWriter(new OutputStreamWriter(buildActionOutput(context, name), Charset.forName("UTF-8"))); // writer.println("*** FIT PARAMETERS ***"); input.print(writer); // for (Param param : pars.getSubSet(names).getParams()) { // writer.println(param.toString()); // } // writer.println(); // out.printf("Chi squared over degrees of freedom: %g/%d = %g", input.getChi2(), input.ndf(), chi2 / this.ndf()); writer.println(); writer.println("*** LOSS SPECTRUM INFORMATION ***"); writer.println(); if (calculateRatio) { writer.printf("The ionization ratio (using threshold %f) is %f%n", threshold, ionRatio); writer.printf("The ionization ratio standard deviation (using threshold %f) is %f%n", threshold, ionRatioError); writer.println(); } // double integralThreshold = reader.getDouble("numass.eGun", 19005d) - reader.getDouble("integralThreshold", 14.82); // double integralRatio = calculateIntegralExIonRatio(input.getDataSet(), input.getParameters().getValue("X"), integralThreshold); // writer.printf("The excitation to ionization ratio from integral spectrum (using threshold %f) is %f%n", integralThreshold, integralRatio); writer.println(); writer.println("*** SUMMARY ***"); writer.printf("%s\t", "name"); for (String parName : names) { writer.printf("%s\t%s\t", parName, parName + "_err"); } if (calculateRatio) { writer.printf("%s\t", "ionRatio"); writer.printf("%s\t", "ionRatioErr"); } writer.printf("%s%n", "chi2"); writer.printf("%s\t", name); for (Param param : pars.getSubSet(names).getParams()) { writer.printf("%f\t%f\t", param.value(), param.getErr()); } if (calculateRatio) { writer.printf("%f\t", ionRatio); writer.printf("%f\t", ionRatioError); } writer.printf("%f%n", input.getChi2() / ((FitTaskResult) input).ndf()); writer.println(); writer.println("***LOSS SPECTRUM***"); writer.println(); PrintFunction.printFunctionSimple(writer, scatterFunction, 0, 100, 500); if (meta.getBoolean("showSpread", false)) { writer.println("***SPECTRUM SPREAD***"); writer.println(); ParamSet parameters = input.getParameters().getSubSet(new String[]{"exPos", "ionPos", "exW", "ionW", "exIonRatio"}); NamedMatrix covariance = input.getCovariance(); Table spreadData = generateSpread(writer, name, parameters, covariance); ColumnedDataWriter.writeDataSet(System.out, spreadData, "", spreadData.getFormat().namesAsArray()); } } return input; } public static double calcultateIonRatio(NamedDoubleSet set, double threshold) { UnivariateIntegrator integrator = NumassContext.highDensityIntegrator; UnivariateFunction integrand = LossCalculator.getSingleScatterFunction(set); return 1d - integrator.integrate(integrand, 5d, threshold); } private double calculateIntegralExIonRatio(Table data, double X, double integralThreshold) { double scatterProb = 1 - Math.exp(-X); double[] x = data.getColumn("Uset").asList().stream().mapToDouble((val) -> val.doubleValue()).toArray(); double[] y = data.getColumn("CR").asList().stream().mapToDouble((val) -> val.doubleValue()).toArray(); double yMax = StatUtils.max(y); UnivariateInterpolator interpolator = new LinearInterpolator(); UnivariateFunction interpolated = interpolator.interpolate(x, y); double thresholdValue = interpolated.value(integralThreshold); double one = 1 - X * Math.exp(-X); double ionProb = (one - thresholdValue / yMax); double exProb = (thresholdValue / yMax - one + scatterProb); return exProb / ionProb; } public double calultateIonRatioError(Context context, String dataNeme, FitState state, double threshold) { ParamSet parameters = state.getParameters().getSubSet(new String[]{"exPos", "ionPos", "exW", "ionW", "exIonRatio"}); NamedMatrix covariance = state.getCovariance(); return calultateIonRatioError(context, dataNeme, parameters, covariance, threshold); } @SuppressWarnings("Unchecked") public double calultateIonRatioError(Context context, String name, NamedDoubleSet parameters, NamedMatrix covariance, double threshold) { int number = 10000; double[] res = new GaussianParameterGenerator(parameters, covariance) .generate(number) .stream() .mapToDouble((vector) -> calcultateIonRatio(vector, threshold)) .filter(d -> !Double.isNaN(d)) .toArray(); Histogram hist = new Histogram(0.3, 0.5, 0.002); hist.fill(res); XYPlotFrame frame = (XYPlotFrame) PlotsPlugin.buildFrom(context) .buildPlotFrame(getName(), name + ".ionRatio", new MetaBuilder("plot").setValue("plotTitle", "Ion ratio Distribution for " + name) ); // XYPlotFrame frame = JFreeChartFrame.drawFrame("Ion ratio Distribution for " + name, null); frame.add(PlottableData.plot("ionRatio", hist, new XYAdapter("binCenter", "count"))); return new DescriptiveStatistics(res).getStandardDeviation(); } public static Table generateSpread(PrintWriter writer, String name, NamedDoubleSet parameters, NamedMatrix covariance) { int numCalls = 1000; int gridPoints = 200; double a = 8; double b = 32; double[] grid = GridCalculator.getUniformUnivariateGrid(a, b, gridPoints); double[] upper = new double[gridPoints]; double[] lower = new double[gridPoints]; double[] dispersion = new double[gridPoints]; double[] central = new double[gridPoints]; UnivariateFunction func = LossCalculator.getSingleScatterFunction(parameters); for (int j = 0; j < gridPoints; j++) { central[j] = func.value(grid[j]); } Arrays.fill(upper, Double.NEGATIVE_INFINITY); Arrays.fill(lower, Double.POSITIVE_INFINITY); Arrays.fill(dispersion, 0); GaussianParameterGenerator generator = new GaussianParameterGenerator(parameters, covariance); for (int i = 0; i < numCalls; i++) { func = LossCalculator.getSingleScatterFunction(generator.generate()); for (int j = 0; j < gridPoints; j++) { double val = func.value(grid[j]); upper[j] = Math.max(upper[j], val); lower[j] = Math.min(lower[j], val); dispersion[j] += (val - central[j]) * (val - central[j]) / numCalls; } } String[] pointNames = {"e", "central", "lower", "upper", "dispersion"}; ListTable.Builder res = new ListTable.Builder(pointNames); for (int i = 0; i < gridPoints; i++) { res.addRow(new MapPoint(pointNames, grid[i], central[i], lower[i], upper[i], dispersion[i])); } return res.build(); } }