Module kmath-ast
Performance and visualization extensions to MST API.
- expression-language : Expression language and its parser
- mst-jvm-codegen : Dynamic MST to JVM bytecode compiler
- mst-js-codegen : Dynamic MST to JS compiler
- rendering : Extendable MST rendering
Artifact:
The Maven coordinates of this project are space.kscience:kmath-ast:0.3.0-dev-13
.
Gradle:
repositories {
maven { url 'https://repo.kotlin.link' }
mavenCentral()
}
dependencies {
implementation 'space.kscience:kmath-ast:0.3.0-dev-13'
}
Gradle Kotlin DSL:
repositories {
maven("https://repo.kotlin.link")
mavenCentral()
}
dependencies {
implementation("space.kscience:kmath-ast:0.3.0-dev-13")
}
Dynamic expression code generation
On JVM
kmath-ast
JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds a
special implementation of Expression<T>
with implemented invoke
function.
For example, the following builder:
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.asm.*
MstField { x + 2 }.compileToExpression(DoubleField)
... leads to generation of bytecode, which can be decompiled to the following Java class:
package space.kscience.kmath.asm.generated;
import java.util.Map;
import kotlin.jvm.functions.Function2;
import space.kscience.kmath.asm.internal.MapIntrinsics;
import space.kscience.kmath.expressions.Expression;
import space.kscience.kmath.expressions.Symbol;
public final class AsmCompiledExpression_45045_0 implements Expression<Double> {
private final Object[] constants;
public final Double invoke(Map<Symbol, ? extends Double> arguments) {
return (Double) ((Function2) this.constants[0]).invoke((Double) MapIntrinsics.getOrFail(arguments, "x"), 2);
}
public AsmCompiledExpression_45045_0(Object[] constants) {
this.constants = constants;
}
}
Known issues
- The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid class loading overhead.
- This API is not supported by non-dynamic JVM implementations (like TeaVM and GraalVM) because of using class loaders.
On JS
A similar feature is also available on JS.
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.estree.*
MstField { x + 2 }.compileToExpression(DoubleField)
The code above returns expression implemented with such a JS function:
var executable = function (constants, arguments) {
return constants[1](constants[0](arguments, "x"), 2);
};
JS also supports very experimental expression optimization with WebAssembly IR generation.
Currently, only expressions inside DoubleField
and IntRing
are supported.
import space.kscience.kmath.expressions.Symbol.Companion.x
import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.wasm.*
MstField { x + 2 }.compileToExpression(DoubleField)
An example of emitted Wasm IR in the form of WAT:
(func $executable (param $0 f64) (result f64)
(f64.add
(local.get $0)
(f64.const 2)
)
)
Known issues
- ESTree expression compilation uses
eval
which can be unavailable in several environments. - WebAssembly isn't supported by old versions of browsers (see https://webassembly.org/roadmap/).
Rendering expressions
kmath-ast also includes an extensible engine to display expressions in LaTeX or MathML syntax.
Example usage:
import space.kscience.kmath.ast.*
import space.kscience.kmath.ast.rendering.*
import space.kscience.kmath.misc.*
@OptIn(UnstableKMathAPI::class)
public fun main() {
val mst = "exp(sqrt(x))-asin(2*x)/(2e10+x^3)/(12)+x^(2/3)".parseMath()
val syntax = FeaturedMathRendererWithPostProcess.Default.render(mst)
val latex = LatexSyntaxRenderer.renderWithStringBuilder(syntax)
println("LaTeX:")
println(latex)
println()
val mathML = MathMLSyntaxRenderer.renderWithStringBuilder(syntax)
println("MathML:")
println(mathML)
}
Result LaTeX:
Result MathML (can be used with MathJax or other renderers):
<math xmlns="https://www.w3.org/1998/Math/MathML">
<mrow>
<mo>exp</mo>
<mspace width="0.167em"></mspace>
<mfenced open="(" close=")" separators="">
<msqrt>
<mi>x</mi>
</msqrt>
</mfenced>
<mo>-</mo>
<mfrac>
<mrow>
<mfrac>
<mrow>
<mo>arcsin</mo>
<mspace width="0.167em"></mspace>
<mfenced open="(" close=")" separators="">
<mn>2</mn>
<mspace width="0.167em"></mspace>
<mi>x</mi>
</mfenced>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mi>x</mi>
</mrow>
<mrow>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>+</mo>
<msup>
<mrow>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<mo>/</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math>
It is also possible to create custom algorithms of render, and even add support of other markup languages (see API reference).