kmath/kmath-ast
2021-05-21 20:08:17 +07:00
..
docs MST rendering: support infix division, use arcsin instead sin^-1 form for inverse trigonometric functions 2021-05-04 17:22:09 +07:00
reference Update num token in reference 2020-07-27 15:58:09 +07:00
src Fix unresolved reference in generated type parameter 2021-05-21 20:08:17 +07:00
build.gradle.kts Promote kmath-ast as experimental, mark AST Rendering and WASM with @UnstableKMathAPI 2021-04-28 10:27:08 +07:00
README.md Add out variance to StructureND and some related types, make some unrelated changes 2021-05-20 19:57:55 +07:00

Module kmath-ast

Performance and visualization extensions to MST API.

Artifact:

The Maven coordinates of this project are space.kscience:kmath-ast:0.3.0-dev-11.

Gradle:

repositories {
    maven { url 'https://repo.kotlin.link' }
    mavenCentral()
}

dependencies {
    implementation 'space.kscience:kmath-ast:0.3.0-dev-11'
}

Gradle Kotlin DSL:

repositories {
    maven("https://repo.kotlin.link")
    mavenCentral()
}

dependencies {
    implementation("space.kscience:kmath-ast:0.3.0-dev-11")
}

Dynamic expression code generation

On JVM

kmath-ast JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds a special implementation of Expression<T> with implemented invoke function.

For example, the following builder:

import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.asm.*

MstField { bindSymbol("x") + 2 }.compileToExpression(DoubleField)

... leads to generation of bytecode, which can be decompiled to the following Java class:

package space.kscience.kmath.asm.generated;

import java.util.Map;

import kotlin.jvm.functions.Function2;
import space.kscience.kmath.asm.internal.MapIntrinsics;
import space.kscience.kmath.expressions.Expression;
import space.kscience.kmath.expressions.Symbol;

public final class AsmCompiledExpression_45045_0 implements Expression<Double> {
    private final Object[] constants;

    public final Double invoke(Map<Symbol, ? extends Double> arguments) {
        return (Double) ((Function2) this.constants[0]).invoke((Double) MapIntrinsics.getOrFail(arguments, "x"), 2);
    }

    public AsmCompiledExpression_45045_0(Object[] constants) {
        this.constants = constants;
    }
}

Known issues

  • The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid class loading overhead.
  • This API is not supported by non-dynamic JVM implementations (like TeaVM and GraalVM) because of using class loaders.

On JS

A similar feature is also available on JS.

import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.estree.*

MstField { bindSymbol("x") + 2 }.compileToExpression(DoubleField)

The code above returns expression implemented with such a JS function:

var executable = function (constants, arguments) {
    return constants[1](constants[0](arguments, "x"), 2);
};

JS also supports very experimental expression optimization with WebAssembly IR generation. Currently, only expressions inside DoubleField and IntRing are supported.

import space.kscience.kmath.expressions.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.wasm.*

MstField { bindSymbol("x") + 2 }.compileToExpression(DoubleField)

An example of emitted Wasm IR in the form of WAT:

(func $executable (param $0 f64) (result f64)
  (f64.add
    (local.get $0)
    (f64.const 2)
  )
)

Known issues

  • ESTree expression compilation uses eval which can be unavailable in several environments.
  • WebAssembly isn't supported by old versions of browsers (see https://webassembly.org/roadmap/).

Rendering expressions

kmath-ast also includes an extensible engine to display expressions in LaTeX or MathML syntax.

Example usage:

import space.kscience.kmath.ast.*
import space.kscience.kmath.ast.rendering.*
import space.kscience.kmath.misc.*

@OptIn(UnstableKMathAPI::class)
public fun main() {
    val mst = "exp(sqrt(x))-asin(2*x)/(2e10+x^3)/(12)+x^(2/3)".parseMath()
    val syntax = FeaturedMathRendererWithPostProcess.Default.render(mst)
    val latex = LatexSyntaxRenderer.renderWithStringBuilder(syntax)
    println("LaTeX:")
    println(latex)
    println()
    val mathML = MathMLSyntaxRenderer.renderWithStringBuilder(syntax)
    println("MathML:")
    println(mathML)
}

Result LaTeX:

Result MathML (can be used with MathJax or other renderers):

<math xmlns="https://www.w3.org/1998/Math/MathML">
    <mrow>
        <mo>exp</mo>
        <mspace width="0.167em"></mspace>
        <mfenced open="(" close=")" separators="">
            <msqrt>
                <mi>x</mi>
            </msqrt>
        </mfenced>
        <mo>-</mo>
        <mfrac>
            <mrow>
                <mfrac>
                    <mrow>
                        <mo>arcsin</mo>
                        <mspace width="0.167em"></mspace>
                        <mfenced open="(" close=")" separators="">
                            <mn>2</mn>
                            <mspace width="0.167em"></mspace>
                            <mi>x</mi>
                        </mfenced>
                    </mrow>
                    <mrow>
                        <mn>2</mn>
                        <mo>&times;</mo>
                        <msup>
                            <mrow>
                                <mn>10</mn>
                            </mrow>
                            <mrow>
                                <mn>10</mn>
                            </mrow>
                        </msup>
                        <mo>+</mo>
                        <msup>
                            <mrow>
                                <mi>x</mi>
                            </mrow>
                            <mrow>
                                <mn>3</mn>
                            </mrow>
                        </msup>
                    </mrow>
                </mfrac>
            </mrow>
            <mrow>
                <mn>12</mn>
            </mrow>
        </mfrac>
        <mo>+</mo>
        <msup>
            <mrow>
                <mi>x</mi>
            </mrow>
            <mrow>
                <mn>2</mn>
                <mo>/</mo>
                <mn>3</mn>
            </mrow>
        </msup>
    </mrow>
</math>

It is also possible to create custom algorithms of render, and even add support of other markup languages (see API reference).