forked from kscience/kmath
57 lines
1.2 KiB
C++
57 lines
1.2 KiB
C++
#include <torch/torch.h>
|
|
|
|
#include "ctorch.h"
|
|
|
|
namespace ctorch
|
|
{
|
|
template <typename Dtype>
|
|
inline c10::ScalarType dtype()
|
|
{
|
|
return torch::kFloat64;
|
|
}
|
|
|
|
template <>
|
|
inline c10::ScalarType dtype<float>()
|
|
{
|
|
return torch::kFloat32;
|
|
}
|
|
|
|
template <>
|
|
inline c10::ScalarType dtype<long>()
|
|
{
|
|
return torch::kInt64;
|
|
}
|
|
|
|
template <>
|
|
inline c10::ScalarType dtype<int>()
|
|
{
|
|
return torch::kInt32;
|
|
}
|
|
|
|
inline torch::Tensor &cast(TorchTensorHandle tensor_handle)
|
|
{
|
|
return *static_cast<torch::Tensor *>(tensor_handle);
|
|
}
|
|
|
|
template <typename Dtype>
|
|
inline torch::Tensor copy_from_blob(Dtype *data, int *shape, int dim)
|
|
{
|
|
auto shape_vec = std::vector<int64_t>(dim);
|
|
shape_vec.assign(shape, shape + dim);
|
|
return torch::from_blob(data, shape_vec, dtype<Dtype>()).clone();
|
|
}
|
|
|
|
template <typename IntArray>
|
|
inline int *to_dynamic_ints(IntArray arr)
|
|
{
|
|
size_t n = arr.size();
|
|
int *res = (int *)malloc(sizeof(int) * n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
res[i] = arr[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
} // namespace ctorch
|