advanced-python-homework-2023/lectures/04.DataModel.ipynb
2023-10-23 08:32:55 +03:00

853 lines
37 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"metadata": {
"kernelspec": {
"name": "python",
"display_name": "Python (Pyodide)",
"language": "python"
},
"language_info": {
"codemirror_mode": {
"name": "python",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8"
}
},
"nbformat_minor": 5,
"nbformat": 4,
"cells": [
{
"cell_type": "markdown",
"source": "# Всё в Python является объектом",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "917bfefc-582c-41b4-b3b2-df29da3c7200"
},
{
"cell_type": "code",
"source": "print(isinstance(\"add\", object))\nprint(isinstance(1_000, object))\nprint(isinstance(3.14, object))",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 1,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": "True\n\nTrue\n\nTrue\n"
}
],
"id": "9aa513ac"
},
{
"cell_type": "code",
"source": "(3.14).as_integer_ratio()",
"metadata": {},
"execution_count": 3,
"outputs": [
{
"execution_count": 3,
"output_type": "execute_result",
"data": {
"text/plain": [
"(7070651414971679, 2251799813685248)"
]
},
"metadata": {}
}
],
"id": "3ecb4677"
},
{
"cell_type": "code",
"source": "class Vector2D:\n x = 0\n y = 0\n \n def norm(self):\n return (self.x**2 + self.y**2)**0.5\n\nvec = Vector2D()",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 13,
"outputs": [],
"id": "b7025d1e-79cf-4ba7-a49d-7c1bf2fe063e"
},
{
"cell_type": "code",
"source": "isinstance(vec, object)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 4,
"outputs": [
{
"execution_count": 4,
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {}
}
],
"id": "3371dfc5-234d-481c-8404-f1fd0fd68bb3"
},
{
"cell_type": "code",
"source": "isinstance(Vector2D, object)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 5,
"outputs": [
{
"execution_count": 5,
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {}
}
],
"id": "88ccb376-5fbb-47ed-84b5-4773f26d3490"
},
{
"cell_type": "code",
"source": "isinstance(object, object)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 4,
"outputs": [
{
"execution_count": 4,
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {}
}
],
"id": "4d77d081"
},
{
"cell_type": "code",
"source": "import math\nisinstance(math, object)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 5,
"outputs": [
{
"execution_count": 5,
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {}
}
],
"id": "d4e0bb29-320c-4206-8fc3-4345eda4f73f"
},
{
"cell_type": "code",
"source": "def add(a,b): return a + b\nisinstance(add, object)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 6,
"outputs": [
{
"execution_count": 6,
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {}
}
],
"id": "374f4bc2-7bb6-441d-96aa-392445856565"
},
{
"cell_type": "code",
"source": "add.x = 1",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 7,
"outputs": [],
"id": "0b0b8d31-917e-4fb0-8d41-3e49cc381494"
},
{
"cell_type": "markdown",
"source": "# Магические методы",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "cce63a23"
},
{
"cell_type": "code",
"source": "dir(vec)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 11,
"outputs": [
{
"execution_count": 11,
"output_type": "execute_result",
"data": {
"text/plain": [
"['__class__',\n",
" '__delattr__',\n",
" '__dict__',\n",
" '__dir__',\n",
" '__doc__',\n",
" '__eq__',\n",
" '__format__',\n",
" '__ge__',\n",
" '__getattribute__',\n",
" '__gt__',\n",
" '__hash__',\n",
" '__init__',\n",
" '__init_subclass__',\n",
" '__le__',\n",
" '__lt__',\n",
" '__module__',\n",
" '__ne__',\n",
" '__new__',\n",
" '__reduce__',\n",
" '__reduce_ex__',\n",
" '__repr__',\n",
" '__setattr__',\n",
" '__sizeof__',\n",
" '__str__',\n",
" '__subclasshook__',\n",
" '__weakref__',\n",
" 'norm',\n",
" 'x',\n",
" 'y']"
]
},
"metadata": {}
}
],
"id": "f0cac210-b14c-4940-811f-2f7b982014f5"
},
{
"cell_type": "code",
"source": "dir(add)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 18,
"outputs": [
{
"execution_count": 18,
"output_type": "execute_result",
"data": {
"text/plain": [
"['__annotations__',\n",
" '__call__',\n",
" '__class__',\n",
" '__closure__',\n",
" '__code__',\n",
" '__defaults__',\n",
" '__delattr__',\n",
" '__dict__',\n",
" '__dir__',\n",
" '__doc__',\n",
" '__eq__',\n",
" '__format__',\n",
" '__ge__',\n",
" '__get__',\n",
" '__getattribute__',\n",
" '__globals__',\n",
" '__gt__',\n",
" '__hash__',\n",
" '__init__',\n",
" '__init_subclass__',\n",
" '__kwdefaults__',\n",
" '__le__',\n",
" '__lt__',\n",
" '__module__',\n",
" '__name__',\n",
" '__ne__',\n",
" '__new__',\n",
" '__qualname__',\n",
" '__reduce__',\n",
" '__reduce_ex__',\n",
" '__repr__',\n",
" '__setattr__',\n",
" '__sizeof__',\n",
" '__str__',\n",
" '__subclasshook__']"
]
},
"metadata": {}
}
],
"id": "1b5597dc-484a-43d3-b37a-cd30908d495d"
},
{
"cell_type": "markdown",
"source": "* Управляют внутренней работой объектов\n* Хранят различную информацию объектов (которую можно получать в runtime)\n* Вызываются при использовании синтаксических конструкций\n* Вызываются встроенными (builtins) функциями\n* Область применения: перегрузка операторов, рефлексия и метапрограммирование",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "bc3cdb2f"
},
{
"cell_type": "code",
"source": "class TenItemList:\n\n def __len__(self):\n return 10\n\n\nten_item_list = TenItemList()\nlen(ten_item_list)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 8,
"outputs": [
{
"execution_count": 8,
"output_type": "execute_result",
"data": {
"text/plain": [
"10"
]
},
"metadata": {}
}
],
"id": "dabd01d8"
},
{
"cell_type": "markdown",
"source": "# Всё в Python является объектом, а все синтаксические конструкции сводятся к вызовам магических методов",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "0effc8ba"
},
{
"cell_type": "markdown",
"source": "# Пример сложение\n",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "3841bda9"
},
{
"cell_type": "code",
"source": "class Vector2D:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n def __add__(self, other):\n return Vector2D(self.x + other.y, self.x + other.y)\n\n def norm(self):\n return (self.x**2 + self.y**2)**0.5\n\nvec1 = Vector2D(1,2)\nvec2 = Vector2D(3,4)\nvec3 = vec1 + vec2\nvec3.x, vec3.y",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 10,
"outputs": [
{
"execution_count": 10,
"output_type": "execute_result",
"data": {
"text/plain": [
"(5, 5)"
]
},
"metadata": {}
}
],
"id": "e3460fe5"
},
{
"cell_type": "markdown",
"source": "## Пример присваивание",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "538a0794"
},
{
"cell_type": "code",
"source": "class Vector2D:\n x = 0\n y = 0\n \n def norm(self):\n return (self.x**2 + self.y**2)**0.5\n\nvec = Vector2D()",
"metadata": {},
"execution_count": 14,
"outputs": [],
"id": "1acd0880"
},
{
"cell_type": "code",
"source": "vec = Vector2D()\nvec.__getattribute__(\"x\")",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 15,
"outputs": [
{
"execution_count": 15,
"output_type": "execute_result",
"data": {
"text/plain": [
"0"
]
},
"metadata": {}
}
],
"id": "1f2bfb38"
},
{
"cell_type": "code",
"source": "vec.__getattribute__(\"norm\")()",
"metadata": {},
"execution_count": 17,
"outputs": [
{
"execution_count": 17,
"output_type": "execute_result",
"data": {
"text/plain": [
"0.0"
]
},
"metadata": {}
}
],
"id": "640d5fad"
},
{
"cell_type": "code",
"source": "vec.x = 5\nvec.__getattribute__(\"x\")",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 18,
"outputs": [
{
"execution_count": 18,
"output_type": "execute_result",
"data": {
"text/plain": [
"5"
]
},
"metadata": {}
}
],
"id": "21efb174"
},
{
"cell_type": "code",
"source": "vec.__setattr__(\"x\", 10)\ngetattr(vec, \"x\")",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 19,
"outputs": [
{
"execution_count": 19,
"output_type": "execute_result",
"data": {
"text/plain": [
"10"
]
},
"metadata": {}
}
],
"id": "dfbce5a2"
},
{
"cell_type": "code",
"source": "setattr(vec, \"x\", 20)\nvec.x",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 20,
"outputs": [
{
"execution_count": 20,
"output_type": "execute_result",
"data": {
"text/plain": [
"20"
]
},
"metadata": {}
}
],
"id": "1d6de7d3"
},
{
"cell_type": "code",
"source": "class Foo:\n def __setattr__(self, key, value):\n print(key, value)\n\nfoo = Foo()\nfoo.a = \"A\"",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 21,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": "a A\n"
}
],
"id": "40df4888"
},
{
"cell_type": "code",
"source": "foo.a",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 22,
"outputs": [
{
"ename": "AttributeError",
"evalue": "'Foo' object has no attribute 'a'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/tmp/ipykernel_35789/2615815247.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfoo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m: 'Foo' object has no attribute 'a'"
]
}
],
"id": "871b0b35"
},
{
"cell_type": "markdown",
"source": "",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "13c80f91"
},
{
"cell_type": "markdown",
"source": "# На самом деле все объекты реализованы как словари хранящие атрибуты объекта (однако есть возможности для оптимизаций)",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "266ca832"
},
{
"cell_type": "code",
"source": "class Vector2D:\n x = 0\n y = 0\n\n def norm(self):\n return (self.x**2 + self.y**2)**0.5\n\nvec = Vector2D()",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 23,
"outputs": [],
"id": "af1b83e9"
},
{
"cell_type": "code",
"source": "vec.__dict__",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 24,
"outputs": [
{
"execution_count": 24,
"output_type": "execute_result",
"data": {
"text/plain": [
"{}"
]
},
"metadata": {}
}
],
"id": "acc6da9e"
},
{
"cell_type": "code",
"source": "Vector2D.__dict__",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 27,
"outputs": [
{
"execution_count": 27,
"output_type": "execute_result",
"data": {
"text/plain": [
"mappingproxy({'__module__': '__main__',\n",
" 'x': 0,\n",
" 'y': 0,\n",
" 'norm': <function __main__.Vector2D.norm(self)>,\n",
" '__dict__': <attribute '__dict__' of 'Vector2D' objects>,\n",
" '__weakref__': <attribute '__weakref__' of 'Vector2D' objects>,\n",
" '__doc__': None})"
]
},
"metadata": {}
}
],
"id": "4cfbfaec"
},
{
"cell_type": "code",
"source": "vec.x = 5\nvec.__dict__",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 26,
"outputs": [
{
"execution_count": 26,
"output_type": "execute_result",
"data": {
"text/plain": [
"{'x': 5}"
]
},
"metadata": {}
}
],
"id": "b5eb0e56"
},
{
"cell_type": "markdown",
"source": "# Модуль inspect --- информация об объектах в runtime\n\n* Не вся информация может быть доступна через магические методы\n* Недоступную информацию можно получить через модуль inspect",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "f4af619e"
},
{
"cell_type": "code",
"source": "import inspect\n\ndef add(a,b): return a + b\ninspect.isfunction(add)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 28,
"outputs": [
{
"execution_count": 28,
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {}
}
],
"id": "cb6a08ad"
},
{
"cell_type": "code",
"source": "inspect.getsource(add)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 29,
"outputs": [
{
"execution_count": 29,
"output_type": "execute_result",
"data": {
"text/plain": [
"'def add(a,b): return a + b\\n'"
]
},
"metadata": {}
}
],
"id": "3bd00ea2"
},
{
"cell_type": "code",
"source": "from numpy import random\ninspect.getsource(random)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 30,
"outputs": [
{
"execution_count": 30,
"output_type": "execute_result",
"data": {
"text/plain": [
"'\"\"\"\\n========================\\nRandom Number Generation\\n========================\\n\\nUse ``default_rng()`` to create a `Generator` and call its methods.\\n\\n=============== =========================================================\\nGenerator\\n--------------- ---------------------------------------------------------\\nGenerator Class implementing all of the random number distributions\\ndefault_rng Default constructor for ``Generator``\\n=============== =========================================================\\n\\n============================================= ===\\nBitGenerator Streams that work with Generator\\n--------------------------------------------- ---\\nMT19937\\nPCG64\\nPCG64DXSM\\nPhilox\\nSFC64\\n============================================= ===\\n\\n============================================= ===\\nGetting entropy to initialize a BitGenerator\\n--------------------------------------------- ---\\nSeedSequence\\n============================================= ===\\n\\n\\nLegacy\\n------\\n\\nFor backwards compatibility with previous versions of numpy before 1.17, the\\nvarious aliases to the global `RandomState` methods are left alone and do not\\nuse the new `Generator` API.\\n\\n==================== =========================================================\\nUtility functions\\n-------------------- ---------------------------------------------------------\\nrandom Uniformly distributed floats over ``[0, 1)``\\nbytes Uniformly distributed random bytes.\\npermutation Randomly permute a sequence / generate a random sequence.\\nshuffle Randomly permute a sequence in place.\\nchoice Random sample from 1-D array.\\n==================== =========================================================\\n\\n==================== =========================================================\\nCompatibility\\nfunctions - removed\\nin the new API\\n-------------------- ---------------------------------------------------------\\nrand Uniformly distributed values.\\nrandn Normally distributed values.\\nranf Uniformly distributed floating point numbers.\\nrandom_integers Uniformly distributed integers in a given range.\\n (deprecated, use ``integers(..., closed=True)`` instead)\\nrandom_sample Alias for `random_sample`\\nrandint Uniformly distributed integers in a given range\\nseed Seed the legacy random number generator.\\n==================== =========================================================\\n\\n==================== =========================================================\\nUnivariate\\ndistributions\\n-------------------- ---------------------------------------------------------\\nbeta Beta distribution over ``[0, 1]``.\\nbinomial Binomial distribution.\\nchisquare :math:`\\\\\\\\chi^2` distribution.\\nexponential Exponential distribution.\\nf F (Fisher-Snedecor) distribution.\\ngamma Gamma distribution.\\ngeometric Geometric distribution.\\ngumbel Gumbel distribution.\\nhypergeometric Hypergeometric distribution.\\nlaplace Laplace distribution.\\nlogistic Logistic distribution.\\nlognormal Log-normal distribution.\\nlogseries Logarithmic series distribution.\\nnegative_binomial Negative binomial distribution.\\nnoncentral_chisquare Non-central chi-square distribution.\\nnoncentral_f Non-central F distribution.\\nnormal Normal / Gaussian distribution.\\npareto Pareto distribution.\\npoisson Poisson distribution.\\npower Power distribution.\\nrayleigh Rayleigh distribution.\\ntriangular Triangular distribution.\\nuniform Uniform distribution.\\nvonmises Von Mises circular distribution.\\nwald Wald (inverse Gaussian) distribution.\\nweibull Weibull distribution.\\nzipf Zipf\\'s distribution over ranked data.\\n==================== =========================================================\\n\\n==================== ==========================================================\\nMultivariate\\ndistributions\\n-------------------- ----------------------------------------------------------\\ndirichlet Multivariate generalization of Beta distribution.\\nmultinomial Multivariate generalization of the binomial distribution.\\nmultivariate_normal Multivariate generalization of the normal distribution.\\n==================== ==========================================================\\n\\n==================== =========================================================\\nStandard\\ndistributions\\n-------------------- ---------------------------------------------------------\\nstandard_cauchy Standard Cauchy-Lorentz distribution.\\nstandard_exponential Standard exponential distribution.\\nstandard_gamma Standard Gamma distribution.\\nstandard_normal Standard normal distribution.\\nstandard_t Standard Student\\'s t-distribution.\\n==================== =========================================================\\n\\n==================== =========================================================\\nInternal functions\\n-------------------- ---------------------------------------------------------\\nget_state Get tuple representing internal state of generator.\\nset_state Set state of generator.\\n==================== =========================================================\\n\\n\\n\"\"\"\\n__all__ = [\\n \\'beta\\',\\n \\'binomial\\',\\n \\'bytes\\',\\n \\'chisquare\\',\\n \\'choice\\',\\n \\'dirichlet\\',\\n \\'exponential\\',\\n \\'f\\',\\n \\'gamma\\',\\n \\'geometric\\',\\n \\'get_state\\',\\n \\'gumbel\\',\\n \\'hypergeometric\\',\\n \\'laplace\\',\\n \\'logistic\\',\\n \\'lognormal\\',\\n \\'logseries\\',\\n \\'multinomial\\',\\n \\'multivariate_normal\\',\\n \\'negative_binomial\\',\\n \\'noncentral_chisquare\\',\\n \\'noncentral_f\\',\\n \\'normal\\',\\n \\'pareto\\',\\n \\'permutation\\',\\n \\'poisson\\',\\n \\'power\\',\\n \\'rand\\',\\n \\'randint\\',\\n \\'randn\\',\\n \\'random\\',\\n \\'random_integers\\',\\n \\'random_sample\\',\\n \\'ranf\\',\\n \\'rayleigh\\',\\n \\'sample\\',\\n \\'seed\\',\\n \\'set_state\\',\\n \\'shuffle\\',\\n \\'standard_cauchy\\',\\n \\'standard_exponential\\',\\n \\'standard_gamma\\',\\n \\'standard_normal\\',\\n \\'standard_t\\',\\n \\'triangular\\',\\n \\'uniform\\',\\n \\'vonmises\\',\\n \\'wald\\',\\n \\'weibull\\',\\n \\'zipf\\',\\n]\\n\\n# add these for module-freeze analysis (like PyInstaller)\\nfrom . import _pickle\\nfrom . import _common\\nfrom . import _bounded_integers\\n\\nfrom ._generator import Generator, default_rng\\nfrom .bit_generator import SeedSequence, BitGenerator\\nfrom ._mt19937 import MT19937\\nfrom ._pcg64 import PCG64, PCG64DXSM\\nfrom ._philox import Philox\\nfrom ._sfc64 import SFC64\\nfrom .mtrand import *\\n\\n__all__ += [\\'Generator\\', \\'RandomState\\', \\'SeedSequence\\', \\'MT19937\\',\\n \\'Philox\\', \\'PCG64\\', \\'PCG64DXSM\\', \\'SFC64\\', \\'default_rng\\',\\n \\'BitGenerator\\']\\n\\n\\ndef __RandomState_ctor():\\n \"\"\"Return a RandomState instance.\\n\\n This function exists solely to assist (un)pickling.\\n\\n Note that the state of the RandomState returned here is irrelevant, as this\\n function\\'s entire purpose is to return a newly allocated RandomState whose\\n state pickle can set. Consequently the RandomState returned by this function\\n is a freshly allocated copy with a seed=0.\\n\\n See https://github.com/numpy/numpy/issues/4763 for a detailed discussion\\n\\n \"\"\"\\n return RandomState(seed=0)\\n\\n\\nfrom numpy._pytesttester import PytestTester\\ntest = PytestTester(__name__)\\ndel PytestTester\\n'"
]
},
"metadata": {}
}
],
"id": "e2e6f3f7"
},
{
"cell_type": "markdown",
"source": "# Модуль inspect --- информация об объектах в runtime\n\n* Не вся информация может быть доступна через магические методы\n* Недоступную информацию можно получить через модуль inspect",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"id": "8c0cfc80"
},
{
"cell_type": "code",
"source": "import inspect\n\ndef add(a,b): return a + b\ninspect.isfunction(add)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 2,
"outputs": [
{
"execution_count": 2,
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {}
}
],
"id": "f49084f4"
},
{
"cell_type": "code",
"source": "inspect.getsource(add)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 12,
"outputs": [
{
"execution_count": 12,
"output_type": "execute_result",
"data": {
"text/plain": [
"'def add(a,b): return a + b\\n'"
]
},
"metadata": {}
}
],
"id": "7de58194"
},
{
"cell_type": "code",
"source": "from numpy import random\ninspect.getsource(random)",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 3,
"outputs": [
{
"execution_count": 3,
"output_type": "execute_result",
"data": {
"text/plain": [
"'\"\"\"\\n========================\\nRandom Number Generation\\n========================\\n\\nUse ``default_rng()`` to create a `Generator` and call its methods.\\n\\n=============== =========================================================\\nGenerator\\n--------------- ---------------------------------------------------------\\nGenerator Class implementing all of the random number distributions\\ndefault_rng Default constructor for ``Generator``\\n=============== =========================================================\\n\\n============================================= ===\\nBitGenerator Streams that work with Generator\\n--------------------------------------------- ---\\nMT19937\\nPCG64\\nPCG64DXSM\\nPhilox\\nSFC64\\n============================================= ===\\n\\n============================================= ===\\nGetting entropy to initialize a BitGenerator\\n--------------------------------------------- ---\\nSeedSequence\\n============================================= ===\\n\\n\\nLegacy\\n------\\n\\nFor backwards compatibility with previous versions of numpy before 1.17, the\\nvarious aliases to the global `RandomState` methods are left alone and do not\\nuse the new `Generator` API.\\n\\n==================== =========================================================\\nUtility functions\\n-------------------- ---------------------------------------------------------\\nrandom Uniformly distributed floats over ``[0, 1)``\\nbytes Uniformly distributed random bytes.\\npermutation Randomly permute a sequence / generate a random sequence.\\nshuffle Randomly permute a sequence in place.\\nchoice Random sample from 1-D array.\\n==================== =========================================================\\n\\n==================== =========================================================\\nCompatibility\\nfunctions - removed\\nin the new API\\n-------------------- ---------------------------------------------------------\\nrand Uniformly distributed values.\\nrandn Normally distributed values.\\nranf Uniformly distributed floating point numbers.\\nrandom_integers Uniformly distributed integers in a given range.\\n (deprecated, use ``integers(..., closed=True)`` instead)\\nrandom_sample Alias for `random_sample`\\nrandint Uniformly distributed integers in a given range\\nseed Seed the legacy random number generator.\\n==================== =========================================================\\n\\n==================== =========================================================\\nUnivariate\\ndistributions\\n-------------------- ---------------------------------------------------------\\nbeta Beta distribution over ``[0, 1]``.\\nbinomial Binomial distribution.\\nchisquare :math:`\\\\\\\\chi^2` distribution.\\nexponential Exponential distribution.\\nf F (Fisher-Snedecor) distribution.\\ngamma Gamma distribution.\\ngeometric Geometric distribution.\\ngumbel Gumbel distribution.\\nhypergeometric Hypergeometric distribution.\\nlaplace Laplace distribution.\\nlogistic Logistic distribution.\\nlognormal Log-normal distribution.\\nlogseries Logarithmic series distribution.\\nnegative_binomial Negative binomial distribution.\\nnoncentral_chisquare Non-central chi-square distribution.\\nnoncentral_f Non-central F distribution.\\nnormal Normal / Gaussian distribution.\\npareto Pareto distribution.\\npoisson Poisson distribution.\\npower Power distribution.\\nrayleigh Rayleigh distribution.\\ntriangular Triangular distribution.\\nuniform Uniform distribution.\\nvonmises Von Mises circular distribution.\\nwald Wald (inverse Gaussian) distribution.\\nweibull Weibull distribution.\\nzipf Zipf\\'s distribution over ranked data.\\n==================== =========================================================\\n\\n==================== ==========================================================\\nMultivariate\\ndistributions\\n-------------------- ----------------------------------------------------------\\ndirichlet Multivariate generalization of Beta distribution.\\nmultinomial Multivariate generalization of the binomial distribution.\\nmultivariate_normal Multivariate generalization of the normal distribution.\\n==================== ==========================================================\\n\\n==================== =========================================================\\nStandard\\ndistributions\\n-------------------- ---------------------------------------------------------\\nstandard_cauchy Standard Cauchy-Lorentz distribution.\\nstandard_exponential Standard exponential distribution.\\nstandard_gamma Standard Gamma distribution.\\nstandard_normal Standard normal distribution.\\nstandard_t Standard Student\\'s t-distribution.\\n==================== =========================================================\\n\\n==================== =========================================================\\nInternal functions\\n-------------------- ---------------------------------------------------------\\nget_state Get tuple representing internal state of generator.\\nset_state Set state of generator.\\n==================== =========================================================\\n\\n\\n\"\"\"\\n__all__ = [\\n \\'beta\\',\\n \\'binomial\\',\\n \\'bytes\\',\\n \\'chisquare\\',\\n \\'choice\\',\\n \\'dirichlet\\',\\n \\'exponential\\',\\n \\'f\\',\\n \\'gamma\\',\\n \\'geometric\\',\\n \\'get_state\\',\\n \\'gumbel\\',\\n \\'hypergeometric\\',\\n \\'laplace\\',\\n \\'logistic\\',\\n \\'lognormal\\',\\n \\'logseries\\',\\n \\'multinomial\\',\\n \\'multivariate_normal\\',\\n \\'negative_binomial\\',\\n \\'noncentral_chisquare\\',\\n \\'noncentral_f\\',\\n \\'normal\\',\\n \\'pareto\\',\\n \\'permutation\\',\\n \\'poisson\\',\\n \\'power\\',\\n \\'rand\\',\\n \\'randint\\',\\n \\'randn\\',\\n \\'random\\',\\n \\'random_integers\\',\\n \\'random_sample\\',\\n \\'ranf\\',\\n \\'rayleigh\\',\\n \\'sample\\',\\n \\'seed\\',\\n \\'set_state\\',\\n \\'shuffle\\',\\n \\'standard_cauchy\\',\\n \\'standard_exponential\\',\\n \\'standard_gamma\\',\\n \\'standard_normal\\',\\n \\'standard_t\\',\\n \\'triangular\\',\\n \\'uniform\\',\\n \\'vonmises\\',\\n \\'wald\\',\\n \\'weibull\\',\\n \\'zipf\\',\\n]\\n\\n# add these for module-freeze analysis (like PyInstaller)\\nfrom . import _pickle\\nfrom . import _common\\nfrom . import _bounded_integers\\n\\nfrom ._generator import Generator, default_rng\\nfrom .bit_generator import SeedSequence, BitGenerator\\nfrom ._mt19937 import MT19937\\nfrom ._pcg64 import PCG64, PCG64DXSM\\nfrom ._philox import Philox\\nfrom ._sfc64 import SFC64\\nfrom .mtrand import *\\n\\n__all__ += [\\'Generator\\', \\'RandomState\\', \\'SeedSequence\\', \\'MT19937\\',\\n \\'Philox\\', \\'PCG64\\', \\'PCG64DXSM\\', \\'SFC64\\', \\'default_rng\\',\\n \\'BitGenerator\\']\\n\\n\\ndef __RandomState_ctor():\\n \"\"\"Return a RandomState instance.\\n\\n This function exists solely to assist (un)pickling.\\n\\n Note that the state of the RandomState returned here is irrelevant, as this\\n function\\'s entire purpose is to return a newly allocated RandomState whose\\n state pickle can set. Consequently the RandomState returned by this function\\n is a freshly allocated copy with a seed=0.\\n\\n See https://github.com/numpy/numpy/issues/4763 for a detailed discussion\\n\\n \"\"\"\\n return RandomState(seed=0)\\n\\n\\nfrom numpy._pytesttester import PytestTester\\ntest = PytestTester(__name__)\\ndel PytestTester\\n'"
]
},
"metadata": {}
}
],
"id": "8fd68968"
},
{
"cell_type": "code",
"source": "",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": null,
"outputs": [],
"id": "3d84fffb"
}
]
}