forked from kscience/kmath
Compare commits
2 Commits
dev
...
commandert
Author | SHA1 | Date | |
---|---|---|---|
|
4fdd534e5b | ||
|
57dabba0a3 |
3
.github/CODEOWNERS
vendored
3
.github/CODEOWNERS
vendored
@ -1,3 +0,0 @@
|
|||||||
@altavir
|
|
||||||
|
|
||||||
/kmath-trajectory @ESchouten
|
|
24
.github/workflows/build.yml
vendored
24
.github/workflows/build.yml
vendored
@ -1,24 +0,0 @@
|
|||||||
name: Gradle build
|
|
||||||
|
|
||||||
on:
|
|
||||||
push:
|
|
||||||
branches: [ dev, master ]
|
|
||||||
pull_request:
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build:
|
|
||||||
runs-on: windows-latest
|
|
||||||
timeout-minutes: 20
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v3
|
|
||||||
- uses: actions/setup-java@v3.5.1
|
|
||||||
with:
|
|
||||||
java-version: '11'
|
|
||||||
distribution: 'liberica'
|
|
||||||
cache: 'gradle'
|
|
||||||
- name: Gradle Wrapper Validation
|
|
||||||
uses: gradle/wrapper-validation-action@v1.0.4
|
|
||||||
- name: Gradle Build
|
|
||||||
uses: gradle/gradle-build-action@v2.4.2
|
|
||||||
with:
|
|
||||||
arguments: test jvmTest
|
|
31
.github/workflows/pages.yml
vendored
31
.github/workflows/pages.yml
vendored
@ -1,31 +0,0 @@
|
|||||||
name: Dokka publication
|
|
||||||
|
|
||||||
on:
|
|
||||||
workflow_dispatch:
|
|
||||||
release:
|
|
||||||
types: [ created ]
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build:
|
|
||||||
runs-on: ubuntu-20.04
|
|
||||||
timeout-minutes: 40
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v3.0.0
|
|
||||||
- uses: actions/setup-java@v3.0.0
|
|
||||||
with:
|
|
||||||
java-version: 11
|
|
||||||
distribution: liberica
|
|
||||||
- name: Cache konan
|
|
||||||
uses: actions/cache@v3.0.1
|
|
||||||
with:
|
|
||||||
path: ~/.konan
|
|
||||||
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
|
|
||||||
restore-keys: |
|
|
||||||
${{ runner.os }}-gradle-
|
|
||||||
- uses: gradle/gradle-build-action@v2.4.2
|
|
||||||
with:
|
|
||||||
arguments: dokkaHtmlMultiModule --no-parallel
|
|
||||||
- uses: JamesIves/github-pages-deploy-action@v4.3.0
|
|
||||||
with:
|
|
||||||
branch: gh-pages
|
|
||||||
folder: build/dokka/htmlMultiModule
|
|
50
.github/workflows/publish.yml
vendored
50
.github/workflows/publish.yml
vendored
@ -1,50 +0,0 @@
|
|||||||
name: Gradle publish
|
|
||||||
|
|
||||||
on:
|
|
||||||
workflow_dispatch:
|
|
||||||
release:
|
|
||||||
types: [ created ]
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
publish:
|
|
||||||
environment:
|
|
||||||
name: publish
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
os: [ macOS-latest, windows-latest ]
|
|
||||||
runs-on: ${{matrix.os}}
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v3.0.0
|
|
||||||
- uses: actions/setup-java@v3.10.0
|
|
||||||
with:
|
|
||||||
java-version: 11
|
|
||||||
distribution: liberica
|
|
||||||
- name: Cache konan
|
|
||||||
uses: actions/cache@v3.0.1
|
|
||||||
with:
|
|
||||||
path: ~/.konan
|
|
||||||
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
|
|
||||||
restore-keys: |
|
|
||||||
${{ runner.os }}-gradle-
|
|
||||||
- name: Publish Windows Artifacts
|
|
||||||
if: matrix.os == 'windows-latest'
|
|
||||||
uses: gradle/gradle-build-action@v2.4.2
|
|
||||||
with:
|
|
||||||
arguments: |
|
|
||||||
publishAllPublicationsToSpaceRepository
|
|
||||||
-Ppublishing.targets=all
|
|
||||||
-Ppublishing.space.user=${{ secrets.SPACE_APP_ID }}
|
|
||||||
-Ppublishing.space.token=${{ secrets.SPACE_APP_SECRET }}
|
|
||||||
- name: Publish Mac Artifacts
|
|
||||||
if: matrix.os == 'macOS-latest'
|
|
||||||
uses: gradle/gradle-build-action@v2.4.2
|
|
||||||
with:
|
|
||||||
arguments: |
|
|
||||||
publishMacosX64PublicationToSpaceRepository
|
|
||||||
publishMacosArm64PublicationToSpaceRepository
|
|
||||||
publishIosX64PublicationToSpaceRepository
|
|
||||||
publishIosArm64PublicationToSpaceRepository
|
|
||||||
publishIosSimulatorArm64PublicationToSpaceRepository
|
|
||||||
-Ppublishing.targets=all
|
|
||||||
-Ppublishing.space.user=${{ secrets.SPACE_APP_ID }}
|
|
||||||
-Ppublishing.space.token=${{ secrets.SPACE_APP_SECRET }}
|
|
8
.gitignore
vendored
8
.gitignore
vendored
@ -3,11 +3,10 @@ build/
|
|||||||
out/
|
out/
|
||||||
|
|
||||||
.idea/
|
.idea/
|
||||||
.vscode/
|
|
||||||
.fleet/
|
|
||||||
.kotlin/
|
|
||||||
|
|
||||||
|
|
||||||
|
.vscode/
|
||||||
|
|
||||||
# Avoid ignoring Gradle wrapper jar file (.jar files are usually ignored)
|
# Avoid ignoring Gradle wrapper jar file (.jar files are usually ignored)
|
||||||
!gradle-wrapper.jar
|
!gradle-wrapper.jar
|
||||||
|
|
||||||
@ -20,5 +19,4 @@ out/
|
|||||||
|
|
||||||
!/.idea/copyright/
|
!/.idea/copyright/
|
||||||
!/.idea/scopes/
|
!/.idea/scopes/
|
||||||
/gradle/yarn.lock
|
/kotlin-js-store/yarn.lock
|
||||||
|
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
<component name="CopyrightManager">
|
<component name="CopyrightManager">
|
||||||
<copyright>
|
<copyright>
|
||||||
<option name="allowReplaceRegexp" value="Copyright \d{4}-\d{4} KMath" />
|
<option name="notice" value="Copyright 2018-2021 KMath contributors. Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file." />
|
||||||
<option name="notice" value="Copyright 2018-&#36;today.year KMath contributors. Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file." />
|
<option name="myName" value="kmath" />
|
||||||
<option name="myName" value="kmath" />
|
</copyright>
|
||||||
</copyright>
|
</component>
|
||||||
</component>
|
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
<component name="CopyrightManager">
|
<component name="CopyrightManager">
|
||||||
<settings>
|
<settings default="kmath">
|
||||||
<module2copyright>
|
<module2copyright>
|
||||||
<element module="Apply copyright" copyright="kmath" />
|
<element module="Apply copyright" copyright="kmath" />
|
||||||
</module2copyright>
|
</module2copyright>
|
||||||
|
48
.space.kts
48
.space.kts
@ -1,48 +0,0 @@
|
|||||||
import kotlin.io.path.readText
|
|
||||||
|
|
||||||
val projectName = "kmath"
|
|
||||||
|
|
||||||
job("Build") {
|
|
||||||
//Perform only jvm tests
|
|
||||||
gradlew("spc.registry.jetbrains.space/p/sci/containers/kotlin-ci:1.0.3", "test", "jvmTest")
|
|
||||||
}
|
|
||||||
|
|
||||||
job("Publish") {
|
|
||||||
startOn {
|
|
||||||
gitPush { enabled = false }
|
|
||||||
}
|
|
||||||
container("spc.registry.jetbrains.space/p/sci/containers/kotlin-ci:1.0.3") {
|
|
||||||
env["SPACE_USER"] = "{{ project:space_user }}"
|
|
||||||
env["SPACE_TOKEN"] = "{{ project:space_token }}"
|
|
||||||
kotlinScript { api ->
|
|
||||||
|
|
||||||
val spaceUser = System.getenv("SPACE_USER")
|
|
||||||
val spaceToken = System.getenv("SPACE_TOKEN")
|
|
||||||
|
|
||||||
// write the version to the build directory
|
|
||||||
api.gradlew("version")
|
|
||||||
|
|
||||||
//read the version from build file
|
|
||||||
val version = java.nio.file.Path.of("build/project-version.txt").readText()
|
|
||||||
|
|
||||||
val revisionSuffix = if (version.endsWith("SNAPSHOT")) {
|
|
||||||
"-" + api.gitRevision().take(7)
|
|
||||||
} else {
|
|
||||||
""
|
|
||||||
}
|
|
||||||
|
|
||||||
api.space().projects.automation.deployments.start(
|
|
||||||
project = api.projectIdentifier(),
|
|
||||||
targetIdentifier = TargetIdentifier.Key(projectName),
|
|
||||||
version = version + revisionSuffix,
|
|
||||||
// automatically update deployment status based on the status of a job
|
|
||||||
syncWithAutomationJob = true
|
|
||||||
)
|
|
||||||
api.gradlew(
|
|
||||||
"publishAllPublicationsToSpaceRepository",
|
|
||||||
"-Ppublishing.space.user=\"$spaceUser\"",
|
|
||||||
"-Ppublishing.space.token=\"$spaceToken\"",
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
271
CHANGELOG.md
271
CHANGELOG.md
@ -1,271 +0,0 @@
|
|||||||
# KMath
|
|
||||||
|
|
||||||
## Unreleased
|
|
||||||
|
|
||||||
### Added
|
|
||||||
|
|
||||||
### Changed
|
|
||||||
|
|
||||||
### Deprecated
|
|
||||||
|
|
||||||
### Removed
|
|
||||||
|
|
||||||
### Fixed
|
|
||||||
|
|
||||||
### Security
|
|
||||||
|
|
||||||
## 0.4.0-dev-3 - 2024-02-18
|
|
||||||
|
|
||||||
### Added
|
|
||||||
|
|
||||||
- Reification. Explicit `SafeType` for algebras.
|
|
||||||
- Integer division algebras.
|
|
||||||
- Float32 geometries.
|
|
||||||
- New Attributes-kt module that could be used as stand-alone. It declares. type-safe attributes containers.
|
|
||||||
- Explicit `mutableStructureND` builders for mutable structures.
|
|
||||||
- `Buffer.asList()` zero-copy transformation.
|
|
||||||
- Wasm support.
|
|
||||||
- Parallel implementation of `LinearSpace` for Float64
|
|
||||||
- Parallel buffer factories
|
|
||||||
|
|
||||||
### Changed
|
|
||||||
|
|
||||||
- Buffer copy removed from API (added as an extension).
|
|
||||||
- Default naming for algebra and buffers now uses IntXX/FloatXX notation instead of Java types.
|
|
||||||
- Remove unnecessary inlines in basic algebras.
|
|
||||||
- QuaternionField -> QuaternionAlgebra and does not implement `Field` anymore since it is non-commutative
|
|
||||||
- kmath-geometry is split into `euclidean2d` and `euclidean3d`
|
|
||||||
- Features replaced with Attributes.
|
|
||||||
- Transposed refactored.
|
|
||||||
- Kmath-memory is moved on top of core.
|
|
||||||
|
|
||||||
### Deprecated
|
|
||||||
|
|
||||||
- ND4J engine
|
|
||||||
|
|
||||||
### Removed
|
|
||||||
|
|
||||||
- `asPolynomial` function due to scope pollution
|
|
||||||
- Codegend for ejml (450 lines of codegen for 1000 lines of code is too much)
|
|
||||||
|
|
||||||
### Fixed
|
|
||||||
|
|
||||||
- Median statistics
|
|
||||||
- Complex power of negative real numbers
|
|
||||||
- Add proper mutability for MutableBufferND rows and columns
|
|
||||||
- Generic Float32 and Float64 vectors are used in geometry algebras.
|
|
||||||
|
|
||||||
## 0.3.1 - 2023-04-09
|
|
||||||
|
|
||||||
### Added
|
|
||||||
|
|
||||||
- Wasm support for `memory`, `core`, `complex` and `functions` modules.
|
|
||||||
- Generic builders for `BufferND` and `MutableBufferND`
|
|
||||||
- `NamedMatrix` - matrix with symbol-based indexing
|
|
||||||
- `Expression` with default arguments
|
|
||||||
- Type-aliases for numbers like `Float64`
|
|
||||||
- Autodiff for generic algebra elements in core!
|
|
||||||
- Algebra now has an obligatory `bufferFactory` (#477).
|
|
||||||
|
|
||||||
### Changed
|
|
||||||
|
|
||||||
- Removed marker `Vector` type for geometry
|
|
||||||
- Geometry uses type-safe angles
|
|
||||||
- Tensor operations switched to prefix notation
|
|
||||||
- Row-wise and column-wise ND shapes in the core
|
|
||||||
- Shape is read-only
|
|
||||||
- Major refactor of tensors (only minor API changes)
|
|
||||||
- Kotlin 1.8.20
|
|
||||||
- `LazyStructure` `deffered` -> `async` to comply with coroutines code style
|
|
||||||
- Default `dot` operation in tensor algebra no longer support broadcasting. Instead `matmul` operation is added
|
|
||||||
to `DoubleTensorAlgebra`.
|
|
||||||
- Multik went MPP
|
|
||||||
|
|
||||||
### Removed
|
|
||||||
|
|
||||||
- Trajectory moved to https://github.com/SciProgCentre/maps-kt
|
|
||||||
- Polynomials moved to https://github.com/SciProgCentre/kmath-polynomial
|
|
||||||
|
|
||||||
## 0.3.0
|
|
||||||
|
|
||||||
### Added
|
|
||||||
|
|
||||||
- `ScaleOperations` interface
|
|
||||||
- `Field` extends `ScaleOperations`
|
|
||||||
- Basic integration API
|
|
||||||
- Basic MPP distributions and samplers
|
|
||||||
- `bindSymbolOrNull`
|
|
||||||
- Blocking chains and Statistics
|
|
||||||
- Multiplatform integration
|
|
||||||
- Integration for any Field element
|
|
||||||
- Extended operations for ND4J fields
|
|
||||||
- Jupyter Notebook integration module (kmath-jupyter)
|
|
||||||
- `@PerformancePitfall` annotation to mark possibly slow API
|
|
||||||
- Unified architecture for Integration and Optimization using features.
|
|
||||||
- `BigInt` operation performance improvement and fixes by @zhelenskiy (#328)
|
|
||||||
- Integration between `MST` and Symja `IExpr`
|
|
||||||
- Complex power
|
|
||||||
- Separate methods for UInt, Int and Number powers. NaN safety.
|
|
||||||
- Tensorflow prototype
|
|
||||||
- `ValueAndErrorField`
|
|
||||||
- MST compilation to WASM: #286
|
|
||||||
- Jafama integration: #176
|
|
||||||
- `contentEquals` with tolerance: #364
|
|
||||||
- Compilation to TeX for MST: #254
|
|
||||||
|
|
||||||
### Changed
|
|
||||||
|
|
||||||
- Annotations moved to `space.kscience.kmath`
|
|
||||||
- Exponential operations merged with hyperbolic functions
|
|
||||||
- Space is replaced by Group. Space is reserved for vector spaces.
|
|
||||||
- VectorSpace is now a vector space
|
|
||||||
- Buffer factories for primitives moved to MutableBuffer.Companion
|
|
||||||
- Rename `NDStructure` and `NDAlgebra` to `StructureND` and `AlgebraND` respectively
|
|
||||||
- `Real` -> `Double`
|
|
||||||
- DataSets are moved from functions to core
|
|
||||||
- Redesign advanced Chain API
|
|
||||||
- Redesign `MST`. Remove `MstExpression`.
|
|
||||||
- Move `MST` to core
|
|
||||||
- Separated benchmarks and examples
|
|
||||||
- Rewrite `kmath-ejml` without `ejml-simple` artifact, support sparse matrices
|
|
||||||
- Promote stability of kmath-ast and kmath-kotlingrad to EXPERIMENTAL.
|
|
||||||
- ColumnarData returns nullable column
|
|
||||||
- `MST` is made sealed interface
|
|
||||||
- Replace `MST.Symbolic` by `Symbol`, `Symbol` now implements MST
|
|
||||||
- Remove Any restriction on polynomials
|
|
||||||
- Add `out` variance to type parameters of `StructureND` and its implementations where possible
|
|
||||||
- Rename `DifferentiableMstExpression` to `KotlingradExpression`
|
|
||||||
- `FeatureSet` now accepts only `Feature`. It is possible to override keys and use interfaces.
|
|
||||||
- Use `Symbol` factory function instead of `StringSymbol`
|
|
||||||
- New discoverability pattern: `<Type>.algebra.<nd/etc>`
|
|
||||||
- Adjusted commons-math API for linear solvers to match conventions.
|
|
||||||
- Buffer algebra does not require size anymore
|
|
||||||
- Operations -> Ops
|
|
||||||
- Default Buffer and ND algebras are now Ops and lack neutral elements (0, 1) as well as algebra-level shapes.
|
|
||||||
- Tensor algebra takes read-only structures as input and inherits AlgebraND
|
|
||||||
- `UnivariateDistribution` renamed to `Distribution1D`
|
|
||||||
- Rework of histograms.
|
|
||||||
- `UnivariateFunction` -> `Function1D`, `MultivariateFunction` -> `FunctionND`
|
|
||||||
|
|
||||||
### Deprecated
|
|
||||||
|
|
||||||
- Specialized `DoubleBufferAlgebra`
|
|
||||||
|
|
||||||
### Removed
|
|
||||||
|
|
||||||
- Nearest in Domain. To be implemented in geometry package.
|
|
||||||
- Number multiplication and division in main Algebra chain
|
|
||||||
- `contentEquals` from Buffer. It moved to the companion.
|
|
||||||
- MSTExpression
|
|
||||||
- Expression algebra builders
|
|
||||||
- Complex and Quaternion no longer are elements.
|
|
||||||
- Second generic from DifferentiableExpression
|
|
||||||
- Algebra elements are completely removed. Use algebra contexts instead.
|
|
||||||
|
|
||||||
### Fixed
|
|
||||||
|
|
||||||
- Ring inherits RingOperations, not GroupOperations
|
|
||||||
- Univariate histogram filling
|
|
||||||
|
|
||||||
## 0.2.0
|
|
||||||
|
|
||||||
### Added
|
|
||||||
|
|
||||||
- `fun` annotation for SAM interfaces in library
|
|
||||||
- Explicit `public` visibility for all public APIs
|
|
||||||
- Better trigonometric and hyperbolic functions for `AutoDiffField` (https://github.com/mipt-npm/kmath/pull/140)
|
|
||||||
- Automatic README generation for features (#139)
|
|
||||||
- Native support for `memory`, `core` and `dimensions`
|
|
||||||
- `kmath-ejml` to supply EJML SimpleMatrix wrapper (https://github.com/mipt-npm/kmath/pull/136)
|
|
||||||
- A separate `Symbol` entity, which is used for global unbound symbol.
|
|
||||||
- A `Symbol` indexing scope.
|
|
||||||
- Basic optimization API for Commons-math.
|
|
||||||
- Chi squared optimization for array-like data in CM
|
|
||||||
- `Fitting` utility object in prob/stat
|
|
||||||
- ND4J support module submitting `NDStructure` and `NDAlgebra` over `INDArray`
|
|
||||||
- Coroutine-deterministic Monte-Carlo scope with a random number generator
|
|
||||||
- Some minor utilities to `kmath-for-real`
|
|
||||||
- Generic operation result parameter to `MatrixContext`
|
|
||||||
- New `MatrixFeature` interfaces for matrix decompositions
|
|
||||||
- Basic Quaternion vector support in `kmath-complex`.
|
|
||||||
|
|
||||||
### Changed
|
|
||||||
|
|
||||||
- Package changed from `scientifik` to `space.kscience`
|
|
||||||
- Gradle version: 6.6 -> 6.8.2
|
|
||||||
- Minor exceptions refactor (throwing `IllegalArgumentException` by argument checks instead of `IllegalStateException`)
|
|
||||||
- `Polynomial` secondary constructor made function
|
|
||||||
- Kotlin version: 1.3.72 -> 1.4.30
|
|
||||||
- `kmath-ast` doesn't depend on heavy `kotlin-reflect` library
|
|
||||||
- Full autodiff refactoring based on `Symbol`
|
|
||||||
- `kmath-prob` renamed to `kmath-stat`
|
|
||||||
- Grid generators moved to `kmath-for-real`
|
|
||||||
- Use `Point<Double>` instead of specialized type in `kmath-for-real`
|
|
||||||
- Optimized dot product for buffer matrices moved to `kmath-for-real`
|
|
||||||
- EjmlMatrix context is an object
|
|
||||||
- Matrix LUP `inverse` renamed to `inverseWithLup`
|
|
||||||
- `NumericAlgebra` moved outside of regular algebra chain (`Ring` no longer implements it).
|
|
||||||
- Features moved to NDStructure and became transparent.
|
|
||||||
- Capitalization of LUP in many names changed to Lup.
|
|
||||||
- Refactored `NDStructure` algebra to be more simple, preferring under-the-hood conversion to explicit NDStructure types
|
|
||||||
- Refactor histograms. They are marked as prototype
|
|
||||||
- `Complex` and related features moved to a separate module `kmath-complex`
|
|
||||||
- Refactor AlgebraElement
|
|
||||||
- `symbol` method in `Algebra` renamed to `bindSymbol` to avoid ambiguity
|
|
||||||
- Add `out` projection to `Buffer` generic
|
|
||||||
|
|
||||||
### Removed
|
|
||||||
|
|
||||||
- `kmath-koma` module because it doesn't support Kotlin 1.4.
|
|
||||||
- Support of `legacy` JS backend (we will support only IR)
|
|
||||||
- `toGrid` method.
|
|
||||||
- Public visibility of `BufferAccessor2D`
|
|
||||||
- `Real` class
|
|
||||||
- StructureND identity and equals
|
|
||||||
|
|
||||||
### Fixed
|
|
||||||
|
|
||||||
- `symbol` method in `MstExtendedField` (https://github.com/mipt-npm/kmath/pull/140)
|
|
||||||
|
|
||||||
## 0.1.4
|
|
||||||
|
|
||||||
### Added
|
|
||||||
|
|
||||||
- Functional Expressions API
|
|
||||||
- Mathematical Syntax Tree, its interpreter and API
|
|
||||||
- String to MST parser (https://github.com/mipt-npm/kmath/pull/120)
|
|
||||||
- MST to JVM bytecode translator (https://github.com/mipt-npm/kmath/pull/94)
|
|
||||||
- FloatBuffer (specialized MutableBuffer over FloatArray)
|
|
||||||
- FlaggedBuffer to associate primitive numbers buffer with flags (to mark values infinite or missing, etc.)
|
|
||||||
- Specialized builder functions for all primitive buffers
|
|
||||||
like `IntBuffer(25) { it + 1 }` (https://github.com/mipt-npm/kmath/pull/125)
|
|
||||||
- Interface `NumericAlgebra` where `number` operation is available to convert numbers to algebraic elements
|
|
||||||
- Inverse trigonometric functions support in
|
|
||||||
ExtendedField (`asin`, `acos`, `atan`) (https://github.com/mipt-npm/kmath/pull/114)
|
|
||||||
- New space extensions: `average` and `averageWith`
|
|
||||||
- Local coding conventions
|
|
||||||
- Geometric Domains API in `kmath-core`
|
|
||||||
- Blocking chains in `kmath-coroutines`
|
|
||||||
- Full hyperbolic functions support and default implementations within `ExtendedField`
|
|
||||||
- Norm support for `Complex`
|
|
||||||
|
|
||||||
### Changed
|
|
||||||
|
|
||||||
- `readAsMemory` now has `throws IOException` in JVM signature.
|
|
||||||
- Several functions taking functional types were made `inline`.
|
|
||||||
- Several functions taking functional types now have `callsInPlace` contracts.
|
|
||||||
- BigInteger and BigDecimal algebra: JBigDecimalField has companion object with default math context; minor
|
|
||||||
optimizations
|
|
||||||
- `power(T, Int)` extension function has preconditions and supports `Field<T>`
|
|
||||||
- Memory objects have more preconditions (overflow checking)
|
|
||||||
- `tg` function is renamed to `tan` (https://github.com/mipt-npm/kmath/pull/114)
|
|
||||||
- Gradle version: 6.3 -> 6.6
|
|
||||||
- Moved probability distributions to commons-rng and to `kmath-prob`
|
|
||||||
|
|
||||||
### Fixed
|
|
||||||
|
|
||||||
- Missing copy method in Memory implementation on JS (https://github.com/mipt-npm/kmath/pull/106)
|
|
||||||
- D3.dim value in `kmath-dimensions`
|
|
||||||
- Multiplication in integer rings in `kmath-core` (https://github.com/mipt-npm/kmath/pull/101)
|
|
||||||
- Commons RNG compatibility (https://github.com/mipt-npm/kmath/issues/93)
|
|
||||||
- Multiplication of BigInt by scalar
|
|
300
README.md
300
README.md
@ -1,300 +0,0 @@
|
|||||||
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
|
|
||||||
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
|
|
||||||
![Gradle build](https://github.com/SciProgCentre/kmath/workflows/Gradle%20build/badge.svg)
|
|
||||||
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22)
|
|
||||||
[![Space](https://img.shields.io/badge/dynamic/xml?color=orange&label=Space&query=//metadata/versioning/latest&url=https%3A%2F%2Fmaven.pkg.jetbrains.space%2Fmipt-npm%2Fp%2Fsci%2Fmaven%2Fspace%2Fkscience%2Fkmath-core%2Fmaven-metadata.xml)](https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven/space/kscience/)
|
|
||||||
|
|
||||||
# KMath
|
|
||||||
|
|
||||||
Could be pronounced as `key-math`. The **K**otlin **Math**ematics library was initially intended as a Kotlin-based
|
|
||||||
analog to Python's NumPy library. Later we found that kotlin is much more flexible language and allows superior
|
|
||||||
architecture designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like
|
|
||||||
experience could be achieved with [kmath-for-real](/kmath-for-real) extension module.
|
|
||||||
|
|
||||||
[Documentation site](https://SciProgCentre.github.io/kmath/)
|
|
||||||
|
|
||||||
## Publications and talks
|
|
||||||
|
|
||||||
* [A conceptual article about context-oriented design](https://proandroiddev.com/an-introduction-context-oriented-programming-in-kotlin-2e79d316b0a2)
|
|
||||||
* [Another article about context-oriented design](https://proandroiddev.com/diving-deeper-into-context-oriented-programming-in-kotlin-3ecb4ec38814)
|
|
||||||
* [ACAT 2019 conference paper](https://aip.scitation.org/doi/abs/10.1063/1.5130103)
|
|
||||||
* [A talk at KotlinConf 2019 about using kotlin for science](https://youtu.be/LI_5TZ7tnOE?si=4LknX41gl_YeUbIe)
|
|
||||||
* [A talk on architecture at Joker-2021 (in Russian)](https://youtu.be/1bZ2doHiRRM?si=9w953ro9yu98X_KJ)
|
|
||||||
* [The same talk in English](https://youtu.be/yP5DIc2fVwQ?si=louZzQ1dcXV6gP10)
|
|
||||||
* [A seminar on tensor API](https://youtu.be/0H99wUs0xTM?si=6c__04jrByFQtVpo)
|
|
||||||
|
|
||||||
# Goal
|
|
||||||
|
|
||||||
* Provide a flexible and powerful API to work with mathematics abstractions in Kotlin-multiplatform (JVM, JS, Native and
|
|
||||||
Wasm).
|
|
||||||
* Provide basic multiplatform implementations for those abstractions (without significant performance optimization).
|
|
||||||
* Provide bindings and wrappers with those abstractions for popular optimized platform libraries.
|
|
||||||
|
|
||||||
## Non-goals
|
|
||||||
|
|
||||||
* Be like NumPy. It was the idea at the beginning, but we decided that we can do better in API.
|
|
||||||
* Provide the best performance out of the box. We have specialized libraries for that. Need only API wrappers for them.
|
|
||||||
* Cover all cases as immediately and in one bundle. We will modularize everything and add new features gradually.
|
|
||||||
* Provide specialized behavior in the core. API is made generic on purpose, so one needs to specialize for types, like
|
|
||||||
for `Double` in the core. For that we will have specialization modules like `kmath-for-real`, which will give better
|
|
||||||
experience for those, who want to work with specific types.
|
|
||||||
|
|
||||||
## Features and stability
|
|
||||||
|
|
||||||
KMath is a modular library. Different modules provide different features with different API stability guarantees. All
|
|
||||||
core modules are released with the same version, but with different API change policy. The features are described in
|
|
||||||
module definitions below. The module stability could have the following levels:
|
|
||||||
|
|
||||||
* **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could
|
|
||||||
break any moment. You can still use it, but be sure to fix the specific version.
|
|
||||||
* **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked
|
|
||||||
with `@UnstableKMathAPI` or other stability warning annotations.
|
|
||||||
* **DEVELOPMENT**. API breaking generally follows semantic versioning ideology. There could be changes in minor
|
|
||||||
versions, but not in patch versions. API is protected
|
|
||||||
with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
|
|
||||||
* **STABLE**. The API stabilized. Breaking changes are allowed only in major releases.
|
|
||||||
|
|
||||||
## Modules
|
|
||||||
|
|
||||||
|
|
||||||
### [attributes-kt](attributes-kt)
|
|
||||||
> An API and basic implementation for arranging objects in a continuous memory block.
|
|
||||||
>
|
|
||||||
> **Maturity**: DEVELOPMENT
|
|
||||||
|
|
||||||
### [benchmarks](benchmarks)
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
|
|
||||||
### [examples](examples)
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
|
|
||||||
### [kmath-ast](kmath-ast)
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [expression-language](kmath-ast/src/commonMain/kotlin/space/kscience/kmath/ast/parser.kt) : Expression language and its parser
|
|
||||||
> - [mst-jvm-codegen](kmath-ast/src/jvmMain/kotlin/space/kscience/kmath/asm/asm.kt) : Dynamic MST to JVM bytecode compiler
|
|
||||||
> - [mst-js-codegen](kmath-ast/src/jsMain/kotlin/space/kscience/kmath/estree/estree.kt) : Dynamic MST to JS compiler
|
|
||||||
> - [rendering](kmath-ast/src/commonMain/kotlin/space/kscience/kmath/ast/rendering/MathRenderer.kt) : Extendable MST rendering
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-commons](kmath-commons)
|
|
||||||
> Commons math binding for kmath
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
|
|
||||||
### [kmath-complex](kmath-complex)
|
|
||||||
> Complex numbers and quaternions.
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [complex](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Complex.kt) : Complex numbers operations
|
|
||||||
> - [quaternion](kmath-complex/src/commonMain/kotlin/space/kscience/kmath/complex/Quaternion.kt) : Quaternions and their composition
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-core](kmath-core)
|
|
||||||
> Core classes, algebra definitions, basic linear algebra
|
|
||||||
>
|
|
||||||
> **Maturity**: DEVELOPMENT
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [algebras](kmath-core/src/commonMain/kotlin/space/kscience/kmath/operations/Algebra.kt) : Algebraic structures like rings, spaces and fields.
|
|
||||||
> - [nd](kmath-core/src/commonMain/kotlin/space/kscience/kmath/structures/StructureND.kt) : Many-dimensional structures and operations on them.
|
|
||||||
> - [linear](kmath-core/src/commonMain/kotlin/space/kscience/kmath/operations/Algebra.kt) : Basic linear algebra operations (sums, products, etc.), backed by the `Space` API. Advanced linear algebra operations like matrix inversion and LU decomposition.
|
|
||||||
> - [buffers](kmath-core/src/commonMain/kotlin/space/kscience/kmath/structures/Buffers.kt) : One-dimensional structure
|
|
||||||
> - [expressions](kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions) : By writing a single mathematical expression once, users will be able to apply different types of
|
|
||||||
objects to the expression by providing a context. Expressions can be used for a wide variety of purposes from high
|
|
||||||
performance calculations to code generation.
|
|
||||||
> - [domains](kmath-core/src/commonMain/kotlin/space/kscience/kmath/domains) : Domains
|
|
||||||
> - [autodiff](kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions/SimpleAutoDiff.kt) : Automatic differentiation
|
|
||||||
> - [Parallel linear algebra](kmath-core/#) : Parallel implementation for `LinearAlgebra`
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-coroutines](kmath-coroutines)
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
|
|
||||||
### [kmath-dimensions](kmath-dimensions)
|
|
||||||
> A proof of concept module for adding type-safe dimensions to structures
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
|
|
||||||
### [kmath-ejml](kmath-ejml)
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [ejml-vector](kmath-ejml/src/main/kotlin/space/kscience/kmath/ejml/EjmlVector.kt) : Point implementations.
|
|
||||||
> - [ejml-matrix](kmath-ejml/src/main/kotlin/space/kscience/kmath/ejml/EjmlMatrix.kt) : Matrix implementation.
|
|
||||||
> - [ejml-linear-space](kmath-ejml/src/main/kotlin/space/kscience/kmath/ejml/EjmlLinearSpace.kt) : LinearSpace implementations.
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-for-real](kmath-for-real)
|
|
||||||
> Extension module that should be used to achieve numpy-like behavior.
|
|
||||||
All operations are specialized to work with `Double` numbers without declaring algebraic contexts.
|
|
||||||
One can still use generic algebras though.
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [DoubleVector](kmath-for-real/src/commonMain/kotlin/space/kscience/kmath/real/DoubleVector.kt) : Numpy-like operations for Buffers/Points
|
|
||||||
> - [DoubleMatrix](kmath-for-real/src/commonMain/kotlin/space/kscience/kmath/real/DoubleMatrix.kt) : Numpy-like operations for 2d real structures
|
|
||||||
> - [grids](kmath-for-real/src/commonMain/kotlin/space/kscience/kmath/structures/grids.kt) : Uniform grid generators
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-functions](kmath-functions)
|
|
||||||
> Functions, integration and interpolation
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [piecewise](kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Piecewise.kt) : Piecewise functions.
|
|
||||||
> - [polynomials](kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt) : Polynomial functions.
|
|
||||||
> - [linear interpolation](kmath-functions/src/commonMain/kotlin/space/kscience/kmath/interpolation/LinearInterpolator.kt) : Linear XY interpolator.
|
|
||||||
> - [spline interpolation](kmath-functions/src/commonMain/kotlin/space/kscience/kmath/interpolation/SplineInterpolator.kt) : Cubic spline XY interpolator.
|
|
||||||
> - [integration](kmath-functions/#) : Univariate and multivariate quadratures
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-geometry](kmath-geometry)
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
|
|
||||||
### [kmath-histograms](kmath-histograms)
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
|
|
||||||
### [kmath-jafama](kmath-jafama)
|
|
||||||
> Jafama integration module
|
|
||||||
>
|
|
||||||
> **Maturity**: DEPRECATED
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [jafama-double](kmath-jafama/src/main/kotlin/space/kscience/kmath/jafama/) : Double ExtendedField implementations based on Jafama
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-jupyter](kmath-jupyter)
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
|
|
||||||
### [kmath-kotlingrad](kmath-kotlingrad)
|
|
||||||
> Kotlin∇ integration module
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [differentiable-mst-expression](kmath-kotlingrad/src/main/kotlin/space/kscience/kmath/kotlingrad/KotlingradExpression.kt) : MST based DifferentiableExpression.
|
|
||||||
> - [scalars-adapters](kmath-kotlingrad/src/main/kotlin/space/kscience/kmath/kotlingrad/scalarsAdapters.kt) : Conversions between Kotlin∇'s SFun and MST
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-memory](kmath-memory)
|
|
||||||
> An API and basic implementation for arranging objects in a continuous memory block.
|
|
||||||
>
|
|
||||||
> **Maturity**: DEVELOPMENT
|
|
||||||
|
|
||||||
### [kmath-multik](kmath-multik)
|
|
||||||
> JetBrains Multik connector
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
|
|
||||||
### [kmath-nd4j](kmath-nd4j)
|
|
||||||
> ND4J NDStructure implementation and according NDAlgebra classes
|
|
||||||
>
|
|
||||||
> **Maturity**: DEPRECATED
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [nd4jarraystructure](kmath-nd4j/#) : NDStructure wrapper for INDArray
|
|
||||||
> - [nd4jarrayrings](kmath-nd4j/#) : Rings over Nd4jArrayStructure of Int and Long
|
|
||||||
> - [nd4jarrayfields](kmath-nd4j/#) : Fields over Nd4jArrayStructure of Float and Double
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-optimization](kmath-optimization)
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
|
|
||||||
### [kmath-stat](kmath-stat)
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
|
|
||||||
### [kmath-symja](kmath-symja)
|
|
||||||
> Symja integration module
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
|
|
||||||
### [kmath-tensorflow](kmath-tensorflow)
|
|
||||||
> Google tensorflow connector
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
|
|
||||||
### [kmath-tensors](kmath-tensors)
|
|
||||||
>
|
|
||||||
> **Maturity**: PROTOTYPE
|
|
||||||
>
|
|
||||||
> **Features:**
|
|
||||||
> - [tensor algebra](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/TensorAlgebra.kt) : Basic linear algebra operations on tensors (plus, dot, etc.)
|
|
||||||
> - [tensor algebra with broadcasting](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/BroadcastDoubleTensorAlgebra.kt) : Basic linear algebra operations implemented with broadcasting.
|
|
||||||
> - [linear algebra operations](kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt) : Advanced linear algebra operations like LU decomposition, SVD, etc.
|
|
||||||
|
|
||||||
|
|
||||||
### [kmath-viktor](kmath-viktor)
|
|
||||||
> Binding for https://github.com/JetBrains-Research/viktor
|
|
||||||
>
|
|
||||||
> **Maturity**: DEPRECATED
|
|
||||||
|
|
||||||
### [test-utils](test-utils)
|
|
||||||
>
|
|
||||||
> **Maturity**: EXPERIMENTAL
|
|
||||||
|
|
||||||
|
|
||||||
## Multi-platform support
|
|
||||||
|
|
||||||
KMath is developed as a multi-platform library, which means that most of the interfaces are declared in the
|
|
||||||
[common source sets](/kmath-core/src/commonMain) and implemented there wherever it is possible. In some cases, features
|
|
||||||
are delegated to platform-specific implementations even if they could be provided in the common module for performance
|
|
||||||
reasons. Currently, Kotlin/JVM is the primary platform, however, Kotlin/Native and Kotlin/JS contributions and
|
|
||||||
feedback are also welcome.
|
|
||||||
|
|
||||||
## Performance
|
|
||||||
|
|
||||||
Calculation of performance is one of the major goals of KMath in the future, but in some cases it is impossible to
|
|
||||||
achieve both
|
|
||||||
performance and flexibility.
|
|
||||||
|
|
||||||
We expect to focus on creating a convenient universal API first and then work on increasing performance for specific
|
|
||||||
cases. We expect the worst KMath benchmarks will perform better than native Python, but worse than optimized
|
|
||||||
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be
|
|
||||||
better than SciPy.
|
|
||||||
|
|
||||||
## Requirements
|
|
||||||
|
|
||||||
KMath currently relies on JDK 11 for compilation and execution of Kotlin-JVM part. We recommend using GraalVM-CE or
|
|
||||||
Oracle GraalVM for execution to get better performance.
|
|
||||||
|
|
||||||
### Repositories
|
|
||||||
|
|
||||||
Release and development artifacts are accessible from mipt-npm [Space](https://www.jetbrains.com/space/)
|
|
||||||
repository `https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven` (see documentation of
|
|
||||||
[Kotlin Multiplatform](https://kotlinlang.org/docs/reference/multiplatform.html) for more details). The repository could
|
|
||||||
be reached through [repo.kotlin.link](https://repo.kotlin.link) proxy:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
repositories {
|
|
||||||
maven("https://repo.kotlin.link")
|
|
||||||
}
|
|
||||||
|
|
||||||
dependencies {
|
|
||||||
api("space.kscience:kmath-core:$version")
|
|
||||||
// api("space.kscience:kmath-core-jvm:$version") for jvm-specific version
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## Contributing
|
|
||||||
|
|
||||||
The project requires a lot of additional work. The most important thing we need is feedback about what features are
|
|
||||||
required the most. Feel free to create feature requests. We are also welcome to code contributions, especially in issues
|
|
||||||
marked
|
|
||||||
with [good first issue](hhttps://github.com/SciProgCentre/kmath/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22)
|
|
||||||
label.
|
|
@ -1,21 +0,0 @@
|
|||||||
# Module attributes-kt
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Usage
|
|
||||||
|
|
||||||
## Artifact:
|
|
||||||
|
|
||||||
The Maven coordinates of this project are `space.kscience:attributes-kt:0.1.0`.
|
|
||||||
|
|
||||||
**Gradle Kotlin DSL:**
|
|
||||||
```kotlin
|
|
||||||
repositories {
|
|
||||||
maven("https://repo.kotlin.link")
|
|
||||||
mavenCentral()
|
|
||||||
}
|
|
||||||
|
|
||||||
dependencies {
|
|
||||||
implementation("space.kscience:attributes-kt:0.1.0")
|
|
||||||
}
|
|
||||||
```
|
|
@ -1,104 +0,0 @@
|
|||||||
public abstract interface class space/kscience/attributes/Attribute {
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract interface class space/kscience/attributes/AttributeContainer {
|
|
||||||
public abstract fun getAttributes ()Lspace/kscience/attributes/Attributes;
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract interface class space/kscience/attributes/AttributeScope {
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract interface class space/kscience/attributes/AttributeWithDefault : space/kscience/attributes/Attribute {
|
|
||||||
public abstract fun getDefault ()Ljava/lang/Object;
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract interface class space/kscience/attributes/Attributes {
|
|
||||||
public static final field Companion Lspace/kscience/attributes/Attributes$Companion;
|
|
||||||
public abstract fun equals (Ljava/lang/Object;)Z
|
|
||||||
public fun get (Lspace/kscience/attributes/Attribute;)Ljava/lang/Object;
|
|
||||||
public abstract fun getContent ()Ljava/util/Map;
|
|
||||||
public fun getKeys ()Ljava/util/Set;
|
|
||||||
public abstract fun hashCode ()I
|
|
||||||
public abstract fun toString ()Ljava/lang/String;
|
|
||||||
}
|
|
||||||
|
|
||||||
public final class space/kscience/attributes/Attributes$Companion {
|
|
||||||
public final fun equals (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attributes;)Z
|
|
||||||
public final fun getEMPTY ()Lspace/kscience/attributes/Attributes;
|
|
||||||
}
|
|
||||||
|
|
||||||
public final class space/kscience/attributes/AttributesBuilder : space/kscience/attributes/Attributes {
|
|
||||||
public final fun add (Lspace/kscience/attributes/SetAttribute;Ljava/lang/Object;)V
|
|
||||||
public final fun build ()Lspace/kscience/attributes/Attributes;
|
|
||||||
public fun equals (Ljava/lang/Object;)Z
|
|
||||||
public fun getContent ()Ljava/util/Map;
|
|
||||||
public fun hashCode ()I
|
|
||||||
public final fun invoke (Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)V
|
|
||||||
public final fun put (Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)V
|
|
||||||
public final fun putAll (Lspace/kscience/attributes/Attributes;)V
|
|
||||||
public final fun remove (Lspace/kscience/attributes/SetAttribute;Ljava/lang/Object;)V
|
|
||||||
public final fun set (Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)V
|
|
||||||
public fun toString ()Ljava/lang/String;
|
|
||||||
}
|
|
||||||
|
|
||||||
public final class space/kscience/attributes/AttributesBuilderKt {
|
|
||||||
public static final fun Attributes (Lkotlin/jvm/functions/Function1;)Lspace/kscience/attributes/Attributes;
|
|
||||||
}
|
|
||||||
|
|
||||||
public final class space/kscience/attributes/AttributesKt {
|
|
||||||
public static final fun Attributes (Lspace/kscience/attributes/Attribute;)Lspace/kscience/attributes/Attributes;
|
|
||||||
public static final fun Attributes (Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)Lspace/kscience/attributes/Attributes;
|
|
||||||
public static final fun getOrDefault (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/AttributeWithDefault;)Ljava/lang/Object;
|
|
||||||
public static final fun isEmpty (Lspace/kscience/attributes/Attributes;)Z
|
|
||||||
public static final fun modified (Lspace/kscience/attributes/Attributes;Lkotlin/jvm/functions/Function1;)Lspace/kscience/attributes/Attributes;
|
|
||||||
public static final fun plus (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attributes;)Lspace/kscience/attributes/Attributes;
|
|
||||||
public static final fun withAttribute (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attribute;)Lspace/kscience/attributes/Attributes;
|
|
||||||
public static final fun withAttribute (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attribute;Ljava/lang/Object;)Lspace/kscience/attributes/Attributes;
|
|
||||||
public static final fun withAttributeElement (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/SetAttribute;Ljava/lang/Object;)Lspace/kscience/attributes/Attributes;
|
|
||||||
public static final fun withoutAttribute (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/Attribute;)Lspace/kscience/attributes/Attributes;
|
|
||||||
public static final fun withoutAttributeElement (Lspace/kscience/attributes/Attributes;Lspace/kscience/attributes/SetAttribute;Ljava/lang/Object;)Lspace/kscience/attributes/Attributes;
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract interface class space/kscience/attributes/FlagAttribute : space/kscience/attributes/Attribute {
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract class space/kscience/attributes/PolymorphicAttribute : space/kscience/attributes/Attribute {
|
|
||||||
public synthetic fun <init> (Lkotlin/reflect/KType;Lkotlin/jvm/internal/DefaultConstructorMarker;)V
|
|
||||||
public fun equals (Ljava/lang/Object;)Z
|
|
||||||
public final fun getType-V0oMfBY ()Lkotlin/reflect/KType;
|
|
||||||
public fun hashCode ()I
|
|
||||||
}
|
|
||||||
|
|
||||||
public final class space/kscience/attributes/PolymorphicAttributeKt {
|
|
||||||
public static final fun get (Lspace/kscience/attributes/Attributes;Lkotlin/jvm/functions/Function0;)Ljava/lang/Object;
|
|
||||||
public static final fun set (Lspace/kscience/attributes/AttributesBuilder;Lkotlin/jvm/functions/Function0;Ljava/lang/Object;)V
|
|
||||||
}
|
|
||||||
|
|
||||||
public final class space/kscience/attributes/SafeType {
|
|
||||||
public static final synthetic fun box-impl (Lkotlin/reflect/KType;)Lspace/kscience/attributes/SafeType;
|
|
||||||
public static fun constructor-impl (Lkotlin/reflect/KType;)Lkotlin/reflect/KType;
|
|
||||||
public fun equals (Ljava/lang/Object;)Z
|
|
||||||
public static fun equals-impl (Lkotlin/reflect/KType;Ljava/lang/Object;)Z
|
|
||||||
public static final fun equals-impl0 (Lkotlin/reflect/KType;Lkotlin/reflect/KType;)Z
|
|
||||||
public final fun getKType ()Lkotlin/reflect/KType;
|
|
||||||
public fun hashCode ()I
|
|
||||||
public static fun hashCode-impl (Lkotlin/reflect/KType;)I
|
|
||||||
public fun toString ()Ljava/lang/String;
|
|
||||||
public static fun toString-impl (Lkotlin/reflect/KType;)Ljava/lang/String;
|
|
||||||
public final synthetic fun unbox-impl ()Lkotlin/reflect/KType;
|
|
||||||
}
|
|
||||||
|
|
||||||
public final class space/kscience/attributes/SafeTypeKt {
|
|
||||||
public static final fun getKClass-X0YbwmU (Lkotlin/reflect/KType;)Lkotlin/reflect/KClass;
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract interface class space/kscience/attributes/SetAttribute : space/kscience/attributes/Attribute {
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract interface annotation class space/kscience/attributes/UnstableAttributesAPI : java/lang/annotation/Annotation {
|
|
||||||
}
|
|
||||||
|
|
||||||
public abstract interface class space/kscience/attributes/WithType {
|
|
||||||
public abstract fun getType-V0oMfBY ()Lkotlin/reflect/KType;
|
|
||||||
}
|
|
||||||
|
|
@ -1,20 +0,0 @@
|
|||||||
plugins {
|
|
||||||
id("space.kscience.gradle.mpp")
|
|
||||||
`maven-publish`
|
|
||||||
}
|
|
||||||
|
|
||||||
version = rootProject.extra.get("attributesVersion").toString()
|
|
||||||
|
|
||||||
kscience {
|
|
||||||
jvm()
|
|
||||||
js()
|
|
||||||
native()
|
|
||||||
wasm()
|
|
||||||
}
|
|
||||||
|
|
||||||
readme {
|
|
||||||
maturity = space.kscience.gradle.Maturity.DEVELOPMENT
|
|
||||||
description = """
|
|
||||||
An API and basic implementation for arranging objects in a continuous memory block.
|
|
||||||
""".trimIndent()
|
|
||||||
}
|
|
@ -1,29 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.attributes
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A marker interface for an attribute. Attributes are used as keys to access contents of type [T] in the container.
|
|
||||||
*/
|
|
||||||
public interface Attribute<T>
|
|
||||||
|
|
||||||
/**
|
|
||||||
* An attribute that could be either present or absent
|
|
||||||
*/
|
|
||||||
public interface FlagAttribute : Attribute<Unit>
|
|
||||||
|
|
||||||
/**
|
|
||||||
* An attribute with a default value
|
|
||||||
*/
|
|
||||||
public interface AttributeWithDefault<T> : Attribute<T> {
|
|
||||||
public val default: T
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Attribute containing a set of values
|
|
||||||
*/
|
|
||||||
public interface SetAttribute<V> : Attribute<Set<V>>
|
|
||||||
|
|
@ -1,20 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.attributes
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A container for [Attributes]
|
|
||||||
*/
|
|
||||||
public interface AttributeContainer {
|
|
||||||
public val attributes: Attributes
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A scope, where attribute keys could be resolved.
|
|
||||||
* [O] is used only to resolve types in compile-time.
|
|
||||||
*/
|
|
||||||
public interface AttributeScope<O>
|
|
||||||
|
|
@ -1,143 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.attributes
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A set of attributes. The implementation must guarantee that [content] keys correspond to their value types.
|
|
||||||
*/
|
|
||||||
public interface Attributes {
|
|
||||||
/**
|
|
||||||
* Raw content for this [Attributes]
|
|
||||||
*/
|
|
||||||
public val content: Map<out Attribute<*>, Any?>
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Attribute keys contained in this [Attributes]
|
|
||||||
*/
|
|
||||||
public val keys: Set<Attribute<*>> get() = content.keys
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Provide an attribute value. Return null if attribute is not present or if its value is null.
|
|
||||||
*/
|
|
||||||
@Suppress("UNCHECKED_CAST")
|
|
||||||
public operator fun <T> get(attribute: Attribute<T>): T? = content[attribute] as? T
|
|
||||||
|
|
||||||
override fun toString(): String
|
|
||||||
override fun equals(other: Any?): Boolean
|
|
||||||
override fun hashCode(): Int
|
|
||||||
|
|
||||||
public companion object {
|
|
||||||
public val EMPTY: Attributes = object : Attributes {
|
|
||||||
override val content: Map<out Attribute<*>, Any?> get() = emptyMap()
|
|
||||||
|
|
||||||
override fun toString(): String = "Attributes.EMPTY"
|
|
||||||
|
|
||||||
override fun equals(other: Any?): Boolean = (other as? Attributes)?.isEmpty() ?: false
|
|
||||||
|
|
||||||
override fun hashCode(): Int = Unit.hashCode()
|
|
||||||
}
|
|
||||||
|
|
||||||
public fun equals(a1: Attributes, a2: Attributes): Boolean =
|
|
||||||
a1.keys == a2.keys && a1.keys.all { a1[it] == a2[it] }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
internal class MapAttributes(override val content: Map<out Attribute<*>, Any?>) : Attributes {
|
|
||||||
override fun toString(): String = "Attributes(value=${content.entries})"
|
|
||||||
override fun equals(other: Any?): Boolean = other is Attributes && Attributes.equals(this, other)
|
|
||||||
override fun hashCode(): Int = content.hashCode()
|
|
||||||
}
|
|
||||||
|
|
||||||
public fun Attributes.isEmpty(): Boolean = keys.isEmpty()
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Get attribute value or default
|
|
||||||
*/
|
|
||||||
public fun <T> Attributes.getOrDefault(attribute: AttributeWithDefault<T>): T = get(attribute) ?: attribute.default
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Check if there is an attribute that matches given key by type and adheres to [predicate].
|
|
||||||
*/
|
|
||||||
@Suppress("UNCHECKED_CAST")
|
|
||||||
public inline fun <T, reified A : Attribute<T>> Attributes.hasAny(predicate: (value: T) -> Boolean): Boolean =
|
|
||||||
content.any { (mapKey, mapValue) -> mapKey is A && predicate(mapValue as T) }
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Check if there is an attribute of given type (subtypes included)
|
|
||||||
*/
|
|
||||||
public inline fun <reified A : Attribute<*>> Attributes.hasAny(): Boolean =
|
|
||||||
content.any { (mapKey, _) -> mapKey is A }
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Check if [Attributes] contains a flag. Multiple keys that are instances of a flag could be present
|
|
||||||
*/
|
|
||||||
public inline fun <reified A : FlagAttribute> Attributes.hasFlag(): Boolean =
|
|
||||||
content.keys.any { it is A }
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create [Attributes] with an added or replaced attribute key.
|
|
||||||
*/
|
|
||||||
public fun <T, A : Attribute<T>> Attributes.withAttribute(
|
|
||||||
attribute: A,
|
|
||||||
attrValue: T,
|
|
||||||
): Attributes = MapAttributes(content + (attribute to attrValue))
|
|
||||||
|
|
||||||
public fun <A : Attribute<Unit>> Attributes.withAttribute(attribute: A): Attributes =
|
|
||||||
withAttribute(attribute, Unit)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create a new [Attributes] by modifying the current one
|
|
||||||
*/
|
|
||||||
public fun <O> Attributes.modified(block: AttributesBuilder<O>.() -> Unit): Attributes = Attributes<O> {
|
|
||||||
putAll(this@modified)
|
|
||||||
block()
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create new [Attributes] by removing [attribute] key
|
|
||||||
*/
|
|
||||||
public fun Attributes.withoutAttribute(attribute: Attribute<*>): Attributes = MapAttributes(content.minus(attribute))
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Add an element to a [SetAttribute]
|
|
||||||
*/
|
|
||||||
public fun <T, A : SetAttribute<T>> Attributes.withAttributeElement(
|
|
||||||
attribute: A,
|
|
||||||
attrValue: T,
|
|
||||||
): Attributes {
|
|
||||||
val currentSet: Set<T> = get(attribute) ?: emptySet()
|
|
||||||
return MapAttributes(
|
|
||||||
content + (attribute to (currentSet + attrValue))
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Remove an element from [SetAttribute]
|
|
||||||
*/
|
|
||||||
public fun <T, A : SetAttribute<T>> Attributes.withoutAttributeElement(
|
|
||||||
attribute: A,
|
|
||||||
attrValue: T,
|
|
||||||
): Attributes {
|
|
||||||
val currentSet: Set<T> = get(attribute) ?: emptySet()
|
|
||||||
return MapAttributes(content + (attribute to (currentSet - attrValue)))
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create [Attributes] with a single key
|
|
||||||
*/
|
|
||||||
public fun <T, A : Attribute<T>> Attributes(
|
|
||||||
attribute: A,
|
|
||||||
attrValue: T,
|
|
||||||
): Attributes = MapAttributes(mapOf(attribute to attrValue))
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create Attributes with a single [Unit] valued attribute
|
|
||||||
*/
|
|
||||||
public fun <A : Attribute<Unit>> Attributes(
|
|
||||||
attribute: A,
|
|
||||||
): Attributes = MapAttributes(mapOf(attribute to Unit))
|
|
||||||
|
|
||||||
public operator fun Attributes.plus(other: Attributes): Attributes = MapAttributes(content + other.content)
|
|
@ -1,68 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.attributes
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A builder for [Attributes].
|
|
||||||
* The builder is not thread safe
|
|
||||||
*
|
|
||||||
* @param O type marker of an owner object, for which these attributes are made
|
|
||||||
*/
|
|
||||||
public class AttributesBuilder<out O> internal constructor() : Attributes {
|
|
||||||
|
|
||||||
private val map = mutableMapOf<Attribute<*>, Any?>()
|
|
||||||
|
|
||||||
override fun toString(): String = "Attributes(value=${map.entries})"
|
|
||||||
override fun equals(other: Any?): Boolean = other is Attributes && Attributes.equals(this, other)
|
|
||||||
override fun hashCode(): Int = map.hashCode()
|
|
||||||
|
|
||||||
override val content: Map<out Attribute<*>, Any?> get() = map
|
|
||||||
|
|
||||||
public operator fun <T> set(attribute: Attribute<T>, value: T?) {
|
|
||||||
if (value == null) {
|
|
||||||
map.remove(attribute)
|
|
||||||
} else {
|
|
||||||
map[attribute] = value
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public operator fun <V> Attribute<V>.invoke(value: V?) {
|
|
||||||
set(this, value)
|
|
||||||
}
|
|
||||||
|
|
||||||
public infix fun <V> Attribute<V>.put(value: V?) {
|
|
||||||
set(this, value)
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Put all attributes for given [attributes]
|
|
||||||
*/
|
|
||||||
public fun putAll(attributes: Attributes) {
|
|
||||||
map.putAll(attributes.content)
|
|
||||||
}
|
|
||||||
|
|
||||||
public infix fun <V> SetAttribute<V>.add(attrValue: V) {
|
|
||||||
val currentSet: Set<V> = get(this) ?: emptySet()
|
|
||||||
map[this] = currentSet + attrValue
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Remove an element from [SetAttribute]
|
|
||||||
*/
|
|
||||||
public infix fun <V> SetAttribute<V>.remove(attrValue: V) {
|
|
||||||
val currentSet: Set<V> = get(this) ?: emptySet()
|
|
||||||
map[this] = currentSet - attrValue
|
|
||||||
}
|
|
||||||
|
|
||||||
public fun build(): Attributes = MapAttributes(map)
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create [Attributes] with a given [builder]
|
|
||||||
* @param O the type for which attributes are built. The type is used only during compilation phase for static extension dispatch
|
|
||||||
*/
|
|
||||||
public fun <O> Attributes(builder: AttributesBuilder<O>.() -> Unit): Attributes =
|
|
||||||
AttributesBuilder<O>().apply(builder).build()
|
|
@ -1,34 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.attributes
|
|
||||||
|
|
||||||
/**
|
|
||||||
* An attribute that has a type parameter for value
|
|
||||||
* @param type parameter-type
|
|
||||||
*/
|
|
||||||
public abstract class PolymorphicAttribute<T>(public val type: SafeType<T>) : Attribute<T> {
|
|
||||||
override fun equals(other: Any?): Boolean = other != null &&
|
|
||||||
(this::class == other::class) &&
|
|
||||||
(other as? PolymorphicAttribute<*>)?.type == this.type
|
|
||||||
|
|
||||||
override fun hashCode(): Int = this::class.hashCode() + type.hashCode()
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Get a polymorphic attribute using attribute factory
|
|
||||||
*/
|
|
||||||
@UnstableAttributesAPI
|
|
||||||
public operator fun <T> Attributes.get(attributeKeyBuilder: () -> PolymorphicAttribute<T>): T? =
|
|
||||||
get(attributeKeyBuilder())
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Set a polymorphic attribute using its factory
|
|
||||||
*/
|
|
||||||
@UnstableAttributesAPI
|
|
||||||
public operator fun <O, T> AttributesBuilder<O>.set(attributeKeyBuilder: () -> PolymorphicAttribute<T>, value: T) {
|
|
||||||
set(attributeKeyBuilder(), value)
|
|
||||||
}
|
|
@ -1,35 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.attributes
|
|
||||||
|
|
||||||
import kotlin.jvm.JvmInline
|
|
||||||
import kotlin.reflect.KClass
|
|
||||||
import kotlin.reflect.KType
|
|
||||||
import kotlin.reflect.typeOf
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Safe variant ok Kotlin [KType] that ensures that the type parameter is of the same type as [kType]
|
|
||||||
*
|
|
||||||
* @param kType raw [KType]
|
|
||||||
*/
|
|
||||||
@JvmInline
|
|
||||||
public value class SafeType<out T> @PublishedApi internal constructor(public val kType: KType)
|
|
||||||
|
|
||||||
public inline fun <reified T> safeTypeOf(): SafeType<T> = SafeType(typeOf<T>())
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Derive Kotlin [KClass] from this type and fail if the type is not a class (should not happen)
|
|
||||||
*/
|
|
||||||
@Suppress("UNCHECKED_CAST")
|
|
||||||
@UnstableAttributesAPI
|
|
||||||
public val <T> SafeType<T>.kClass: KClass<T & Any> get() = kType.classifier as KClass<T & Any>
|
|
||||||
|
|
||||||
/**
|
|
||||||
* An interface containing [type] for dynamic type checking.
|
|
||||||
*/
|
|
||||||
public interface WithType<out T> {
|
|
||||||
public val type: SafeType<T>
|
|
||||||
}
|
|
@ -1,17 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.attributes
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Marks declarations that are still experimental in the Attributes-kt APIs, which means that the design of the corresponding
|
|
||||||
* declarations has open issues that may (or may not) lead to their changes in the future. Roughly speaking, there is
|
|
||||||
* a chance of those declarations will be deprecated in the future or the semantics of their behavior may change
|
|
||||||
* in some way that may break some code.
|
|
||||||
*/
|
|
||||||
@MustBeDocumented
|
|
||||||
@Retention(value = AnnotationRetention.BINARY)
|
|
||||||
@RequiresOptIn("This API is unstable and could change in future", RequiresOptIn.Level.WARNING)
|
|
||||||
public annotation class UnstableAttributesAPI
|
|
@ -1,4 +0,0 @@
|
|||||||
# Module benchmarks
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,174 +0,0 @@
|
|||||||
@file:Suppress("UNUSED_VARIABLE")
|
|
||||||
|
|
||||||
import org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile
|
|
||||||
import space.kscience.kmath.benchmarks.addBenchmarkProperties
|
|
||||||
|
|
||||||
plugins {
|
|
||||||
kotlin("multiplatform")
|
|
||||||
alias(spclibs.plugins.kotlin.plugin.allopen)
|
|
||||||
id("org.jetbrains.kotlinx.benchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
allOpen.annotation("org.openjdk.jmh.annotations.State")
|
|
||||||
sourceSets.register("benchmarks")
|
|
||||||
|
|
||||||
repositories {
|
|
||||||
mavenCentral()
|
|
||||||
}
|
|
||||||
|
|
||||||
val multikVersion: String by rootProject.extra
|
|
||||||
|
|
||||||
kotlin {
|
|
||||||
jvm()
|
|
||||||
|
|
||||||
js(IR) {
|
|
||||||
nodejs()
|
|
||||||
}
|
|
||||||
|
|
||||||
sourceSets {
|
|
||||||
all {
|
|
||||||
languageSettings {
|
|
||||||
progressiveMode = true
|
|
||||||
optIn("kotlin.contracts.ExperimentalContracts")
|
|
||||||
optIn("kotlin.ExperimentalUnsignedTypes")
|
|
||||||
optIn("space.kscience.kmath.UnstableKMathAPI")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
val commonMain by getting {
|
|
||||||
dependencies {
|
|
||||||
implementation(project(":kmath-ast"))
|
|
||||||
implementation(project(":kmath-core"))
|
|
||||||
implementation(project(":kmath-coroutines"))
|
|
||||||
implementation(project(":kmath-complex"))
|
|
||||||
implementation(project(":kmath-stat"))
|
|
||||||
implementation(project(":kmath-dimensions"))
|
|
||||||
implementation(project(":kmath-for-real"))
|
|
||||||
implementation(project(":kmath-tensors"))
|
|
||||||
implementation(project(":kmath-multik"))
|
|
||||||
implementation("org.jetbrains.kotlinx:multik-default:$multikVersion")
|
|
||||||
implementation(spclibs.kotlinx.benchmark.runtime)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
val jvmMain by getting {
|
|
||||||
dependencies {
|
|
||||||
implementation(project(":kmath-commons"))
|
|
||||||
implementation(project(":kmath-ejml"))
|
|
||||||
implementation(project(":kmath-nd4j"))
|
|
||||||
implementation(project(":kmath-kotlingrad"))
|
|
||||||
implementation(project(":kmath-viktor"))
|
|
||||||
implementation(project(":kmath-jafama"))
|
|
||||||
implementation(projects.kmath.kmathTensorflow)
|
|
||||||
implementation("org.tensorflow:tensorflow-core-platform:0.4.0")
|
|
||||||
implementation("org.nd4j:nd4j-native:1.0.0-M1")
|
|
||||||
// uncomment if your system supports AVX2
|
|
||||||
// val os = System.getProperty("os.name")
|
|
||||||
//
|
|
||||||
// if (System.getProperty("os.arch") in arrayOf("x86_64", "amd64")) when {
|
|
||||||
// os.startsWith("Windows") -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:windows-x86_64-avx2")
|
|
||||||
// os == "Linux" -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:linux-x86_64-avx2")
|
|
||||||
// os == "Mac OS X" -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:macosx-x86_64-avx2")
|
|
||||||
// } else
|
|
||||||
// implementation("org.nd4j:nd4j-native-platform:1.0.0-beta7")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Configure benchmark
|
|
||||||
benchmark {
|
|
||||||
// Setup configurations
|
|
||||||
targets {
|
|
||||||
register("jvm")
|
|
||||||
register("js")
|
|
||||||
}
|
|
||||||
|
|
||||||
fun kotlinx.benchmark.gradle.BenchmarkConfiguration.commonConfiguration() {
|
|
||||||
warmups = 2
|
|
||||||
iterations = 5
|
|
||||||
iterationTime = 2000
|
|
||||||
iterationTimeUnit = "ms"
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("buffer") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("BufferBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("nd") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("NDFieldBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("dot") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("DotBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("expressions") {
|
|
||||||
// Some extra precision
|
|
||||||
warmups = 2
|
|
||||||
iterations = 10
|
|
||||||
iterationTime = 10
|
|
||||||
iterationTimeUnit = "s"
|
|
||||||
outputTimeUnit = "s"
|
|
||||||
include("ExpressionsInterpretersBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("matrixInverse") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("MatrixInverseBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("bigInt") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("BigIntBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("jafamaDouble") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("JafamaBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("tensorAlgebra") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("TensorAlgebraBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("viktor") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("ViktorBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("viktorLog") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("ViktorLogBenchmark")
|
|
||||||
}
|
|
||||||
|
|
||||||
configurations.register("integration") {
|
|
||||||
commonConfiguration()
|
|
||||||
include("IntegrationBenchmark")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
kotlin.sourceSets.all {
|
|
||||||
with(languageSettings) {
|
|
||||||
optIn("kotlin.contracts.ExperimentalContracts")
|
|
||||||
optIn("kotlin.ExperimentalUnsignedTypes")
|
|
||||||
optIn("space.kscience.kmath.UnstableKMathAPI")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
tasks.withType<KotlinJvmCompile> {
|
|
||||||
kotlinOptions {
|
|
||||||
jvmTarget = "11"
|
|
||||||
freeCompilerArgs = freeCompilerArgs + "-Xjvm-default=all" + "-Xlambdas=indy"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
readme {
|
|
||||||
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL
|
|
||||||
}
|
|
||||||
|
|
||||||
addBenchmarkProperties()
|
|
@ -1,107 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import space.kscience.kmath.UnstableKMathAPI
|
|
||||||
import space.kscience.kmath.expressions.*
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.operations.bindSymbol
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
import kotlin.math.sin
|
|
||||||
import kotlin.random.Random
|
|
||||||
import space.kscience.kmath.estree.compileToExpression as estreeCompileToExpression
|
|
||||||
import space.kscience.kmath.wasm.compileToExpression as wasmCompileToExpression
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
class ExpressionsInterpretersBenchmark {
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [expressionInExtendedField].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun functionalExpression(blackhole: Blackhole) = invokeAndSum(functional, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [toExpression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun mstExpression(blackhole: Blackhole) = invokeAndSum(mst, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [compileToExpression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun wasmExpression(blackhole: Blackhole) = invokeAndSum(wasm, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [compileToExpression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun estreeExpression(blackhole: Blackhole) = invokeAndSum(estree, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] implemented manually with `kotlin.math` functions.
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun rawExpression(blackhole: Blackhole) = invokeAndSum(raw, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for direct computation w/o [Expression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun justCalculate(blackhole: Blackhole) {
|
|
||||||
val random = Random(0)
|
|
||||||
var sum = 0.0
|
|
||||||
|
|
||||||
repeat(times) {
|
|
||||||
val x = random.nextDouble()
|
|
||||||
sum += x * 2.0 + 2.0 / x - 16.0 / sin(x)
|
|
||||||
}
|
|
||||||
|
|
||||||
blackhole.consume(sum)
|
|
||||||
}
|
|
||||||
|
|
||||||
private fun invokeAndSum(expr: Expression<Double>, blackhole: Blackhole) {
|
|
||||||
val random = Random(0)
|
|
||||||
var sum = 0.0
|
|
||||||
val m = HashMap<Symbol, Double>()
|
|
||||||
|
|
||||||
repeat(times) {
|
|
||||||
m[x] = random.nextDouble()
|
|
||||||
sum += expr(m)
|
|
||||||
}
|
|
||||||
|
|
||||||
blackhole.consume(sum)
|
|
||||||
}
|
|
||||||
|
|
||||||
private companion object {
|
|
||||||
private val x by symbol
|
|
||||||
private const val times = 1_000_000
|
|
||||||
|
|
||||||
private val functional = Float64Field.expression {
|
|
||||||
val x = bindSymbol(Symbol.x)
|
|
||||||
x * number(2.0) + 2.0 / x - 16.0 / sin(x)
|
|
||||||
}
|
|
||||||
|
|
||||||
private val node = MstExtendedField {
|
|
||||||
x * 2.0 + number(2.0) / x - number(16.0) / sin(x)
|
|
||||||
}
|
|
||||||
|
|
||||||
private val mst = node.toExpression(Float64Field)
|
|
||||||
|
|
||||||
@OptIn(UnstableKMathAPI::class)
|
|
||||||
private val wasm = node.wasmCompileToExpression(Float64Field)
|
|
||||||
private val estree = node.estreeCompileToExpression(Float64Field)
|
|
||||||
|
|
||||||
private val raw = Expression<Double> { args ->
|
|
||||||
val x = args.getValue(x)
|
|
||||||
x * 2.0 + 2.0 / x - 16.0 / sin(x)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,43 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import java.nio.IntBuffer
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class ArrayBenchmark {
|
|
||||||
@Benchmark
|
|
||||||
fun benchmarkArrayRead(blackhole: Blackhole) {
|
|
||||||
var res = 0
|
|
||||||
for (i in 1..size) res += array[size - i]
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun benchmarkBufferRead(blackhole: Blackhole) {
|
|
||||||
var res = 0
|
|
||||||
for (i in 1..size) res += arrayBuffer[size - i]
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun nativeBufferRead(blackhole: Blackhole) {
|
|
||||||
var res = 0
|
|
||||||
for (i in 1..size) res += nativeBuffer[size - i]
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
private companion object {
|
|
||||||
private const val size = 1000
|
|
||||||
private val array = IntArray(size) { it }
|
|
||||||
private val arrayBuffer = IntBuffer.wrap(array)
|
|
||||||
private val nativeBuffer = IntBuffer.allocate(size).also { for (i in 0 until size) it.put(i, i) }
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,112 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import org.openjdk.jmh.annotations.Benchmark
|
|
||||||
import org.openjdk.jmh.annotations.Scope
|
|
||||||
import org.openjdk.jmh.annotations.State
|
|
||||||
import space.kscience.kmath.UnstableKMathAPI
|
|
||||||
import space.kscience.kmath.operations.BigIntField
|
|
||||||
import space.kscience.kmath.operations.JBigIntegerField
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
import space.kscience.kmath.operations.parseBigInteger
|
|
||||||
import java.math.BigInteger
|
|
||||||
|
|
||||||
|
|
||||||
@UnstableKMathAPI
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class BigIntBenchmark {
|
|
||||||
|
|
||||||
val kmSmallNumber = BigIntField.number(100)
|
|
||||||
val jvmSmallNumber = JBigIntegerField.number(100)
|
|
||||||
val kmNumber = BigIntField.number(Int.MAX_VALUE)
|
|
||||||
val jvmNumber = JBigIntegerField.number(Int.MAX_VALUE)
|
|
||||||
val kmLargeNumber = BigIntField { number(11).pow(100_000U) }
|
|
||||||
val jvmLargeNumber: BigInteger = JBigIntegerField { number(11).pow(100_000) }
|
|
||||||
val bigExponent = 50_000
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmSmallAdd(blackhole: Blackhole) = BigIntField {
|
|
||||||
blackhole.consume(kmSmallNumber + kmSmallNumber + kmSmallNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun jvmSmallAdd(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume(jvmSmallNumber + jvmSmallNumber + jvmSmallNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmAdd(blackhole: Blackhole) = BigIntField {
|
|
||||||
blackhole.consume(kmNumber + kmNumber + kmNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun jvmAdd(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume(jvmNumber + jvmNumber + jvmNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmAddLarge(blackhole: Blackhole) = BigIntField {
|
|
||||||
blackhole.consume(kmLargeNumber + kmLargeNumber + kmLargeNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun jvmAddLarge(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume(jvmLargeNumber + jvmLargeNumber + jvmLargeNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmMultiply(blackhole: Blackhole) = BigIntField {
|
|
||||||
blackhole.consume(kmNumber * kmNumber * kmNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmMultiplyLarge(blackhole: Blackhole) = BigIntField {
|
|
||||||
blackhole.consume(kmLargeNumber * kmLargeNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun jvmMultiply(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume(jvmNumber * jvmNumber * jvmNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun jvmMultiplyLarge(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume(jvmLargeNumber * jvmLargeNumber)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmPower(blackhole: Blackhole) = BigIntField {
|
|
||||||
blackhole.consume(kmNumber.pow(bigExponent.toUInt()))
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun jvmPower(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume(jvmNumber.pow(bigExponent))
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmParsing16(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume("0x7f57ed8b89c29a3b9a85c7a5b84ca3929c7b7488593".parseBigInteger())
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmParsing10(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume("236656783929183747565738292847574838922010".parseBigInteger())
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun jvmParsing10(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume("236656783929183747565738292847574838922010".toBigInteger(10))
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun jvmParsing16(blackhole: Blackhole) = JBigIntegerField {
|
|
||||||
blackhole.consume("7f57ed8b89c29a3b9a85c7a5b84ca3929c7b7488593".toBigInteger(16))
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,80 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import space.kscience.kmath.complex.Complex
|
|
||||||
import space.kscience.kmath.complex.ComplexField
|
|
||||||
import space.kscience.kmath.complex.complex
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
import space.kscience.kmath.structures.Buffer
|
|
||||||
import space.kscience.kmath.structures.Float64Buffer
|
|
||||||
import space.kscience.kmath.structures.getDouble
|
|
||||||
import space.kscience.kmath.structures.permute
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class BufferBenchmark {
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun doubleArrayReadWrite(blackhole: Blackhole) {
|
|
||||||
val buffer = DoubleArray(size) { it.toDouble() }
|
|
||||||
var res = 0.0
|
|
||||||
(0 until size).forEach {
|
|
||||||
res += buffer[it]
|
|
||||||
}
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun doubleBufferReadWrite(blackhole: Blackhole) {
|
|
||||||
val buffer = Float64Buffer(size) { it.toDouble() }
|
|
||||||
var res = 0.0
|
|
||||||
(0 until size).forEach {
|
|
||||||
res += buffer[it]
|
|
||||||
}
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun bufferViewReadWrite(blackhole: Blackhole) {
|
|
||||||
val buffer = Float64Buffer(size) { it.toDouble() }.permute(reversedIndices)
|
|
||||||
var res = 0.0
|
|
||||||
(0 until size).forEach {
|
|
||||||
res += buffer[it]
|
|
||||||
}
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun bufferViewReadWriteSpecialized(blackhole: Blackhole) {
|
|
||||||
val buffer = Float64Buffer(size) { it.toDouble() }.permute(reversedIndices)
|
|
||||||
var res = 0.0
|
|
||||||
(0 until size).forEach {
|
|
||||||
res += buffer.getDouble(it)
|
|
||||||
}
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun complexBufferReadWrite(blackhole: Blackhole) = ComplexField {
|
|
||||||
val buffer = Buffer.complex(size / 2) { Complex(it.toDouble(), -it.toDouble()) }
|
|
||||||
|
|
||||||
var res = zero
|
|
||||||
(0 until size / 2).forEach {
|
|
||||||
res += buffer[it]
|
|
||||||
}
|
|
||||||
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
private companion object {
|
|
||||||
private const val size = 100
|
|
||||||
private val reversedIndices = IntArray(size) { it }.apply { reverse() }
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,93 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import space.kscience.kmath.commons.linear.CMLinearSpace
|
|
||||||
import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
|
|
||||||
import space.kscience.kmath.linear.Float64ParallelLinearSpace
|
|
||||||
import space.kscience.kmath.linear.invoke
|
|
||||||
import space.kscience.kmath.linear.linearSpace
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.tensorflow.produceWithTF
|
|
||||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
|
||||||
import kotlin.random.Random
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class DotBenchmark {
|
|
||||||
companion object {
|
|
||||||
val random = Random(12224)
|
|
||||||
const val dim = 1000
|
|
||||||
|
|
||||||
//creating invertible matrix
|
|
||||||
val matrix1 = Float64Field.linearSpace.buildMatrix(dim, dim) { _, _ ->
|
|
||||||
random.nextDouble()
|
|
||||||
}
|
|
||||||
val matrix2 = Float64Field.linearSpace.buildMatrix(dim, dim) { _, _ ->
|
|
||||||
random.nextDouble()
|
|
||||||
}
|
|
||||||
|
|
||||||
val cmMatrix1 = CMLinearSpace { matrix1.toCM() }
|
|
||||||
val cmMatrix2 = CMLinearSpace { matrix2.toCM() }
|
|
||||||
|
|
||||||
val ejmlMatrix1 = EjmlLinearSpaceDDRM { matrix1.toEjml() }
|
|
||||||
val ejmlMatrix2 = EjmlLinearSpaceDDRM { matrix2.toEjml() }
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun tfDot(blackhole: Blackhole) {
|
|
||||||
blackhole.consume(
|
|
||||||
Float64Field.produceWithTF {
|
|
||||||
matrix1 dot matrix1
|
|
||||||
}
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun cmDotWithConversion(blackhole: Blackhole) = CMLinearSpace {
|
|
||||||
blackhole.consume(matrix1 dot matrix2)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun cmDot(blackhole: Blackhole) = CMLinearSpace {
|
|
||||||
blackhole.consume(cmMatrix1 dot cmMatrix2)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun ejmlDot(blackhole: Blackhole) = EjmlLinearSpaceDDRM {
|
|
||||||
blackhole.consume(ejmlMatrix1 dot ejmlMatrix2)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun ejmlDotWithConversion(blackhole: Blackhole) = EjmlLinearSpaceDDRM {
|
|
||||||
blackhole.consume(matrix1 dot matrix2)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun multikDot(blackhole: Blackhole) = with(multikAlgebra) {
|
|
||||||
blackhole.consume(matrix1 dot matrix2)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun tensorDot(blackhole: Blackhole) = with(Float64Field.tensorAlgebra) {
|
|
||||||
blackhole.consume(matrix1 dot matrix2)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun bufferedDot(blackhole: Blackhole) = with(Float64Field.linearSpace) {
|
|
||||||
blackhole.consume(matrix1 dot matrix2)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun parallelDot(blackhole: Blackhole) = with(Float64ParallelLinearSpace) {
|
|
||||||
blackhole.consume(matrix1 dot matrix2)
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
@ -1,124 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import space.kscience.kmath.asm.compileToExpression
|
|
||||||
import space.kscience.kmath.expressions.*
|
|
||||||
import space.kscience.kmath.operations.Algebra
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.operations.bindSymbol
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
import kotlin.math.sin
|
|
||||||
import kotlin.random.Random
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class ExpressionsInterpretersBenchmark {
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [expressionInExtendedField].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun functionalExpression(blackhole: Blackhole) = invokeAndSum(functional, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [toExpression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun mstExpression(blackhole: Blackhole) = invokeAndSum(mst, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [compileToExpression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun asmGenericExpression(blackhole: Blackhole) = invokeAndSum(asmGeneric, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [compileToExpression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun asmPrimitiveExpressionArray(blackhole: Blackhole) {
|
|
||||||
val random = Random(0)
|
|
||||||
var sum = 0.0
|
|
||||||
val m = DoubleArray(1)
|
|
||||||
|
|
||||||
repeat(times) {
|
|
||||||
m[xIdx] = random.nextDouble()
|
|
||||||
sum += asmPrimitive(m)
|
|
||||||
}
|
|
||||||
|
|
||||||
blackhole.consume(sum)
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] created with [compileToExpression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun asmPrimitiveExpression(blackhole: Blackhole) = invokeAndSum(asmPrimitive, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for [Expression] implemented manually with `kotlin.math` functions.
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun rawExpression(blackhole: Blackhole) = invokeAndSum(raw, blackhole)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Benchmark case for direct computation w/o [Expression].
|
|
||||||
*/
|
|
||||||
@Benchmark
|
|
||||||
fun justCalculate(blackhole: Blackhole) {
|
|
||||||
val random = Random(0)
|
|
||||||
var sum = 0.0
|
|
||||||
|
|
||||||
repeat(times) {
|
|
||||||
val x = random.nextDouble()
|
|
||||||
sum += x * 2.0 + 2.0 / x - 16.0 / sin(x)
|
|
||||||
}
|
|
||||||
|
|
||||||
blackhole.consume(sum)
|
|
||||||
}
|
|
||||||
|
|
||||||
private fun invokeAndSum(expr: Expression<Double>, blackhole: Blackhole) {
|
|
||||||
val random = Random(0)
|
|
||||||
var sum = 0.0
|
|
||||||
val m = HashMap<Symbol, Double>()
|
|
||||||
|
|
||||||
repeat(times) {
|
|
||||||
m[x] = random.nextDouble()
|
|
||||||
sum += expr(m)
|
|
||||||
}
|
|
||||||
|
|
||||||
blackhole.consume(sum)
|
|
||||||
}
|
|
||||||
|
|
||||||
private companion object {
|
|
||||||
private val x by symbol
|
|
||||||
private const val times = 1_000_000
|
|
||||||
|
|
||||||
private val functional = Float64Field.expression {
|
|
||||||
val x = bindSymbol(Symbol.x)
|
|
||||||
x * number(2.0) + 2.0 / x - 16.0 / sin(x)
|
|
||||||
}
|
|
||||||
|
|
||||||
private val node = MstExtendedField {
|
|
||||||
x * 2.0 + number(2.0) / x - number(16.0) / sin(x)
|
|
||||||
}
|
|
||||||
|
|
||||||
private val mst = node.toExpression(Float64Field)
|
|
||||||
|
|
||||||
private val asmPrimitive = node.compileToExpression(Float64Field)
|
|
||||||
private val xIdx = asmPrimitive.indexer.indexOf(x)
|
|
||||||
|
|
||||||
private val asmGeneric = node.compileToExpression(Float64Field as Algebra<Double>)
|
|
||||||
|
|
||||||
private val raw = Expression<Double> { args ->
|
|
||||||
val x = args[x]!!
|
|
||||||
x * 2.0 + 2.0 / x - 16.0 / sin(x)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,40 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import org.openjdk.jmh.annotations.Benchmark
|
|
||||||
import org.openjdk.jmh.annotations.Scope
|
|
||||||
import org.openjdk.jmh.annotations.State
|
|
||||||
import org.openjdk.jmh.infra.Blackhole
|
|
||||||
import space.kscience.kmath.complex.Complex
|
|
||||||
import space.kscience.kmath.complex.algebra
|
|
||||||
import space.kscience.kmath.integration.gaussIntegrator
|
|
||||||
import space.kscience.kmath.integration.integrate
|
|
||||||
import space.kscience.kmath.integration.value
|
|
||||||
import space.kscience.kmath.operations.algebra
|
|
||||||
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class IntegrationBenchmark {
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun doubleIntegration(blackhole: Blackhole) {
|
|
||||||
val res = Double.algebra.gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
|
|
||||||
//sin(1 / x)
|
|
||||||
1 / x
|
|
||||||
}.value
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun complexIntegration(blackhole: Blackhole) = with(Complex.algebra) {
|
|
||||||
val res = gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
|
|
||||||
// sin(1 / x) + i * cos(1 / x)
|
|
||||||
1 / x - i / x
|
|
||||||
}.value
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,39 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import org.openjdk.jmh.annotations.Benchmark
|
|
||||||
import org.openjdk.jmh.annotations.Scope
|
|
||||||
import org.openjdk.jmh.annotations.State
|
|
||||||
import space.kscience.kmath.jafama.JafamaDoubleField
|
|
||||||
import space.kscience.kmath.jafama.StrictJafamaDoubleField
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
import kotlin.random.Random
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class JafamaBenchmark {
|
|
||||||
@Benchmark
|
|
||||||
fun jafama(blackhole: Blackhole) = invokeBenchmarks(blackhole) { x ->
|
|
||||||
JafamaDoubleField { x * power(x, 4) * exp(x) / cos(x) + sin(x) }
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun core(blackhole: Blackhole) = invokeBenchmarks(blackhole) { x ->
|
|
||||||
Float64Field { x * power(x, 4) * exp(x) / cos(x) + sin(x) }
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun strictJafama(blackhole: Blackhole) = invokeBenchmarks(blackhole) { x ->
|
|
||||||
StrictJafamaDoubleField { x * power(x, 4) * exp(x) / cos(x) + sin(x) }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private inline fun invokeBenchmarks(blackhole: Blackhole, expr: (Double) -> Double) {
|
|
||||||
val rng = Random(0)
|
|
||||||
repeat(1000000) { blackhole.consume(expr(rng.nextDouble())) }
|
|
||||||
}
|
|
@ -1,57 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import space.kscience.kmath.commons.linear.CMLinearSpace
|
|
||||||
import space.kscience.kmath.commons.linear.lupSolver
|
|
||||||
import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
|
|
||||||
import space.kscience.kmath.linear.invoke
|
|
||||||
import space.kscience.kmath.linear.linearSpace
|
|
||||||
import space.kscience.kmath.linear.lupSolver
|
|
||||||
import space.kscience.kmath.linear.parallel
|
|
||||||
import space.kscience.kmath.operations.algebra
|
|
||||||
import kotlin.random.Random
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class MatrixInverseBenchmark {
|
|
||||||
private companion object {
|
|
||||||
private val random = Random(1224)
|
|
||||||
private const val dim = 100
|
|
||||||
|
|
||||||
private val space = Double.algebra.linearSpace
|
|
||||||
|
|
||||||
//creating invertible matrix
|
|
||||||
private val u = space.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
|
|
||||||
private val l = space.buildMatrix(dim, dim) { i, j -> if (i >= j) random.nextDouble() else 0.0 }
|
|
||||||
private val matrix = space { l dot u }
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmathLupInversion(blackhole: Blackhole) {
|
|
||||||
blackhole.consume(Double.algebra.linearSpace.lupSolver().inverse(matrix))
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun kmathParallelLupInversion(blackhole: Blackhole) {
|
|
||||||
blackhole.consume(Double.algebra.linearSpace.parallel.lupSolver().inverse(matrix))
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun cmLUPInversion(blackhole: Blackhole) = CMLinearSpace {
|
|
||||||
blackhole.consume(lupSolver().inverse(matrix))
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun ejmlInverse(blackhole: Blackhole) = EjmlLinearSpaceDDRM {
|
|
||||||
blackhole.consume(matrix.toEjml().inverted())
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
@ -1,96 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import org.jetbrains.kotlinx.multik.api.Multik
|
|
||||||
import org.jetbrains.kotlinx.multik.api.ones
|
|
||||||
import org.jetbrains.kotlinx.multik.ndarray.data.DN
|
|
||||||
import org.jetbrains.kotlinx.multik.ndarray.data.DataType
|
|
||||||
import space.kscience.kmath.UnsafeKMathAPI
|
|
||||||
import space.kscience.kmath.nd.*
|
|
||||||
import space.kscience.kmath.nd4j.nd4j
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
|
||||||
import space.kscience.kmath.tensors.core.one
|
|
||||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
|
||||||
import space.kscience.kmath.viktor.viktorAlgebra
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class NDFieldBenchmark {
|
|
||||||
|
|
||||||
private companion object {
|
|
||||||
private const val dim = 1000
|
|
||||||
private const val n = 100
|
|
||||||
private val shape = ShapeND(dim, dim)
|
|
||||||
private val specializedField = Float64Field.ndAlgebra
|
|
||||||
private val genericField = BufferedFieldOpsND(Float64Field)
|
|
||||||
private val nd4jField = Float64Field.nd4j
|
|
||||||
private val viktorField = Float64Field.viktorAlgebra
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun specializedFieldAdd(blackhole: Blackhole) = with(specializedField) {
|
|
||||||
var res: StructureND<Double> = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun boxingFieldAdd(blackhole: Blackhole) = with(genericField) {
|
|
||||||
var res: StructureND<Double> = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun multikAdd(blackhole: Blackhole) = with(multikAlgebra) {
|
|
||||||
var res: StructureND<Double> = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun viktorAdd(blackhole: Blackhole) = with(viktorField) {
|
|
||||||
var res: StructureND<Double> = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun tensorAdd(blackhole: Blackhole) = with(Double.tensorAlgebra) {
|
|
||||||
var res: DoubleTensor = one(shape)
|
|
||||||
repeat(n) { res = res + 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun tensorInPlaceAdd(blackhole: Blackhole) = with(Double.tensorAlgebra) {
|
|
||||||
val res: DoubleTensor = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
@OptIn(UnsafeKMathAPI::class)
|
|
||||||
@Benchmark
|
|
||||||
fun multikInPlaceAdd(blackhole: Blackhole) = with(multikAlgebra) {
|
|
||||||
val res = Multik.ones<Double, DN>(shape.asArray(), DataType.DoubleDataType).wrap()
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
// @Benchmark
|
|
||||||
// fun nd4jAdd(blackhole: Blackhole) = with(nd4jField) {
|
|
||||||
// var res: StructureND<Double> = one(dim, dim)
|
|
||||||
// repeat(n) { res += 1.0 }
|
|
||||||
// blackhole.consume(res)
|
|
||||||
// }
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
@ -1,39 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import space.kscience.kmath.linear.linearSpace
|
|
||||||
import space.kscience.kmath.linear.matrix
|
|
||||||
import space.kscience.kmath.linear.symmetric
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.tensors.core.symEigJacobi
|
|
||||||
import space.kscience.kmath.tensors.core.symEigSvd
|
|
||||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
|
||||||
import kotlin.random.Random
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class TensorAlgebraBenchmark {
|
|
||||||
companion object {
|
|
||||||
private val random = Random(12224)
|
|
||||||
private const val dim = 30
|
|
||||||
|
|
||||||
private val matrix = Float64Field.linearSpace.matrix(dim, dim).symmetric { _, _ -> random.nextDouble() }
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun tensorSymEigSvd(blackhole: Blackhole) = with(Double.tensorAlgebra) {
|
|
||||||
blackhole.consume(symEigSvd(matrix, 1e-10))
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun tensorSymEigJacobi(blackhole: Blackhole) = with(Double.tensorAlgebra) {
|
|
||||||
blackhole.consume(symEigJacobi(matrix, 50, 1e-10))
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,58 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import org.jetbrains.bio.viktor.F64Array
|
|
||||||
import space.kscience.kmath.nd.ShapeND
|
|
||||||
import space.kscience.kmath.nd.StructureND
|
|
||||||
import space.kscience.kmath.nd.ndAlgebra
|
|
||||||
import space.kscience.kmath.nd.one
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.viktor.ViktorFieldND
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class ViktorBenchmark {
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun doubleFieldAddition(blackhole: Blackhole) {
|
|
||||||
with(doubleField) {
|
|
||||||
var res: StructureND<Double> = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun viktorFieldAddition(blackhole: Blackhole) {
|
|
||||||
with(viktorField) {
|
|
||||||
var res = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun rawViktor(blackhole: Blackhole) {
|
|
||||||
val one = F64Array.full(init = 1.0, shape = intArrayOf(dim, dim))
|
|
||||||
var res = one
|
|
||||||
repeat(n) { res = res + one }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
private companion object {
|
|
||||||
private const val dim = 1000
|
|
||||||
private const val n = 100
|
|
||||||
private val shape = ShapeND(dim, dim)
|
|
||||||
|
|
||||||
// automatically build context most suited for given type.
|
|
||||||
private val doubleField = Float64Field.ndAlgebra
|
|
||||||
private val viktorField = ViktorFieldND(dim, dim)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,58 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import kotlinx.benchmark.Benchmark
|
|
||||||
import kotlinx.benchmark.Blackhole
|
|
||||||
import kotlinx.benchmark.Scope
|
|
||||||
import kotlinx.benchmark.State
|
|
||||||
import org.jetbrains.bio.viktor.F64Array
|
|
||||||
import space.kscience.kmath.nd.ShapeND
|
|
||||||
import space.kscience.kmath.nd.ndAlgebra
|
|
||||||
import space.kscience.kmath.nd.one
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.viktor.ViktorFieldND
|
|
||||||
|
|
||||||
@State(Scope.Benchmark)
|
|
||||||
internal class ViktorLogBenchmark {
|
|
||||||
@Benchmark
|
|
||||||
fun realFieldLog(blackhole: Blackhole) {
|
|
||||||
with(doubleField) {
|
|
||||||
val fortyTwo = structureND(shape) { 42.0 }
|
|
||||||
var res = one(shape)
|
|
||||||
repeat(n) { res = ln(fortyTwo) }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun viktorFieldLog(blackhole: Blackhole) {
|
|
||||||
with(viktorField) {
|
|
||||||
val fortyTwo = structureND(shape) { 42.0 }
|
|
||||||
var res = one
|
|
||||||
repeat(n) { res = ln(fortyTwo) }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun rawViktorLog(blackhole: Blackhole) {
|
|
||||||
val fortyTwo = F64Array.full(dim, dim, init = 42.0)
|
|
||||||
lateinit var res: F64Array
|
|
||||||
repeat(n) { res = fortyTwo.log() }
|
|
||||||
blackhole.consume(res)
|
|
||||||
}
|
|
||||||
|
|
||||||
private companion object {
|
|
||||||
private const val dim = 1000
|
|
||||||
private const val n = 100
|
|
||||||
private val shape = ShapeND(dim, dim)
|
|
||||||
|
|
||||||
// automatically build context most suited for given type.
|
|
||||||
private val doubleField = Float64Field.ndAlgebra
|
|
||||||
private val viktorField = ViktorFieldND(dim, dim)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,11 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
|
||||||
|
|
||||||
import org.jetbrains.kotlinx.multik.default.DefaultEngine
|
|
||||||
import space.kscience.kmath.multik.MultikDoubleAlgebra
|
|
||||||
|
|
||||||
val multikAlgebra = MultikDoubleAlgebra(DefaultEngine())
|
|
@ -1,13 +1,8 @@
|
|||||||
import space.kscience.gradle.useApache2Licence
|
|
||||||
import space.kscience.gradle.useSPCTeam
|
|
||||||
|
|
||||||
plugins {
|
plugins {
|
||||||
id("space.kscience.gradle.project")
|
id("ru.mipt.npm.gradle.project")
|
||||||
id("org.jetbrains.kotlinx.kover") version "0.7.6"
|
id("org.jetbrains.kotlinx.kover") version "0.5.0"
|
||||||
}
|
}
|
||||||
|
|
||||||
val attributesVersion by extra("0.2.0")
|
|
||||||
|
|
||||||
allprojects {
|
allprojects {
|
||||||
repositories {
|
repositories {
|
||||||
maven("https://repo.kotlin.link")
|
maven("https://repo.kotlin.link")
|
||||||
@ -16,13 +11,13 @@ allprojects {
|
|||||||
}
|
}
|
||||||
|
|
||||||
group = "space.kscience"
|
group = "space.kscience"
|
||||||
version = "0.4.0"
|
version = "0.3.0-dev-20"
|
||||||
}
|
}
|
||||||
|
|
||||||
subprojects {
|
subprojects {
|
||||||
if (name.startsWith("kmath")) apply<MavenPublishPlugin>()
|
if (name.startsWith("kmath")) apply<MavenPublishPlugin>()
|
||||||
|
|
||||||
plugins.withId("org.jetbrains.dokka") {
|
plugins.withId("org.jetbrains.dokka"){
|
||||||
tasks.withType<org.jetbrains.dokka.gradle.DokkaTaskPartial> {
|
tasks.withType<org.jetbrains.dokka.gradle.DokkaTaskPartial> {
|
||||||
dependsOn(tasks["assemble"])
|
dependsOn(tasks["assemble"])
|
||||||
|
|
||||||
@ -36,7 +31,7 @@ subprojects {
|
|||||||
localDirectory.set(kotlinDir)
|
localDirectory.set(kotlinDir)
|
||||||
|
|
||||||
remoteUrl.set(
|
remoteUrl.set(
|
||||||
uri("https://github.com/SciProgCentre/kmath/tree/master/${this@subprojects.name}/$kotlinDirPath").toURL()
|
java.net.URL("https://github.com/mipt-npm/kmath/tree/master/${this@subprojects.name}/$kotlinDirPath")
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -61,14 +56,9 @@ subprojects {
|
|||||||
readme.readmeTemplate = file("docs/templates/README-TEMPLATE.md")
|
readme.readmeTemplate = file("docs/templates/README-TEMPLATE.md")
|
||||||
|
|
||||||
ksciencePublish {
|
ksciencePublish {
|
||||||
pom("https://github.com/SciProgCentre/kmath") {
|
github("kmath", addToRelease = false)
|
||||||
useApache2Licence()
|
space()
|
||||||
useSPCTeam()
|
sonatype()
|
||||||
}
|
|
||||||
repository("spc", "https://maven.sciprog.center/kscience")
|
|
||||||
sonatype("https://oss.sonatype.org")
|
|
||||||
}
|
}
|
||||||
|
|
||||||
apiValidation.nonPublicMarkers.add("space.kscience.kmath.UnstableKMathAPI")
|
apiValidation.nonPublicMarkers.add("space.kscience.kmath.misc.UnstableKMathAPI")
|
||||||
|
|
||||||
val multikVersion by extra("0.2.3")
|
|
||||||
|
@ -1,8 +1,11 @@
|
|||||||
plugins {
|
plugins {
|
||||||
`kotlin-dsl`
|
`kotlin-dsl`
|
||||||
`version-catalog`
|
`version-catalog`
|
||||||
|
alias(miptNpmLibs.plugins.kotlin.plugin.serialization)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
java.targetCompatibility = JavaVersion.VERSION_11
|
||||||
|
|
||||||
repositories {
|
repositories {
|
||||||
mavenLocal()
|
mavenLocal()
|
||||||
maven("https://repo.kotlin.link")
|
maven("https://repo.kotlin.link")
|
||||||
@ -10,25 +13,19 @@ repositories {
|
|||||||
gradlePluginPortal()
|
gradlePluginPortal()
|
||||||
}
|
}
|
||||||
|
|
||||||
val toolsVersion = spclibs.versions.tools.get()
|
val toolsVersion: String by extra
|
||||||
val kotlinVersion = spclibs.versions.kotlin.asProvider().get()
|
val kotlinVersion = miptNpmLibs.versions.kotlin.asProvider().get()
|
||||||
val benchmarksVersion = spclibs.versions.kotlinx.benchmark.get()
|
val benchmarksVersion = miptNpmLibs.versions.kotlinx.benchmark.get()
|
||||||
|
|
||||||
dependencies {
|
dependencies {
|
||||||
api("space.kscience:gradle-tools:$toolsVersion")
|
api("ru.mipt.npm:gradle-tools:$toolsVersion")
|
||||||
//plugins form benchmarks
|
//plugins form benchmarks
|
||||||
api("org.jetbrains.kotlinx:kotlinx-benchmark-plugin:$benchmarksVersion")
|
api("org.jetbrains.kotlinx:kotlinx-benchmark-plugin:$benchmarksVersion")
|
||||||
//api("org.jetbrains.kotlin:kotlin-allopen:$kotlinVersion")
|
api("org.jetbrains.kotlin:kotlin-allopen:$kotlinVersion")
|
||||||
//to be used inside build-script only
|
//to be used inside build-script only
|
||||||
//implementation(spclibs.kotlinx.serialization.json)
|
implementation(miptNpmLibs.kotlinx.serialization.json)
|
||||||
implementation("com.fasterxml.jackson.module:jackson-module-kotlin:2.14.+")
|
|
||||||
}
|
}
|
||||||
|
|
||||||
kotlin {
|
kotlin.sourceSets.all {
|
||||||
jvmToolchain {
|
languageSettings.optIn("kotlin.OptIn")
|
||||||
languageVersion.set(JavaLanguageVersion.of(11))
|
|
||||||
}
|
|
||||||
sourceSets.all {
|
|
||||||
languageSettings.optIn("kotlin.OptIn")
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
7
buildSrc/gradle.properties
Normal file
7
buildSrc/gradle.properties
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#
|
||||||
|
# Copyright 2018-2021 KMath contributors.
|
||||||
|
# Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
#
|
||||||
|
|
||||||
|
kotlin.code.style=official
|
||||||
|
toolsVersion=0.11.2-kotlin-1.6.20
|
@ -5,24 +5,9 @@
|
|||||||
|
|
||||||
enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS")
|
enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS")
|
||||||
|
|
||||||
plugins {
|
|
||||||
id("org.gradle.toolchains.foojay-resolver-convention") version "0.8.0"
|
|
||||||
}
|
|
||||||
|
|
||||||
dependencyResolutionManagement {
|
dependencyResolutionManagement {
|
||||||
val projectProperties = java.util.Properties()
|
val toolsVersion: String by extra
|
||||||
file("../gradle.properties").inputStream().use {
|
|
||||||
projectProperties.load(it)
|
|
||||||
}
|
|
||||||
|
|
||||||
projectProperties.forEach { key, value ->
|
|
||||||
extra.set(key.toString(), value)
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
val toolsVersion: String = projectProperties["toolsVersion"].toString()
|
|
||||||
|
|
||||||
@Suppress("UnstableApiUsage")
|
|
||||||
repositories {
|
repositories {
|
||||||
mavenLocal()
|
mavenLocal()
|
||||||
maven("https://repo.kotlin.link")
|
maven("https://repo.kotlin.link")
|
||||||
@ -31,8 +16,8 @@ dependencyResolutionManagement {
|
|||||||
}
|
}
|
||||||
|
|
||||||
versionCatalogs {
|
versionCatalogs {
|
||||||
create("spclibs") {
|
create("miptNpmLibs") {
|
||||||
from("space.kscience:version-catalog:$toolsVersion")
|
from("ru.mipt.npm:version-catalog:$toolsVersion")
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,10 +1,13 @@
|
|||||||
/*
|
/*
|
||||||
* Copyright 2018-2024 KMath contributors.
|
* Copyright 2018-2021 KMath contributors.
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
package space.kscience.kmath.benchmarks
|
||||||
|
|
||||||
|
import kotlinx.serialization.Serializable
|
||||||
|
|
||||||
|
@Serializable
|
||||||
data class JmhReport(
|
data class JmhReport(
|
||||||
val jmhVersion: String,
|
val jmhVersion: String,
|
||||||
val benchmark: String,
|
val benchmark: String,
|
||||||
@ -34,6 +37,7 @@ data class JmhReport(
|
|||||||
val scoreUnit: String
|
val scoreUnit: String
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Serializable
|
||||||
data class PrimaryMetric(
|
data class PrimaryMetric(
|
||||||
override val score: Double,
|
override val score: Double,
|
||||||
override val scoreError: Double,
|
override val scoreError: Double,
|
||||||
@ -44,6 +48,7 @@ data class JmhReport(
|
|||||||
val rawData: List<List<Double>>? = null,
|
val rawData: List<List<Double>>? = null,
|
||||||
) : Metric
|
) : Metric
|
||||||
|
|
||||||
|
@Serializable
|
||||||
data class SecondaryMetric(
|
data class SecondaryMetric(
|
||||||
override val score: Double,
|
override val score: Double,
|
||||||
override val scoreError: Double,
|
override val scoreError: Double,
|
||||||
|
@ -1,22 +1,21 @@
|
|||||||
/*
|
/*
|
||||||
* Copyright 2018-2024 KMath contributors.
|
* Copyright 2018-2021 KMath contributors.
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
package space.kscience.kmath.benchmarks
|
package space.kscience.kmath.benchmarks
|
||||||
|
|
||||||
import com.fasterxml.jackson.module.kotlin.jacksonObjectMapper
|
|
||||||
import com.fasterxml.jackson.module.kotlin.readValue
|
|
||||||
import kotlinx.benchmark.gradle.BenchmarksExtension
|
import kotlinx.benchmark.gradle.BenchmarksExtension
|
||||||
|
import kotlinx.serialization.decodeFromString
|
||||||
|
import kotlinx.serialization.json.Json
|
||||||
import org.gradle.api.Project
|
import org.gradle.api.Project
|
||||||
import space.kscience.gradle.KScienceReadmeExtension
|
import ru.mipt.npm.gradle.KScienceReadmeExtension
|
||||||
import java.time.LocalDateTime
|
import java.time.LocalDateTime
|
||||||
import java.time.ZoneId
|
import java.time.ZoneId
|
||||||
import java.time.format.DateTimeFormatter
|
import java.time.format.DateTimeFormatter
|
||||||
import java.time.format.DateTimeFormatterBuilder
|
import java.time.format.DateTimeFormatterBuilder
|
||||||
import java.time.format.SignStyle
|
import java.time.format.SignStyle
|
||||||
import java.time.temporal.ChronoField.*
|
import java.time.temporal.ChronoField.*
|
||||||
import java.util.*
|
|
||||||
|
|
||||||
private val ISO_DATE_TIME: DateTimeFormatter = DateTimeFormatterBuilder().run {
|
private val ISO_DATE_TIME: DateTimeFormatter = DateTimeFormatterBuilder().run {
|
||||||
parseCaseInsensitive()
|
parseCaseInsensitive()
|
||||||
@ -46,25 +45,23 @@ private val ISO_DATE_TIME: DateTimeFormatter = DateTimeFormatterBuilder().run {
|
|||||||
|
|
||||||
private fun noun(number: Number, singular: String, plural: String) = if (number.toLong() == 1L) singular else plural
|
private fun noun(number: Number, singular: String, plural: String) = if (number.toLong() == 1L) singular else plural
|
||||||
|
|
||||||
private val jsonMapper = jacksonObjectMapper()
|
|
||||||
|
|
||||||
fun Project.addBenchmarkProperties() {
|
fun Project.addBenchmarkProperties() {
|
||||||
val benchmarksProject = this
|
val benchmarksProject = this
|
||||||
rootProject.subprojects.forEach { p ->
|
rootProject.subprojects.forEach { p ->
|
||||||
p.extensions.findByType(KScienceReadmeExtension::class.java)?.run {
|
p.extensions.findByType(KScienceReadmeExtension::class.java)?.run {
|
||||||
benchmarksProject.extensions.findByType(BenchmarksExtension::class.java)?.configurations?.forEach { cfg ->
|
benchmarksProject.extensions.findByType(BenchmarksExtension::class.java)?.configurations?.forEach { cfg ->
|
||||||
property("benchmark${cfg.name.replaceFirstChar { if (it.isLowerCase()) it.titlecase(Locale.getDefault()) else it.toString() }}") {
|
property("benchmark${cfg.name.capitalize()}") {
|
||||||
val launches = benchmarksProject.layout.buildDirectory.dir("reports/benchmarks/${cfg.name}").get()
|
val launches = benchmarksProject.buildDir.resolve("reports/benchmarks/${cfg.name}")
|
||||||
|
|
||||||
val resDirectory = launches.files().maxByOrNull {
|
val resDirectory = launches.listFiles()?.maxByOrNull {
|
||||||
LocalDateTime.parse(it.name, ISO_DATE_TIME).atZone(ZoneId.systemDefault()).toInstant()
|
LocalDateTime.parse(it.name, ISO_DATE_TIME).atZone(ZoneId.systemDefault()).toInstant()
|
||||||
}
|
}
|
||||||
|
|
||||||
if (resDirectory == null || !(resDirectory.resolve("jvm.json")).exists()) {
|
if (resDirectory == null || !(resDirectory.resolve("jvm.json")).exists()) {
|
||||||
"> **Can't find appropriate benchmark data. Try generating readme files after running benchmarks**."
|
"> **Can't find appropriate benchmark data. Try generating readme files after running benchmarks**."
|
||||||
} else {
|
} else {
|
||||||
val reports: List<JmhReport> =
|
val reports =
|
||||||
jsonMapper.readValue<List<JmhReport>>(resDirectory.resolve("jvm.json"))
|
Json.decodeFromString<List<JmhReport>>(resDirectory.resolve("jvm.json").readText())
|
||||||
|
|
||||||
buildString {
|
buildString {
|
||||||
appendLine("<details>")
|
appendLine("<details>")
|
||||||
@ -77,20 +74,16 @@ fun Project.addBenchmarkProperties() {
|
|||||||
appendLine("* Run on ${first.vmName} (build ${first.vmVersion}) with Java process:")
|
appendLine("* Run on ${first.vmName} (build ${first.vmVersion}) with Java process:")
|
||||||
appendLine()
|
appendLine()
|
||||||
appendLine("```")
|
appendLine("```")
|
||||||
appendLine(
|
appendLine("${first.jvm} ${
|
||||||
"${first.jvm} ${
|
first.jvmArgs.joinToString(" ")
|
||||||
first.jvmArgs.joinToString(" ")
|
}")
|
||||||
}"
|
|
||||||
)
|
|
||||||
appendLine("```")
|
appendLine("```")
|
||||||
|
|
||||||
appendLine(
|
appendLine("* JMH ${first.jmhVersion} was used in `${first.mode}` mode with ${first.warmupIterations} warmup ${
|
||||||
"* JMH ${first.jmhVersion} was used in `${first.mode}` mode with ${first.warmupIterations} warmup ${
|
noun(first.warmupIterations, "iteration", "iterations")
|
||||||
noun(first.warmupIterations, "iteration", "iterations")
|
} by ${first.warmupTime} and ${first.measurementIterations} measurement ${
|
||||||
} by ${first.warmupTime} and ${first.measurementIterations} measurement ${
|
noun(first.measurementIterations, "iteration", "iterations")
|
||||||
noun(first.measurementIterations, "iteration", "iterations")
|
} by ${first.measurementTime}.")
|
||||||
} by ${first.measurementTime}."
|
|
||||||
)
|
|
||||||
|
|
||||||
appendLine()
|
appendLine()
|
||||||
appendLine("| Benchmark | Score |")
|
appendLine("| Benchmark | Score |")
|
||||||
|
@ -0,0 +1,425 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2018-2021 KMath contributors.
|
||||||
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
@file:Suppress("KDocUnresolvedReference")
|
||||||
|
|
||||||
|
package space.kscience.kmath.ejml.codegen
|
||||||
|
|
||||||
|
import org.intellij.lang.annotations.Language
|
||||||
|
import java.io.File
|
||||||
|
|
||||||
|
private fun Appendable.appendEjmlVector(type: String, ejmlMatrixType: String) {
|
||||||
|
@Language("kotlin") val text = """/**
|
||||||
|
* [EjmlVector] specialization for [$type].
|
||||||
|
*/
|
||||||
|
public class Ejml${type}Vector<out M : $ejmlMatrixType>(override val origin: M) : EjmlVector<$type, M>(origin) {
|
||||||
|
init {
|
||||||
|
require(origin.numRows == 1) { "The origin matrix must have only one row to form a vector" }
|
||||||
|
}
|
||||||
|
|
||||||
|
override operator fun get(index: Int): $type = origin[0, index]
|
||||||
|
}"""
|
||||||
|
appendLine(text)
|
||||||
|
appendLine()
|
||||||
|
}
|
||||||
|
|
||||||
|
private fun Appendable.appendEjmlMatrix(type: String, ejmlMatrixType: String) {
|
||||||
|
val text = """/**
|
||||||
|
* [EjmlMatrix] specialization for [$type].
|
||||||
|
*/
|
||||||
|
public class Ejml${type}Matrix<out M : $ejmlMatrixType>(override val origin: M) : EjmlMatrix<$type, M>(origin) {
|
||||||
|
override operator fun get(i: Int, j: Int): $type = origin[i, j]
|
||||||
|
}"""
|
||||||
|
appendLine(text)
|
||||||
|
appendLine()
|
||||||
|
}
|
||||||
|
|
||||||
|
private fun Appendable.appendEjmlLinearSpace(
|
||||||
|
type: String,
|
||||||
|
kmathAlgebra: String,
|
||||||
|
ejmlMatrixParentTypeMatrix: String,
|
||||||
|
ejmlMatrixType: String,
|
||||||
|
ejmlMatrixDenseType: String,
|
||||||
|
ops: String,
|
||||||
|
denseOps: String,
|
||||||
|
isDense: Boolean,
|
||||||
|
) {
|
||||||
|
@Language("kotlin") val text = """/**
|
||||||
|
* [EjmlLinearSpace] implementation based on [CommonOps_$ops], [DecompositionFactory_${ops}] operations and
|
||||||
|
* [${ejmlMatrixType}] matrices.
|
||||||
|
*/
|
||||||
|
public object EjmlLinearSpace${ops} : EjmlLinearSpace<${type}, ${kmathAlgebra}, $ejmlMatrixType>() {
|
||||||
|
/**
|
||||||
|
* The [${kmathAlgebra}] reference.
|
||||||
|
*/
|
||||||
|
override val elementAlgebra: $kmathAlgebra get() = $kmathAlgebra
|
||||||
|
|
||||||
|
@Suppress("UNCHECKED_CAST")
|
||||||
|
override fun Matrix<${type}>.toEjml(): Ejml${type}Matrix<${ejmlMatrixType}> = when {
|
||||||
|
this is Ejml${type}Matrix<*> && origin is $ejmlMatrixType -> this as Ejml${type}Matrix<${ejmlMatrixType}>
|
||||||
|
else -> buildMatrix(rowNum, colNum) { i, j -> get(i, j) }
|
||||||
|
}
|
||||||
|
|
||||||
|
@Suppress("UNCHECKED_CAST")
|
||||||
|
override fun Point<${type}>.toEjml(): Ejml${type}Vector<${ejmlMatrixType}> = when {
|
||||||
|
this is Ejml${type}Vector<*> && origin is $ejmlMatrixType -> this as Ejml${type}Vector<${ejmlMatrixType}>
|
||||||
|
else -> Ejml${type}Vector(${ejmlMatrixType}(size, 1).also {
|
||||||
|
(0 until it.numRows).forEach { row -> it[row, 0] = get(row) }
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun buildMatrix(
|
||||||
|
rows: Int,
|
||||||
|
columns: Int,
|
||||||
|
initializer: ${kmathAlgebra}.(i: Int, j: Int) -> ${type},
|
||||||
|
): Ejml${type}Matrix<${ejmlMatrixType}> = ${ejmlMatrixType}(rows, columns).also {
|
||||||
|
(0 until rows).forEach { row ->
|
||||||
|
(0 until columns).forEach { col -> it[row, col] = elementAlgebra.initializer(row, col) }
|
||||||
|
}
|
||||||
|
}.wrapMatrix()
|
||||||
|
|
||||||
|
override fun buildVector(
|
||||||
|
size: Int,
|
||||||
|
initializer: ${kmathAlgebra}.(Int) -> ${type},
|
||||||
|
): Ejml${type}Vector<${ejmlMatrixType}> = Ejml${type}Vector(${ejmlMatrixType}(size, 1).also {
|
||||||
|
(0 until it.numRows).forEach { row -> it[row, 0] = elementAlgebra.initializer(row) }
|
||||||
|
})
|
||||||
|
|
||||||
|
private fun <T : ${ejmlMatrixParentTypeMatrix}> T.wrapMatrix() = Ejml${type}Matrix(this)
|
||||||
|
private fun <T : ${ejmlMatrixParentTypeMatrix}> T.wrapVector() = Ejml${type}Vector(this)
|
||||||
|
|
||||||
|
override fun Matrix<${type}>.unaryMinus(): Matrix<${type}> = this * elementAlgebra { -one }
|
||||||
|
|
||||||
|
override fun Matrix<${type}>.dot(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
|
||||||
|
val out = ${ejmlMatrixType}(1, 1)
|
||||||
|
CommonOps_${ops}.mult(toEjml().origin, other.toEjml().origin, out)
|
||||||
|
return out.wrapMatrix()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun Matrix<${type}>.dot(vector: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
|
||||||
|
val out = ${ejmlMatrixType}(1, 1)
|
||||||
|
CommonOps_${ops}.mult(toEjml().origin, vector.toEjml().origin, out)
|
||||||
|
return out.wrapVector()
|
||||||
|
}
|
||||||
|
|
||||||
|
override operator fun Matrix<${type}>.minus(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
|
||||||
|
val out = ${ejmlMatrixType}(1, 1)
|
||||||
|
|
||||||
|
CommonOps_${ops}.add(
|
||||||
|
elementAlgebra.one,
|
||||||
|
toEjml().origin,
|
||||||
|
elementAlgebra { -one },
|
||||||
|
other.toEjml().origin,
|
||||||
|
out,${
|
||||||
|
if (isDense) "" else
|
||||||
|
"""
|
||||||
|
null,
|
||||||
|
null,"""
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return out.wrapMatrix()
|
||||||
|
}
|
||||||
|
|
||||||
|
override operator fun Matrix<${type}>.times(value: ${type}): Ejml${type}Matrix<${ejmlMatrixType}> {
|
||||||
|
val res = ${ejmlMatrixType}(1, 1)
|
||||||
|
CommonOps_${ops}.scale(value, toEjml().origin, res)
|
||||||
|
return res.wrapMatrix()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun Point<${type}>.unaryMinus(): Ejml${type}Vector<${ejmlMatrixType}> {
|
||||||
|
val res = ${ejmlMatrixType}(1, 1)
|
||||||
|
CommonOps_${ops}.changeSign(toEjml().origin, res)
|
||||||
|
return res.wrapVector()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun Matrix<${type}>.plus(other: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
|
||||||
|
val out = ${ejmlMatrixType}(1, 1)
|
||||||
|
|
||||||
|
CommonOps_${ops}.add(
|
||||||
|
elementAlgebra.one,
|
||||||
|
toEjml().origin,
|
||||||
|
elementAlgebra.one,
|
||||||
|
other.toEjml().origin,
|
||||||
|
out,${
|
||||||
|
if (isDense) "" else
|
||||||
|
"""
|
||||||
|
null,
|
||||||
|
null,"""
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return out.wrapMatrix()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun Point<${type}>.plus(other: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
|
||||||
|
val out = ${ejmlMatrixType}(1, 1)
|
||||||
|
|
||||||
|
CommonOps_${ops}.add(
|
||||||
|
elementAlgebra.one,
|
||||||
|
toEjml().origin,
|
||||||
|
elementAlgebra.one,
|
||||||
|
other.toEjml().origin,
|
||||||
|
out,${
|
||||||
|
if (isDense) "" else
|
||||||
|
"""
|
||||||
|
null,
|
||||||
|
null,"""
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return out.wrapVector()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun Point<${type}>.minus(other: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
|
||||||
|
val out = ${ejmlMatrixType}(1, 1)
|
||||||
|
|
||||||
|
CommonOps_${ops}.add(
|
||||||
|
elementAlgebra.one,
|
||||||
|
toEjml().origin,
|
||||||
|
elementAlgebra { -one },
|
||||||
|
other.toEjml().origin,
|
||||||
|
out,${
|
||||||
|
if (isDense) "" else
|
||||||
|
"""
|
||||||
|
null,
|
||||||
|
null,"""
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return out.wrapVector()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun ${type}.times(m: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> = m * this
|
||||||
|
|
||||||
|
override fun Point<${type}>.times(value: ${type}): Ejml${type}Vector<${ejmlMatrixType}> {
|
||||||
|
val res = ${ejmlMatrixType}(1, 1)
|
||||||
|
CommonOps_${ops}.scale(value, toEjml().origin, res)
|
||||||
|
return res.wrapVector()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun ${type}.times(v: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> = v * this
|
||||||
|
|
||||||
|
@UnstableKMathAPI
|
||||||
|
override fun <F : StructureFeature> computeFeature(structure: Matrix<${type}>, type: KClass<out F>): F? {
|
||||||
|
structure.getFeature(type)?.let { return it }
|
||||||
|
val origin = structure.toEjml().origin
|
||||||
|
|
||||||
|
return when (type) {
|
||||||
|
${
|
||||||
|
if (isDense)
|
||||||
|
""" InverseMatrixFeature::class -> object : InverseMatrixFeature<${type}> {
|
||||||
|
override val inverse: Matrix<${type}> by lazy {
|
||||||
|
val res = origin.copy()
|
||||||
|
CommonOps_${ops}.invert(res)
|
||||||
|
res.wrapMatrix()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
DeterminantFeature::class -> object : DeterminantFeature<${type}> {
|
||||||
|
override val determinant: $type by lazy { CommonOps_${ops}.det(origin) }
|
||||||
|
}
|
||||||
|
|
||||||
|
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<${type}> {
|
||||||
|
private val svd by lazy {
|
||||||
|
DecompositionFactory_${ops}.svd(origin.numRows, origin.numCols, true, true, false)
|
||||||
|
.apply { decompose(origin.copy()) }
|
||||||
|
}
|
||||||
|
|
||||||
|
override val u: Matrix<${type}> by lazy { svd.getU(null, false).wrapMatrix() }
|
||||||
|
override val s: Matrix<${type}> by lazy { svd.getW(null).wrapMatrix() }
|
||||||
|
override val v: Matrix<${type}> by lazy { svd.getV(null, false).wrapMatrix() }
|
||||||
|
override val singularValues: Point<${type}> by lazy { ${type}Buffer(svd.singularValues) }
|
||||||
|
}
|
||||||
|
|
||||||
|
QRDecompositionFeature::class -> object : QRDecompositionFeature<${type}> {
|
||||||
|
private val qr by lazy {
|
||||||
|
DecompositionFactory_${ops}.qr().apply { decompose(origin.copy()) }
|
||||||
|
}
|
||||||
|
|
||||||
|
override val q: Matrix<${type}> by lazy {
|
||||||
|
qr.getQ(null, false).wrapMatrix().withFeature(OrthogonalFeature)
|
||||||
|
}
|
||||||
|
|
||||||
|
override val r: Matrix<${type}> by lazy { qr.getR(null, false).wrapMatrix().withFeature(UFeature) }
|
||||||
|
}
|
||||||
|
|
||||||
|
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<${type}> {
|
||||||
|
override val l: Matrix<${type}> by lazy {
|
||||||
|
val cholesky =
|
||||||
|
DecompositionFactory_${ops}.chol(structure.rowNum, true).apply { decompose(origin.copy()) }
|
||||||
|
|
||||||
|
cholesky.getT(null).wrapMatrix().withFeature(LFeature)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
LupDecompositionFeature::class -> object : LupDecompositionFeature<${type}> {
|
||||||
|
private val lup by lazy {
|
||||||
|
DecompositionFactory_${ops}.lu(origin.numRows, origin.numCols).apply { decompose(origin.copy()) }
|
||||||
|
}
|
||||||
|
|
||||||
|
override val l: Matrix<${type}> by lazy {
|
||||||
|
lup.getLower(null).wrapMatrix().withFeature(LFeature)
|
||||||
|
}
|
||||||
|
|
||||||
|
override val u: Matrix<${type}> by lazy {
|
||||||
|
lup.getUpper(null).wrapMatrix().withFeature(UFeature)
|
||||||
|
}
|
||||||
|
|
||||||
|
override val p: Matrix<${type}> by lazy { lup.getRowPivot(null).wrapMatrix() }
|
||||||
|
}""" else """ QRDecompositionFeature::class -> object : QRDecompositionFeature<$type> {
|
||||||
|
private val qr by lazy {
|
||||||
|
DecompositionFactory_${ops}.qr(FillReducing.NONE).apply { decompose(origin.copy()) }
|
||||||
|
}
|
||||||
|
|
||||||
|
override val q: Matrix<${type}> by lazy {
|
||||||
|
qr.getQ(null, false).wrapMatrix().withFeature(OrthogonalFeature)
|
||||||
|
}
|
||||||
|
|
||||||
|
override val r: Matrix<${type}> by lazy { qr.getR(null, false).wrapMatrix().withFeature(UFeature) }
|
||||||
|
}
|
||||||
|
|
||||||
|
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<${type}> {
|
||||||
|
override val l: Matrix<${type}> by lazy {
|
||||||
|
val cholesky =
|
||||||
|
DecompositionFactory_${ops}.cholesky().apply { decompose(origin.copy()) }
|
||||||
|
|
||||||
|
(cholesky.getT(null) as ${ejmlMatrixParentTypeMatrix}).wrapMatrix().withFeature(LFeature)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
LUDecompositionFeature::class, DeterminantFeature::class, InverseMatrixFeature::class -> object :
|
||||||
|
LUDecompositionFeature<${type}>, DeterminantFeature<${type}>, InverseMatrixFeature<${type}> {
|
||||||
|
private val lu by lazy {
|
||||||
|
DecompositionFactory_${ops}.lu(FillReducing.NONE).apply { decompose(origin.copy()) }
|
||||||
|
}
|
||||||
|
|
||||||
|
override val l: Matrix<${type}> by lazy {
|
||||||
|
lu.getLower(null).wrapMatrix().withFeature(LFeature)
|
||||||
|
}
|
||||||
|
|
||||||
|
override val u: Matrix<${type}> by lazy {
|
||||||
|
lu.getUpper(null).wrapMatrix().withFeature(UFeature)
|
||||||
|
}
|
||||||
|
|
||||||
|
override val inverse: Matrix<${type}> by lazy {
|
||||||
|
var a = origin
|
||||||
|
val inverse = ${ejmlMatrixDenseType}(1, 1)
|
||||||
|
val solver = LinearSolverFactory_${ops}.lu(FillReducing.NONE)
|
||||||
|
if (solver.modifiesA()) a = a.copy()
|
||||||
|
val i = CommonOps_${denseOps}.identity(a.numRows)
|
||||||
|
solver.solve(i, inverse)
|
||||||
|
inverse.wrapMatrix()
|
||||||
|
}
|
||||||
|
|
||||||
|
override val determinant: $type by lazy { elementAlgebra.number(lu.computeDeterminant().real) }
|
||||||
|
}"""
|
||||||
|
}
|
||||||
|
|
||||||
|
else -> null
|
||||||
|
}?.let(type::cast)
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Solves for *x* in the following equation: *x = [a] <sup>-1</sup> · [b]*.
|
||||||
|
*
|
||||||
|
* @param a the base matrix.
|
||||||
|
* @param b n by p matrix.
|
||||||
|
* @return the solution for *x* that is n by p.
|
||||||
|
*/
|
||||||
|
public fun solve(a: Matrix<${type}>, b: Matrix<${type}>): Ejml${type}Matrix<${ejmlMatrixType}> {
|
||||||
|
val res = ${ejmlMatrixType}(1, 1)
|
||||||
|
CommonOps_${ops}.solve(${ejmlMatrixType}(a.toEjml().origin), ${ejmlMatrixType}(b.toEjml().origin), res)
|
||||||
|
return res.wrapMatrix()
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Solves for *x* in the following equation: *x = [a] <sup>-1</sup> · [b]*.
|
||||||
|
*
|
||||||
|
* @param a the base matrix.
|
||||||
|
* @param b n by p vector.
|
||||||
|
* @return the solution for *x* that is n by p.
|
||||||
|
*/
|
||||||
|
public fun solve(a: Matrix<${type}>, b: Point<${type}>): Ejml${type}Vector<${ejmlMatrixType}> {
|
||||||
|
val res = ${ejmlMatrixType}(1, 1)
|
||||||
|
CommonOps_${ops}.solve(${ejmlMatrixType}(a.toEjml().origin), ${ejmlMatrixType}(b.toEjml().origin), res)
|
||||||
|
return Ejml${type}Vector(res)
|
||||||
|
}
|
||||||
|
}"""
|
||||||
|
appendLine(text)
|
||||||
|
appendLine()
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generates routine EJML classes.
|
||||||
|
*/
|
||||||
|
fun ejmlCodegen(outputFile: String): Unit = File(outputFile).run {
|
||||||
|
parentFile.mkdirs()
|
||||||
|
|
||||||
|
writer().use {
|
||||||
|
it.appendLine("/*")
|
||||||
|
it.appendLine(" * Copyright 2018-2021 KMath contributors.")
|
||||||
|
it.appendLine(" * Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file.")
|
||||||
|
it.appendLine(" */")
|
||||||
|
it.appendLine()
|
||||||
|
it.appendLine("/* This file is generated with buildSrc/src/main/kotlin/space/kscience/kmath/ejml/codegen/ejmlCodegen.kt */")
|
||||||
|
it.appendLine()
|
||||||
|
it.appendLine("package space.kscience.kmath.ejml")
|
||||||
|
it.appendLine()
|
||||||
|
it.appendLine("""import org.ejml.data.*
|
||||||
|
import org.ejml.dense.row.CommonOps_DDRM
|
||||||
|
import org.ejml.dense.row.CommonOps_FDRM
|
||||||
|
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
|
||||||
|
import org.ejml.dense.row.factory.DecompositionFactory_FDRM
|
||||||
|
import org.ejml.sparse.FillReducing
|
||||||
|
import org.ejml.sparse.csc.CommonOps_DSCC
|
||||||
|
import org.ejml.sparse.csc.CommonOps_FSCC
|
||||||
|
import org.ejml.sparse.csc.factory.DecompositionFactory_DSCC
|
||||||
|
import org.ejml.sparse.csc.factory.DecompositionFactory_FSCC
|
||||||
|
import org.ejml.sparse.csc.factory.LinearSolverFactory_DSCC
|
||||||
|
import org.ejml.sparse.csc.factory.LinearSolverFactory_FSCC
|
||||||
|
import space.kscience.kmath.linear.*
|
||||||
|
import space.kscience.kmath.linear.Matrix
|
||||||
|
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||||
|
import space.kscience.kmath.nd.StructureFeature
|
||||||
|
import space.kscience.kmath.operations.DoubleField
|
||||||
|
import space.kscience.kmath.operations.FloatField
|
||||||
|
import space.kscience.kmath.operations.invoke
|
||||||
|
import space.kscience.kmath.structures.DoubleBuffer
|
||||||
|
import space.kscience.kmath.structures.FloatBuffer
|
||||||
|
import kotlin.reflect.KClass
|
||||||
|
import kotlin.reflect.cast""")
|
||||||
|
it.appendLine()
|
||||||
|
it.appendEjmlVector("Double", "DMatrix")
|
||||||
|
it.appendEjmlVector("Float", "FMatrix")
|
||||||
|
it.appendEjmlMatrix("Double", "DMatrix")
|
||||||
|
it.appendEjmlMatrix("Float", "FMatrix")
|
||||||
|
it.appendEjmlLinearSpace("Double", "DoubleField", "DMatrix", "DMatrixRMaj", "DMatrixRMaj", "DDRM", "DDRM", true)
|
||||||
|
it.appendEjmlLinearSpace("Float", "FloatField", "FMatrix", "FMatrixRMaj", "FMatrixRMaj", "FDRM", "FDRM", true)
|
||||||
|
|
||||||
|
it.appendEjmlLinearSpace(
|
||||||
|
type = "Double",
|
||||||
|
kmathAlgebra = "DoubleField",
|
||||||
|
ejmlMatrixParentTypeMatrix = "DMatrix",
|
||||||
|
ejmlMatrixType = "DMatrixSparseCSC",
|
||||||
|
ejmlMatrixDenseType = "DMatrixRMaj",
|
||||||
|
ops = "DSCC",
|
||||||
|
denseOps = "DDRM",
|
||||||
|
isDense = false,
|
||||||
|
)
|
||||||
|
|
||||||
|
it.appendEjmlLinearSpace(
|
||||||
|
type = "Float",
|
||||||
|
kmathAlgebra = "FloatField",
|
||||||
|
ejmlMatrixParentTypeMatrix = "FMatrix",
|
||||||
|
ejmlMatrixType = "FMatrixSparseCSC",
|
||||||
|
ejmlMatrixDenseType = "FMatrixRMaj",
|
||||||
|
ops = "FSCC",
|
||||||
|
denseOps = "FDRM",
|
||||||
|
isDense = false,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
@ -1,86 +0,0 @@
|
|||||||
# Algebraic Structures and Algebraic Elements
|
|
||||||
|
|
||||||
The mathematical operations in KMath are generally separated from mathematical objects. This means that to perform an
|
|
||||||
operation, say `+`, one needs two objects of a type `T` and an algebra context, which draws appropriate operation up,
|
|
||||||
say `Group<T>`. Next one needs to run the actual operation in the context:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
import space.kscience.kmath.operations.*
|
|
||||||
|
|
||||||
val a: T = ...
|
|
||||||
val b: T = ...
|
|
||||||
val group: Group<T> = ...
|
|
||||||
|
|
||||||
val c = group { a + b }
|
|
||||||
```
|
|
||||||
|
|
||||||
At first glance, this distinction seems to be a needless complication, but in fact one needs to remember that in
|
|
||||||
mathematics, one could draw up different operations on same objects. For example, one could use different types of
|
|
||||||
geometry for vectors.
|
|
||||||
|
|
||||||
## Algebraic Structures
|
|
||||||
|
|
||||||
Primary mathematical contexts have the following hierarchy:
|
|
||||||
|
|
||||||
`Field <: Ring <: Group <: Algebra`
|
|
||||||
|
|
||||||
These interfaces follow real algebraic structures:
|
|
||||||
|
|
||||||
- [Group](https://mathworld.wolfram.com/Group.html) defines addition, its identity element (i.e., 0) and additive
|
|
||||||
inverse (-x);
|
|
||||||
- [Ring](http://mathworld.wolfram.com/Ring.html) adds multiplication and its identity element (i.e., 1);
|
|
||||||
- [Field](http://mathworld.wolfram.com/Field.html) adds division operation.
|
|
||||||
|
|
||||||
A typical implementation of `Field<T>` is the `DoubleField` which works on doubles, and `VectorSpace` for `Space<T>`.
|
|
||||||
|
|
||||||
In some cases algebra context can hold additional operations like `exp` or `sin`, and then it inherits appropriate
|
|
||||||
interface. Also, contexts may have operations, which produce elements outside the context. For example, `Matrix.dot`
|
|
||||||
operation produces a matrix with new dimensions, which can be incompatible with initial matrix in linear operations.
|
|
||||||
|
|
||||||
## Spaces and Fields
|
|
||||||
|
|
||||||
KMath introduces contexts for builtin algebraic structures:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
import space.kscience.kmath.operations.*
|
|
||||||
|
|
||||||
val c1 = Complex(1.0, 2.0)
|
|
||||||
val c2 = ComplexField.i
|
|
||||||
|
|
||||||
val c3 = c1 + c2
|
|
||||||
// or
|
|
||||||
val c3 = ComplexField { c1 + c2 }
|
|
||||||
```
|
|
||||||
|
|
||||||
Also, `ComplexField` features special operations to mix complex and real numbers, for example:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
import space.kscience.kmath.operations.*
|
|
||||||
|
|
||||||
val c1 = Complex(1.0, 2.0)
|
|
||||||
val c2 = ComplexField { c1 - 1.0 } // Returns: Complex(re=0.0, im=2.0)
|
|
||||||
val c3 = ComplexField { c1 - i * 2.0 }
|
|
||||||
```
|
|
||||||
|
|
||||||
**Note**: In theory it is possible to add behaviors directly to the context, but as for now Kotlin does not support
|
|
||||||
that. Watch [KT-10468](https://youtrack.jetbrains.com/issue/KT-10468) and
|
|
||||||
[KEEP-176](https://github.com/Kotlin/KEEP/pull/176) for updates.
|
|
||||||
|
|
||||||
## Nested fields
|
|
||||||
|
|
||||||
Contexts allow one to build more complex structures. For example, it is possible to create a `Matrix` from complex
|
|
||||||
elements like so:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
val element = NDElement.complex(shape = intArrayOf(2, 2)) { index: IntArray ->
|
|
||||||
Complex(index[0].toDouble() - index[1].toDouble(), index[0].toDouble() + index[1].toDouble())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
The `element` in this example is a member of the `Field` of 2D structures, each element of which is a member of its own
|
|
||||||
`ComplexField`. It is important one does not need to create a special n-d class to hold complex numbers and implement
|
|
||||||
operations on it, one just needs to provide a field for its elements.
|
|
||||||
|
|
||||||
**Note**: Fields themselves do not solve the problem of JVM boxing, but it is possible to solve with special contexts
|
|
||||||
like
|
|
||||||
`MemorySpec`.
|
|
@ -1,20 +0,0 @@
|
|||||||
# Buffers
|
|
||||||
|
|
||||||
Buffer is one of main building blocks of kmath. It is a basic interface allowing random-access read and write (
|
|
||||||
with `MutableBuffer`). There are different types of buffers:
|
|
||||||
|
|
||||||
* Primitive buffers wrapping like `DoubleBuffer` which are wrapping primitive arrays.
|
|
||||||
* Boxing `ListBuffer` wrapping a list
|
|
||||||
* Functionally defined `VirtualBuffer` which does not hold a state itself, but provides a function to calculate value
|
|
||||||
* `MemoryBuffer` allows direct allocation of objects in continuous memory block.
|
|
||||||
|
|
||||||
Some kmath features require a `BufferFactory` class to operate properly. A general convention is to use functions
|
|
||||||
defined in
|
|
||||||
`Buffer` and `MutableBuffer` companion classes. For example factory `Buffer.Companion::auto` in most cases creates the
|
|
||||||
most suitable buffer for given reified type (for types with custom memory buffer it still better to use their
|
|
||||||
own `MemoryBuffer.create()` factory).
|
|
||||||
|
|
||||||
## Buffer performance
|
|
||||||
|
|
||||||
One should avoid using default boxing buffer wherever it is possible. Try to use primitive buffers or memory buffers
|
|
||||||
instead.
|
|
@ -1,35 +0,0 @@
|
|||||||
# Coding Conventions
|
|
||||||
|
|
||||||
Generally, KMath code follows
|
|
||||||
general [Kotlin coding conventions](https://kotlinlang.org/docs/reference/coding-conventions.html), but with a number of
|
|
||||||
small changes and clarifications.
|
|
||||||
|
|
||||||
## Utility Class Naming
|
|
||||||
|
|
||||||
Filename should coincide with a name of one of the classes contained in the file or start with small letter and describe
|
|
||||||
its contents.
|
|
||||||
|
|
||||||
The code convention [here](https://kotlinlang.org/docs/reference/coding-conventions.html#source-file-names) says that
|
|
||||||
file names should start with a capital letter even if file does not contain classes. Yet starting utility classes and
|
|
||||||
aggregators with a small letter seems to be a good way to visually separate those files.
|
|
||||||
|
|
||||||
This convention could be changed in future in a non-breaking way.
|
|
||||||
|
|
||||||
## Private Variable Naming
|
|
||||||
|
|
||||||
Private variables' names may start with underscore `_` for of the private mutable variable is shadowed by the public
|
|
||||||
read-only value with the same meaning.
|
|
||||||
|
|
||||||
This rule does not permit underscores in names, but it is sometimes useful to "underscore" the fact that public and
|
|
||||||
private versions draw up the same entity. It is allowed only for private variables.
|
|
||||||
|
|
||||||
This convention could be changed in future in a non-breaking way.
|
|
||||||
|
|
||||||
## Functions and Properties One-liners
|
|
||||||
|
|
||||||
Use one-liners when they occupy single code window line both for functions and properties with getters like
|
|
||||||
`val b: String get() = "fff"`. The same should be performed with multiline expressions when they could be
|
|
||||||
cleanly separated.
|
|
||||||
|
|
||||||
There is no universal consensus whenever use `fun a() = ...` or `fun a() { return ... }`. Yet from reader outlook
|
|
||||||
one-lines seem to better show that the property or function is easily calculated.
|
|
@ -1,73 +0,0 @@
|
|||||||
# Context-oriented mathematics
|
|
||||||
|
|
||||||
## The problem
|
|
||||||
|
|
||||||
A known problem for implementing mathematics in statically-typed languages (but not only in them) is that different sets
|
|
||||||
of mathematical operators can be defined on the same mathematical objects. Sometimes there is no single way to treat
|
|
||||||
some operations, including basic arithmetic operations, on a Java/Kotlin `Number`. Sometimes there are different ways to
|
|
||||||
define the same structure, such as Euclidean and elliptic geometry vector spaces over real vectors. Another problem
|
|
||||||
arises when one wants to add some kind of behavior to an existing entity. In dynamic languages those problems are
|
|
||||||
usually solved by adding dynamic context-specific behaviors at runtime, but this solution has a lot of drawbacks.
|
|
||||||
|
|
||||||
## Context-oriented approach
|
|
||||||
|
|
||||||
One possible solution to these problems is to divorce numerical representations from behaviors. For example in Kotlin
|
|
||||||
one can define a separate class representing some entity without any operations, ex. a complex number:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
data class Complex(val re: Double, val im: Double)
|
|
||||||
```
|
|
||||||
|
|
||||||
And then to define a separate class or singleton, representing an operation on those complex numbers:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
object ComplexOperations {
|
|
||||||
operator fun Complex.plus(other: Complex) = Complex(re + other.re, im + other.im)
|
|
||||||
operator fun Complex.minus(other: Complex) = Complex(re - other.re, im - other.im)
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
In Java, applying such external operations could be cumbersome, but Kotlin has a unique feature that allows us
|
|
||||||
implement this
|
|
||||||
naturally: [extensions with receivers](https://kotlinlang.org/docs/reference/extensions.html#extension-functions). In
|
|
||||||
Kotlin, an operation on complex number could be implemented as:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
with(ComplexOperations) { c1 + c2 - c3 }
|
|
||||||
```
|
|
||||||
|
|
||||||
Kotlin also allows the creation of functions with receivers:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
fun ComplexOperations.doSomethingWithComplex(c1: Complex, c2: Complex, c3: Complex) = c1 + c2 - c3
|
|
||||||
|
|
||||||
ComplexOperations.doComethingWithComplex(c1, c2, c3)
|
|
||||||
```
|
|
||||||
|
|
||||||
In fact, whole parts of a program may be run within a mathematical context or even multiple nested contexts.
|
|
||||||
|
|
||||||
In KMath, contexts are not only responsible for operations, but also for raw object creation and advanced features.
|
|
||||||
|
|
||||||
## Other possibilities
|
|
||||||
|
|
||||||
### Type classes
|
|
||||||
|
|
||||||
An obvious candidate to get more or less the same functionality is the type class, which allows one to bind a behavior
|
|
||||||
to a specific type without modifying the type itself. On the plus side, type classes do not require explicit context
|
|
||||||
declaration, so the code looks cleaner. On the minus side, if there are different sets of behaviors for the same types,
|
|
||||||
it is impossible to combine them into one module. Also, unlike type classes, context can have parameters or even state.
|
|
||||||
For example in KMath, sizes and strides for `NDElement` or `Matrix` could be moved to context to optimize performance in
|
|
||||||
case of a large amount of structures.
|
|
||||||
|
|
||||||
### Wildcard imports and importing-on-demand
|
|
||||||
|
|
||||||
Sometimes, one may wish to use a single context throughout a file. In this case, is possible to import all members from
|
|
||||||
a package or file, via `import context.complex.*`. Effectively, this is the same as enclosing an entire file with a
|
|
||||||
single context. However, when using multiple contexts, this technique can introduce operator ambiguity, due to namespace
|
|
||||||
pollution. If there are multiple scoped contexts that define the same operation, it is still possible to import
|
|
||||||
specific operations as needed, without using an explicit context with extension functions, for example:
|
|
||||||
|
|
||||||
```
|
|
||||||
import context.complex.op1
|
|
||||||
import context.quaternion.op2
|
|
||||||
```
|
|
File diff suppressed because it is too large
Load Diff
@ -1,24 +0,0 @@
|
|||||||
# Expressions
|
|
||||||
|
|
||||||
Expressions is a feature, which allows constructing lazily or immediately calculated parametric mathematical
|
|
||||||
expressions.
|
|
||||||
|
|
||||||
The potential use-cases for it (so far) are following:
|
|
||||||
|
|
||||||
* lazy evaluation (in general simple lambda is better, but there are some border cases);
|
|
||||||
* automatic differentiation in single-dimension and in multiple dimensions;
|
|
||||||
* generation of mathematical syntax trees with subsequent code generation for other languages;
|
|
||||||
* symbolic computations, especially differentiation (and some other actions with `kmath-symja` integration with
|
|
||||||
Symja's `IExpr`—integration, simplification, and more);
|
|
||||||
* visualization with `kmath-jupyter`.
|
|
||||||
|
|
||||||
The workhorse of this API is `Expression` interface, which exposes
|
|
||||||
single `operator fun invoke(arguments: Map<Symbol, T>): T`
|
|
||||||
method. `ExpressionAlgebra` is used to generate expressions and introduce variables.
|
|
||||||
|
|
||||||
Currently there are two implementations:
|
|
||||||
|
|
||||||
* Generic `ExpressionField` in `kmath-core` which allows construction of custom lazy expressions
|
|
||||||
|
|
||||||
* Auto-differentiation expression in `kmath-commons` module allows using full power of `DerivativeStructure`
|
|
||||||
from commons-math. **TODO: add example**
|
|
@ -1 +0,0 @@
|
|||||||
**TODO**
|
|
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 249 KiB |
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 19 KiB |
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 278 KiB |
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 118 KiB |
@ -1,36 +0,0 @@
|
|||||||
## Basic linear algebra layout
|
|
||||||
|
|
||||||
KMath support for linear algebra organized in a context-oriented way, which means that operations are in most cases
|
|
||||||
declared in context classes, and are not the members of classes that store data. This allows more flexible approach to
|
|
||||||
maintain multiple back-ends. The new operations added as extensions to contexts instead of being member functions of
|
|
||||||
data structures.
|
|
||||||
|
|
||||||
The main context for linear algebra over matrices and vectors is `LinearSpace`, which defines addition and dot products
|
|
||||||
of matrices and vectors:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
import space.kscience.kmath.linear.*
|
|
||||||
|
|
||||||
LinearSpace.Companion.real {
|
|
||||||
val vec = buildVector(10) { i -> i.toDouble() }
|
|
||||||
val mat = buildMatrix(10, 10) { i, j -> i.toDouble() + j }
|
|
||||||
|
|
||||||
// Addition
|
|
||||||
vec + vec
|
|
||||||
mat + mat
|
|
||||||
|
|
||||||
// Multiplication by scalar
|
|
||||||
vec * 2.0
|
|
||||||
mat * 2.0
|
|
||||||
|
|
||||||
// Dot product
|
|
||||||
mat dot vec
|
|
||||||
mat dot mat
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## Backends overview
|
|
||||||
|
|
||||||
### EJML
|
|
||||||
|
|
||||||
### Commons Math
|
|
@ -1,150 +0,0 @@
|
|||||||
# ND-structure generation and operations
|
|
||||||
|
|
||||||
**TODO**
|
|
||||||
|
|
||||||
# Performance for n-dimensional structures operations
|
|
||||||
|
|
||||||
One of the most sought after features of mathematical libraries is the high-performance operations on n-dimensional
|
|
||||||
structures. In `kmath` performance depends on which particular context was used for operation.
|
|
||||||
|
|
||||||
Let us consider following contexts:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
// automatically build context most suited for given type.
|
|
||||||
val autoField = NDField.auto(DoubleField, dim, dim)
|
|
||||||
// specialized nd-field for Double. It works as generic Double field as well.
|
|
||||||
val specializedField = NDField.real(dim, dim)
|
|
||||||
//A generic boxing field. It should be used for objects, not primitives.
|
|
||||||
val genericField = NDField.buffered(DoubleField, dim, dim)
|
|
||||||
```
|
|
||||||
|
|
||||||
Now let us perform several tests and see, which implementation is best suited for each case:
|
|
||||||
|
|
||||||
## Test case
|
|
||||||
|
|
||||||
To test performance we will take 2d-structures with `dim = 1000` and add a structure filled with `1.0`
|
|
||||||
to it `n = 1000` times.
|
|
||||||
|
|
||||||
## Specialized
|
|
||||||
|
|
||||||
The code to run this looks like:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
specializedField.run {
|
|
||||||
var res: NDBuffer<Double> = one
|
|
||||||
repeat(n) {
|
|
||||||
res += 1.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
The performance of this code is the best of all tests since it inlines all operations and is specialized for operation
|
|
||||||
with doubles. We will measure everything else relative to this one, so time for this test will be `1x` (real time
|
|
||||||
on my computer is about 4.5 seconds). The only problem with this approach is that it requires specifying type
|
|
||||||
from the beginning. Everyone does so anyway, so it is the recommended approach.
|
|
||||||
|
|
||||||
## Automatic
|
|
||||||
|
|
||||||
Let's do the same with automatic field inference:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
autoField.run {
|
|
||||||
var res = one
|
|
||||||
repeat(n) {
|
|
||||||
res += 1.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
Ths speed of this operation is approximately the same as for specialized case since `NDField.auto` just
|
|
||||||
returns the same `RealNDField` in this case. Of course, it is usually better to use specialized method to be sure.
|
|
||||||
|
|
||||||
## Lazy
|
|
||||||
|
|
||||||
Lazy field does not produce a structure when asked, instead it generates an empty structure and fills it on-demand
|
|
||||||
using coroutines to parallelize computations.
|
|
||||||
When one calls
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
lazyField.run {
|
|
||||||
var res = one
|
|
||||||
repeat(n) {
|
|
||||||
res += 1.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
The result will be calculated almost immediately but the result will be empty. To get the full result
|
|
||||||
structure one needs to call all its elements. In this case computation overhead will be huge. So this field never
|
|
||||||
should be used if one expects to use the full result structure. Though if one wants only small fraction, it could
|
|
||||||
save a lot of time.
|
|
||||||
|
|
||||||
This field still could be used with reasonable performance if call code is changed:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
lazyField.run {
|
|
||||||
val res = one.map {
|
|
||||||
var c = 0.0
|
|
||||||
repeat(n) {
|
|
||||||
c += 1.0
|
|
||||||
}
|
|
||||||
c
|
|
||||||
}
|
|
||||||
|
|
||||||
res.elements().forEach { it.second }
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
In this case it completes in about `4x-5x` time due to boxing.
|
|
||||||
|
|
||||||
## Boxing
|
|
||||||
|
|
||||||
The boxing field produced by
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
genericField.run {
|
|
||||||
var res: NDBuffer<Double> = one
|
|
||||||
repeat(n) {
|
|
||||||
res += 1.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
is the slowest one, because it requires boxing and unboxing the `double` on each operation. It takes about
|
|
||||||
`15x` time (**TODO: there seems to be a problem here, it should be slow, but not that slow**). This field should
|
|
||||||
never be used for primitives.
|
|
||||||
|
|
||||||
## Element operation
|
|
||||||
|
|
||||||
Let us also check the speed for direct operations on elements:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
var res = genericField.one
|
|
||||||
repeat(n) {
|
|
||||||
res += 1.0
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
One would expect to be at least as slow as field operation, but in fact, this one takes only `2x` time to complete.
|
|
||||||
It happens, because in this particular case it does not use actual `NDField` but instead calculated directly
|
|
||||||
via extension function.
|
|
||||||
|
|
||||||
## What about python?
|
|
||||||
|
|
||||||
Usually it is bad idea to compare the direct numerical operation performance in different languages, but it hard to
|
|
||||||
work completely without frame of reference. In this case, simple numpy code:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
res = np.ones((1000,1000))
|
|
||||||
for i in range(1000):
|
|
||||||
res = res + 1.0
|
|
||||||
```
|
|
||||||
|
|
||||||
gives the completion time of about `1.1x`, which means that specialized kotlin code in fact is working faster (I think
|
|
||||||
it is
|
|
||||||
because better memory management). Of course if one writes `res += 1.0`, the performance will be different,
|
|
||||||
but it would be different case, because numpy overrides `+=` with in-place operations. In-place operations are
|
|
||||||
available in `kmath` with `MutableNDStructure` but there is no field for it (one can still work with mapping
|
|
||||||
functions).
|
|
@ -1,223 +0,0 @@
|
|||||||
# Polynomials and Rational Functions
|
|
||||||
|
|
||||||
KMath provides a way to work with uni- and multivariate polynomials and rational functions. It includes full support of
|
|
||||||
arithmetic operations of integers, **constants** (elements of ring polynomials are build over), variables (for certain
|
|
||||||
multivariate implementations), polynomials and rational functions encapsulated in so-called **polynomial space** and *
|
|
||||||
*rational function space** and some other utilities such as algebraic differentiation and substitution.
|
|
||||||
|
|
||||||
## Concrete realizations
|
|
||||||
|
|
||||||
There are 3 approaches to represent polynomials:
|
|
||||||
|
|
||||||
1. For univariate polynomials one can represent and store polynomial as a list of coefficients for each power of the
|
|
||||||
variable. I.e. polynomial $a_0 + \dots + a_n x^n $ can be represented as a finite sequence $(a_0; \dots; a_n)$. (
|
|
||||||
Compare to sequential definition of polynomials.)
|
|
||||||
2. For multivariate polynomials one can represent and store polynomial as a matching (in programming it is called "map"
|
|
||||||
or "dictionary", in math it is
|
|
||||||
called [functional relation](https://en.wikipedia.org/wiki/Binary_relation#Special_types_of_binary_relations)) of
|
|
||||||
each "**term signature**" (that describes what variables and in what powers appear in the term) with corresponding
|
|
||||||
coefficient of the term. But there are 2 possible approaches of term signature representation:
|
|
||||||
1. One can number all the variables, so term signature can be represented as a sequence describing powers of the
|
|
||||||
variables. I.e. signature of term $c \\; x_0^{d_0} \dots x_n^{d_n} $ (for natural or zero $d_i $) can be
|
|
||||||
represented as a finite sequence $(d_0; \dots; d_n)$.
|
|
||||||
2. One can represent variables as objects ("**labels**"), so term signature can be also represented as a matching of
|
|
||||||
each appeared variable with its power in the term. I.e. signature of term $c \\; x_0^{d_0} \dots x_n^{d_n} $ (for
|
|
||||||
natural non-zero $d_i $) can be represented as a finite matching $(x_0 \to d_1; \dots; x_n \to d_n)$.
|
|
||||||
|
|
||||||
All that three approaches are implemented by "list", "numbered", and "labeled" versions of polynomials and polynomial
|
|
||||||
spaces respectively. Whereas all rational functions are represented as fractions with corresponding polynomial numerator
|
|
||||||
and denominator, and rational functions' spaces are implemented in the same way as usual field of rational numbers (or
|
|
||||||
more precisely, as any field of fractions over integral domain) should be implemented.
|
|
||||||
|
|
||||||
So here are a bit of details. Let `C` by type of constants. Then:
|
|
||||||
|
|
||||||
1. `ListPolynomial`, `ListPolynomialSpace`, `ListRationalFunction` and `ListRationalFunctionSpace` implement the first
|
|
||||||
scenario. `ListPolynomial` stores polynomial $a_0 + \dots + a_n x^n $ as a coefficients
|
|
||||||
list `listOf(a_0, ..., a_n)` (of type `List<C>`).
|
|
||||||
|
|
||||||
They also have variation `ScalableListPolynomialSpace` that replaces former polynomials and
|
|
||||||
implements `ScaleOperations`.
|
|
||||||
2. `NumberedPolynomial`, `NumberedPolynomialSpace`, `NumberedRationalFunction` and `NumberedRationalFunctionSpace`
|
|
||||||
implement second scenario. `NumberedPolynomial` stores polynomials as structures of type `Map<List<UInt>, C>`.
|
|
||||||
Signatures are stored as `List<UInt>`. To prevent ambiguity signatures should not end with zeros.
|
|
||||||
3. `LabeledPolynomial`, `LabeledPolynomialSpace`, `LabeledRationalFunction` and `LabeledRationalFunctionSpace` implement
|
|
||||||
third scenario using common `Symbol` as variable type. `LabeledPolynomial` stores polynomials as structures of
|
|
||||||
type `Map<Map<Symbol, UInt>, C>`. Signatures are stored as `Map<Symbol, UInt>`. To prevent ambiguity each signature
|
|
||||||
should not map any variable to zero.
|
|
||||||
|
|
||||||
### Example: `ListPolynomial`
|
|
||||||
|
|
||||||
For example, polynomial $2 - 3x + x^2 $ (with `Int` coefficients) is represented
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
val polynomial: ListPolynomial<Int> = ListPolynomial(listOf(2, -3, 1))
|
|
||||||
// or
|
|
||||||
val polynomial: ListPolynomial<Int> = ListPolynomial(2, -3, 1)
|
|
||||||
```
|
|
||||||
|
|
||||||
All algebraic operations can be used in corresponding space:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
val computationResult = Int.algebra.listPolynomialSpace {
|
|
||||||
ListPolynomial(2, -3, 1) + ListPolynomial(0, 6) == ListPolynomial(2, 3, 1)
|
|
||||||
}
|
|
||||||
|
|
||||||
println(computationResult) // true
|
|
||||||
```
|
|
||||||
|
|
||||||
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
|
|
||||||
|
|
||||||
### Example: `NumberedPolynomial`
|
|
||||||
|
|
||||||
For example, polynomial $3 + 5 x_1 - 7 x_0^2 x_2 $ (with `Int` coefficients) is represented
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
val polynomial: NumberedPolynomial<Int> = NumberedPolynomial(
|
|
||||||
mapOf(
|
|
||||||
listOf<UInt>() to 3,
|
|
||||||
listOf(0u, 1u) to 5,
|
|
||||||
listOf(2u, 0u, 1u) to -7,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
// or
|
|
||||||
val polynomial: NumberedPolynomial<Int> = NumberedPolynomial(
|
|
||||||
listOf<UInt>() to 3,
|
|
||||||
listOf(0u, 1u) to 5,
|
|
||||||
listOf(2u, 0u, 1u) to -7,
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
All algebraic operations can be used in corresponding space:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
val computationResult = Int.algebra.numberedPolynomialSpace {
|
|
||||||
NumberedPolynomial(
|
|
||||||
listOf<UInt>() to 3,
|
|
||||||
listOf(0u, 1u) to 5,
|
|
||||||
listOf(2u, 0u, 1u) to -7,
|
|
||||||
) + NumberedPolynomial(
|
|
||||||
listOf(0u, 1u) to -5,
|
|
||||||
listOf(0u, 0u, 0u, 4u) to 4,
|
|
||||||
) == NumberedPolynomial(
|
|
||||||
listOf<UInt>() to 3,
|
|
||||||
listOf(0u, 1u) to 0,
|
|
||||||
listOf(2u, 0u, 1u) to -7,
|
|
||||||
listOf(0u, 0u, 0u, 4u) to 4,
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
println(computationResult) // true
|
|
||||||
```
|
|
||||||
|
|
||||||
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
|
|
||||||
|
|
||||||
### Example: `LabeledPolynomial`
|
|
||||||
|
|
||||||
For example, polynomial $3 + 5 y - 7 x^2 z $ (with `Int` coefficients) is represented
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
val polynomial: LabeledPolynomial<Int> = LabeledPolynomial(
|
|
||||||
mapOf(
|
|
||||||
mapOf<Symbol, UInt>() to 3,
|
|
||||||
mapOf(y to 1u) to 5,
|
|
||||||
mapOf(x to 2u, z to 1u) to -7,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
// or
|
|
||||||
val polynomial: LabeledPolynomial<Int> = LabeledPolynomial(
|
|
||||||
mapOf<Symbol, UInt>() to 3,
|
|
||||||
mapOf(y to 1u) to 5,
|
|
||||||
mapOf(x to 2u, z to 1u) to -7,
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
All algebraic operations can be used in corresponding space:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
val computationResult = Int.algebra.labeledPolynomialSpace {
|
|
||||||
LabeledPolynomial(
|
|
||||||
listOf<UInt>() to 3,
|
|
||||||
listOf(0u, 1u) to 5,
|
|
||||||
listOf(2u, 0u, 1u) to -7,
|
|
||||||
) + LabeledPolynomial(
|
|
||||||
listOf(0u, 1u) to -5,
|
|
||||||
listOf(0u, 0u, 0u, 4u) to 4,
|
|
||||||
) == LabeledPolynomial(
|
|
||||||
listOf<UInt>() to 3,
|
|
||||||
listOf(0u, 1u) to 0,
|
|
||||||
listOf(2u, 0u, 1u) to -7,
|
|
||||||
listOf(0u, 0u, 0u, 4u) to 4,
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
println(computationResult) // true
|
|
||||||
```
|
|
||||||
|
|
||||||
For more see [examples](../examples/src/main/kotlin/space/kscience/kmath/functions/polynomials.kt).
|
|
||||||
|
|
||||||
## Abstract entities (interfaces and abstract classes)
|
|
||||||
|
|
||||||
```mermaid
|
|
||||||
classDiagram
|
|
||||||
Polynomial <|-- ListPolynomial
|
|
||||||
Polynomial <|-- NumberedPolynomial
|
|
||||||
Polynomial <|-- LabeledPolynomial
|
|
||||||
|
|
||||||
RationalFunction <|-- ListRationalFunction
|
|
||||||
RationalFunction <|-- NumberedRationalFunction
|
|
||||||
RationalFunction <|-- LabeledRationalFunction
|
|
||||||
|
|
||||||
Ring <|-- PolynomialSpace
|
|
||||||
PolynomialSpace <|-- MultivariatePolynomialSpace
|
|
||||||
PolynomialSpace <|-- PolynomialSpaceOverRing
|
|
||||||
|
|
||||||
Ring <|-- RationalFunctionSpace
|
|
||||||
RationalFunctionSpace <|-- MultivariateRationalFunctionSpace
|
|
||||||
RationalFunctionSpace <|-- RationalFunctionSpaceOverRing
|
|
||||||
RationalFunctionSpace <|-- RationalFunctionSpaceOverPolynomialSpace
|
|
||||||
RationalFunctionSpace <|-- PolynomialSpaceOfFractions
|
|
||||||
RationalFunctionSpaceOverPolynomialSpace <|-- MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace
|
|
||||||
MultivariateRationalFunctionSpace <|-- MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace
|
|
||||||
MultivariateRationalFunctionSpace <|-- MultivariatePolynomialSpaceOfFractions
|
|
||||||
PolynomialSpaceOfFractions <|-- MultivariatePolynomialSpaceOfFractions
|
|
||||||
```
|
|
||||||
|
|
||||||
There are implemented `Polynomial` and `RationalFunction` interfaces as abstractions of polynomials and rational
|
|
||||||
functions respectively (although, there is not a lot of logic in them) and `PolynomialSpace`
|
|
||||||
and `RationalFunctionSpace` (that implement `Ring` interface) as abstractions of polynomials' and rational functions'
|
|
||||||
spaces respectively. More precisely, that means they allow to declare common logic of interaction with such objects and
|
|
||||||
spaces:
|
|
||||||
|
|
||||||
- `Polynomial` does not provide any logic. It is marker interface.
|
|
||||||
- `RationalFunction` provides numerator and denominator of rational function and destructuring declaration for them.
|
|
||||||
- `PolynomialSpace` provides all possible arithmetic interactions of integers, constants (of type `C`), and
|
|
||||||
polynomials (of type `P`) like addition, subtraction, multiplication, and some others and common properties like
|
|
||||||
degree of polynomial.
|
|
||||||
- `RationalFunctionSpace` provides the same as `PolynomialSpace` but also for rational functions: all possible
|
|
||||||
arithmetic interactions of integers, constants (of type `C`), polynomials (of type `P`), and rational functions (of
|
|
||||||
type `R`) like addition, subtraction, multiplication, division (in some cases), and some others and common properties
|
|
||||||
like degree of polynomial.
|
|
||||||
|
|
||||||
Then to add abstraction of similar behaviour with variables (in multivariate case) there are
|
|
||||||
implemented `MultivariatePolynomialSpace` and `MultivariateRationalFunctionSpace`. They just include variables (of
|
|
||||||
type `V`) in the interactions of the entities.
|
|
||||||
|
|
||||||
Also, to remove boilerplates there were provided helping subinterfaces and abstract subclasses:
|
|
||||||
|
|
||||||
- `PolynomialSpaceOverRing` allows to replace implementation of interactions of integers and constants with
|
|
||||||
implementations from provided ring over constants (of type `A: Ring<C>`).
|
|
||||||
- `RationalFunctionSpaceOverRing` — the same but for `RationalFunctionSpace`.
|
|
||||||
- `RationalFunctionSpaceOverPolynomialSpace` — the same but "the inheritance" includes interactions with
|
|
||||||
polynomials from provided `PolynomialSpace`.
|
|
||||||
- `PolynomialSpaceOfFractions` is actually abstract subclass of `RationalFunctionSpace` that implements all fractions
|
|
||||||
boilerplates with provided (`protected`) constructor of rational functions by polynomial numerator and denominator.
|
|
||||||
- `MultivariateRationalFunctionSpaceOverMultivariatePolynomialSpace` and `MultivariatePolynomialSpaceOfFractions`
|
|
||||||
— the same stories of operators inheritance and fractions boilerplates respectively but in multivariate case.
|
|
||||||
|
|
||||||
## Utilities
|
|
||||||
|
|
||||||
For all kinds of polynomials there are provided (implementation details depend on kind of polynomials) such common
|
|
||||||
utilities as:
|
|
||||||
|
|
||||||
1. differentiation and anti-differentiation,
|
|
||||||
2. substitution, invocation and functional representation.
|
|
@ -1,14 +0,0 @@
|
|||||||
# Documentation
|
|
||||||
|
|
||||||
* [Algebra](algebra.md): [context-based](contexts.md) operations on different primitives and structures.
|
|
||||||
|
|
||||||
* [NDStructures](nd-structure.md)
|
|
||||||
|
|
||||||
* [Linear algebra](linear.md): matrices, operations and linear equations solving. To be moved to separate module.
|
|
||||||
Currently, supports basic API and multiple library back-ends.
|
|
||||||
|
|
||||||
* [Histograms](histograms.md): multidimensional histogram calculation and operations.
|
|
||||||
|
|
||||||
* [Expressions](expressions.md)
|
|
||||||
|
|
||||||
* Commons math integration
|
|
16
docs/templates/ARTIFACT-TEMPLATE.md
vendored
16
docs/templates/ARTIFACT-TEMPLATE.md
vendored
@ -1,16 +0,0 @@
|
|||||||
## Artifact:
|
|
||||||
|
|
||||||
The Maven coordinates of this project are `${group}:${name}:${version}`.
|
|
||||||
|
|
||||||
**Gradle:**
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
repositories {
|
|
||||||
maven("https://repo.kotlin.link")
|
|
||||||
mavenCentral()
|
|
||||||
}
|
|
||||||
|
|
||||||
dependencies {
|
|
||||||
implementation("${group}:${name}:${version}")
|
|
||||||
}
|
|
||||||
```
|
|
109
docs/templates/README-TEMPLATE.md
vendored
109
docs/templates/README-TEMPLATE.md
vendored
@ -1,109 +0,0 @@
|
|||||||
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
|
|
||||||
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
|
|
||||||
![Gradle build](https://github.com/SciProgCentre/kmath/workflows/Gradle%20build/badge.svg)
|
|
||||||
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22)
|
|
||||||
[![Space](https://img.shields.io/badge/dynamic/xml?color=orange&label=Space&query=//metadata/versioning/latest&url=https%3A%2F%2Fmaven.pkg.jetbrains.space%2Fmipt-npm%2Fp%2Fsci%2Fmaven%2Fspace%2Fkscience%2Fkmath-core%2Fmaven-metadata.xml)](https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven/space/kscience/)
|
|
||||||
|
|
||||||
# KMath
|
|
||||||
|
|
||||||
Could be pronounced as `key-math`. The **K**otlin **Math**ematics library was initially intended as a Kotlin-based
|
|
||||||
analog to Python's NumPy library. Later we found that kotlin is much more flexible language and allows superior
|
|
||||||
architecture designs. In contrast to `numpy` and `scipy` it is modular and has a lightweight core. The `numpy`-like
|
|
||||||
experience could be achieved with [kmath-for-real](/kmath-for-real) extension module.
|
|
||||||
|
|
||||||
[Documentation site](https://SciProgCentre.github.io/kmath/)
|
|
||||||
|
|
||||||
## Publications and talks
|
|
||||||
|
|
||||||
* [A conceptual article about context-oriented design](https://proandroiddev.com/an-introduction-context-oriented-programming-in-kotlin-2e79d316b0a2)
|
|
||||||
* [Another article about context-oriented design](https://proandroiddev.com/diving-deeper-into-context-oriented-programming-in-kotlin-3ecb4ec38814)
|
|
||||||
* [ACAT 2019 conference paper](https://aip.scitation.org/doi/abs/10.1063/1.5130103)
|
|
||||||
* [A talk at KotlinConf 2019 about using kotlin for science](https://youtu.be/LI_5TZ7tnOE?si=4LknX41gl_YeUbIe)
|
|
||||||
* [A talk on architecture at Joker-2021 (in Russian)](https://youtu.be/1bZ2doHiRRM?si=9w953ro9yu98X_KJ)
|
|
||||||
* [The same talk in English](https://youtu.be/yP5DIc2fVwQ?si=louZzQ1dcXV6gP10)
|
|
||||||
* [A seminar on tensor API](https://youtu.be/0H99wUs0xTM?si=6c__04jrByFQtVpo)
|
|
||||||
|
|
||||||
# Goal
|
|
||||||
|
|
||||||
* Provide a flexible and powerful API to work with mathematics abstractions in Kotlin-multiplatform (JVM, JS, Native and
|
|
||||||
Wasm).
|
|
||||||
* Provide basic multiplatform implementations for those abstractions (without significant performance optimization).
|
|
||||||
* Provide bindings and wrappers with those abstractions for popular optimized platform libraries.
|
|
||||||
|
|
||||||
## Non-goals
|
|
||||||
|
|
||||||
* Be like NumPy. It was the idea at the beginning, but we decided that we can do better in API.
|
|
||||||
* Provide the best performance out of the box. We have specialized libraries for that. Need only API wrappers for them.
|
|
||||||
* Cover all cases as immediately and in one bundle. We will modularize everything and add new features gradually.
|
|
||||||
* Provide specialized behavior in the core. API is made generic on purpose, so one needs to specialize for types, like
|
|
||||||
for `Double` in the core. For that we will have specialization modules like `kmath-for-real`, which will give better
|
|
||||||
experience for those, who want to work with specific types.
|
|
||||||
|
|
||||||
## Features and stability
|
|
||||||
|
|
||||||
KMath is a modular library. Different modules provide different features with different API stability guarantees. All
|
|
||||||
core modules are released with the same version, but with different API change policy. The features are described in
|
|
||||||
module definitions below. The module stability could have the following levels:
|
|
||||||
|
|
||||||
* **PROTOTYPE**. On this level there are no compatibility guarantees. All methods and classes form those modules could
|
|
||||||
break any moment. You can still use it, but be sure to fix the specific version.
|
|
||||||
* **EXPERIMENTAL**. The general API is decided, but some changes could be made. Volatile API is marked
|
|
||||||
with `@UnstableKMathAPI` or other stability warning annotations.
|
|
||||||
* **DEVELOPMENT**. API breaking generally follows semantic versioning ideology. There could be changes in minor
|
|
||||||
versions, but not in patch versions. API is protected
|
|
||||||
with [binary-compatibility-validator](https://github.com/Kotlin/binary-compatibility-validator) tool.
|
|
||||||
* **STABLE**. The API stabilized. Breaking changes are allowed only in major releases.
|
|
||||||
|
|
||||||
## Modules
|
|
||||||
|
|
||||||
${modules}
|
|
||||||
|
|
||||||
## Multi-platform support
|
|
||||||
|
|
||||||
KMath is developed as a multi-platform library, which means that most of the interfaces are declared in the
|
|
||||||
[common source sets](/kmath-core/src/commonMain) and implemented there wherever it is possible. In some cases, features
|
|
||||||
are delegated to platform-specific implementations even if they could be provided in the common module for performance
|
|
||||||
reasons. Currently, Kotlin/JVM is the primary platform, however, Kotlin/Native and Kotlin/JS contributions and
|
|
||||||
feedback are also welcome.
|
|
||||||
|
|
||||||
## Performance
|
|
||||||
|
|
||||||
Calculation of performance is one of the major goals of KMath in the future, but in some cases it is impossible to
|
|
||||||
achieve both
|
|
||||||
performance and flexibility.
|
|
||||||
|
|
||||||
We expect to focus on creating a convenient universal API first and then work on increasing performance for specific
|
|
||||||
cases. We expect the worst KMath benchmarks will perform better than native Python, but worse than optimized
|
|
||||||
native/SciPy (mostly due to boxing operations on primitive numbers). The best performance of optimized parts could be
|
|
||||||
better than SciPy.
|
|
||||||
|
|
||||||
## Requirements
|
|
||||||
|
|
||||||
KMath currently relies on JDK 11 for compilation and execution of Kotlin-JVM part. We recommend using GraalVM-CE or
|
|
||||||
Oracle GraalVM for execution to get better performance.
|
|
||||||
|
|
||||||
### Repositories
|
|
||||||
|
|
||||||
Release and development artifacts are accessible from mipt-npm [Space](https://www.jetbrains.com/space/)
|
|
||||||
repository `https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven` (see documentation of
|
|
||||||
[Kotlin Multiplatform](https://kotlinlang.org/docs/reference/multiplatform.html) for more details). The repository could
|
|
||||||
be reached through [repo.kotlin.link](https://repo.kotlin.link) proxy:
|
|
||||||
|
|
||||||
```kotlin
|
|
||||||
repositories {
|
|
||||||
maven("https://repo.kotlin.link")
|
|
||||||
}
|
|
||||||
|
|
||||||
dependencies {
|
|
||||||
api("${group}:kmath-core:$version")
|
|
||||||
// api("${group}:kmath-core-jvm:$version") for jvm-specific version
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## Contributing
|
|
||||||
|
|
||||||
The project requires a lot of additional work. The most important thing we need is feedback about what features are
|
|
||||||
required the most. Feel free to create feature requests. We are also welcome to code contributions, especially in issues
|
|
||||||
marked
|
|
||||||
with [good first issue](hhttps://github.com/SciProgCentre/kmath/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22)
|
|
||||||
label.
|
|
@ -1,4 +0,0 @@
|
|||||||
# Module examples
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,77 +0,0 @@
|
|||||||
import org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile
|
|
||||||
|
|
||||||
plugins {
|
|
||||||
kotlin("jvm")
|
|
||||||
}
|
|
||||||
|
|
||||||
repositories {
|
|
||||||
mavenCentral()
|
|
||||||
maven("https://repo.kotlin.link")
|
|
||||||
maven("https://maven.pkg.jetbrains.space/kotlin/p/kotlin/kotlin-js-wrappers")
|
|
||||||
}
|
|
||||||
|
|
||||||
val multikVersion: String by rootProject.extra
|
|
||||||
|
|
||||||
dependencies {
|
|
||||||
implementation(project(":kmath-ast"))
|
|
||||||
implementation(project(":kmath-kotlingrad"))
|
|
||||||
implementation(project(":kmath-core"))
|
|
||||||
implementation(project(":kmath-coroutines"))
|
|
||||||
implementation(project(":kmath-commons"))
|
|
||||||
implementation(project(":kmath-complex"))
|
|
||||||
implementation(project(":kmath-functions"))
|
|
||||||
implementation(project(":kmath-optimization"))
|
|
||||||
implementation(project(":kmath-stat"))
|
|
||||||
implementation(project(":kmath-viktor"))
|
|
||||||
implementation(project(":kmath-dimensions"))
|
|
||||||
implementation(project(":kmath-ejml"))
|
|
||||||
implementation(project(":kmath-nd4j"))
|
|
||||||
implementation(project(":kmath-tensors"))
|
|
||||||
implementation(project(":kmath-symja"))
|
|
||||||
implementation(project(":kmath-for-real"))
|
|
||||||
//jafama
|
|
||||||
implementation(project(":kmath-jafama"))
|
|
||||||
//multik
|
|
||||||
implementation(project(":kmath-multik"))
|
|
||||||
implementation("org.jetbrains.kotlinx:multik-default:$multikVersion")
|
|
||||||
|
|
||||||
//datetime
|
|
||||||
implementation("org.jetbrains.kotlinx:kotlinx-datetime:0.4.0")
|
|
||||||
|
|
||||||
implementation("org.nd4j:nd4j-native:1.0.0-beta7")
|
|
||||||
|
|
||||||
// uncomment if your system supports AVX2
|
|
||||||
// val os = System.getProperty("os.name")
|
|
||||||
//
|
|
||||||
// if (System.getProperty("os.arch") in arrayOf("x86_64", "amd64")) when {
|
|
||||||
// os.startsWith("Windows") -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:windows-x86_64-avx2")
|
|
||||||
// os == "Linux" -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:linux-x86_64-avx2")
|
|
||||||
// os == "Mac OS X" -> implementation("org.nd4j:nd4j-native:1.0.0-beta7:macosx-x86_64-avx2")
|
|
||||||
// } else
|
|
||||||
implementation("org.nd4j:nd4j-native-platform:1.0.0-beta7")
|
|
||||||
|
|
||||||
implementation("org.slf4j:slf4j-simple:1.7.32")
|
|
||||||
// plotting
|
|
||||||
implementation("space.kscience:plotlykt-server:0.7.0")
|
|
||||||
}
|
|
||||||
|
|
||||||
kotlin {
|
|
||||||
jvmToolchain(11)
|
|
||||||
sourceSets.all {
|
|
||||||
languageSettings {
|
|
||||||
optIn("kotlin.contracts.ExperimentalContracts")
|
|
||||||
optIn("kotlin.ExperimentalUnsignedTypes")
|
|
||||||
optIn("space.kscience.kmath.UnstableKMathAPI")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
tasks.withType<KotlinJvmCompile> {
|
|
||||||
compilerOptions {
|
|
||||||
freeCompilerArgs.addAll("-Xjvm-default=all", "-Xopt-in=kotlin.RequiresOptIn", "-Xlambdas=indy")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
readme {
|
|
||||||
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL
|
|
||||||
}
|
|
@ -1,418 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"%use kmath(0.3.1-dev-5)\n",
|
|
||||||
"%use plotly(0.5.0)\n",
|
|
||||||
"@file:DependsOn(\"space.kscience:kmath-commons:0.3.1-dev-5\")"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "lQbSB87rNAn9lV6poArVWW",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"//Uncomment to work in Jupyter classic or DataLore\n",
|
|
||||||
"//Plotly.jupyter.notebook()"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "0UP158hfccGgjQtHz0wAi6",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"source": [
|
|
||||||
"# The model\n",
|
|
||||||
"\n",
|
|
||||||
"Defining the input data format, the statistic abstraction and the statistic implementation based on a weighted sum of elements."
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"class XYValues(val xValues: DoubleArray, val yValues: DoubleArray) {\n",
|
|
||||||
" init {\n",
|
|
||||||
" require(xValues.size == yValues.size)\n",
|
|
||||||
" }\n",
|
|
||||||
"}\n",
|
|
||||||
"\n",
|
|
||||||
"fun interface XYStatistic {\n",
|
|
||||||
" operator fun invoke(values: XYValues): Double\n",
|
|
||||||
"}\n",
|
|
||||||
"\n",
|
|
||||||
"class ConvolutionalXYStatistic(val weights: DoubleArray) : XYStatistic {\n",
|
|
||||||
" override fun invoke(values: XYValues): Double {\n",
|
|
||||||
" require(weights.size == values.yValues.size)\n",
|
|
||||||
" val norm = values.yValues.sum()\n",
|
|
||||||
" return values.yValues.zip(weights) { value, weight -> value * weight }.sum()/norm\n",
|
|
||||||
" }\n",
|
|
||||||
"}"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "Zhgz1Ui91PWz0meJiQpHol",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"source": [
|
|
||||||
"# Generator\n",
|
|
||||||
"Generate sample data for parabolas and hyperbolas"
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"fun generateParabolas(xValues: DoubleArray, a: Double, b: Double, c: Double): XYValues {\n",
|
|
||||||
" val yValues = xValues.map { x -> a * x * x + b * x + c }.toDoubleArray()\n",
|
|
||||||
" return XYValues(xValues, yValues)\n",
|
|
||||||
"}\n",
|
|
||||||
"\n",
|
|
||||||
"fun generateHyperbols(xValues: DoubleArray, gamma: Double, x0: Double, y0: Double): XYValues {\n",
|
|
||||||
" val yValues = xValues.map { x -> y0 + gamma / (x - x0) }.toDoubleArray()\n",
|
|
||||||
" return XYValues(xValues, yValues)\n",
|
|
||||||
"}"
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"val xValues = (1.0..10.0).step(1.0).toDoubleArray()\n",
|
|
||||||
"\n",
|
|
||||||
"val xy = generateHyperbols(xValues, 1.0, 0.0, 0.0)\n",
|
|
||||||
"\n",
|
|
||||||
"Plotly.plot {\n",
|
|
||||||
" scatter {\n",
|
|
||||||
" this.x.doubles = xValues\n",
|
|
||||||
" this.y.doubles = xy.yValues\n",
|
|
||||||
" }\n",
|
|
||||||
"}"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "ZE2atNvFzQsCvpAF8KK4ch",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"source": [
|
|
||||||
"Create a default statistic with uniform weights"
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"val statistic = ConvolutionalXYStatistic(DoubleArray(xValues.size){1.0})\n",
|
|
||||||
"statistic(xy)"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "EA5HaydTddRKYrtAUwd29h",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"import kotlin.random.Random\n",
|
|
||||||
"\n",
|
|
||||||
"val random = Random(1288)\n",
|
|
||||||
"\n",
|
|
||||||
"val parabolas = buildList{\n",
|
|
||||||
" repeat(500){\n",
|
|
||||||
" add(\n",
|
|
||||||
" generateParabolas(\n",
|
|
||||||
" xValues, \n",
|
|
||||||
" random.nextDouble(), \n",
|
|
||||||
" random.nextDouble(), \n",
|
|
||||||
" random.nextDouble()\n",
|
|
||||||
" )\n",
|
|
||||||
" )\n",
|
|
||||||
" }\n",
|
|
||||||
"}\n",
|
|
||||||
"\n",
|
|
||||||
"val hyperbolas: List<XYValues> = buildList{\n",
|
|
||||||
" repeat(500){\n",
|
|
||||||
" add(\n",
|
|
||||||
" generateHyperbols(\n",
|
|
||||||
" xValues, \n",
|
|
||||||
" random.nextDouble()*10, \n",
|
|
||||||
" random.nextDouble(), \n",
|
|
||||||
" random.nextDouble()\n",
|
|
||||||
" )\n",
|
|
||||||
" )\n",
|
|
||||||
" }\n",
|
|
||||||
"}"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "t5t6IYmD7Q1ykeo9uijFfQ",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"Plotly.plot { \n",
|
|
||||||
" scatter { \n",
|
|
||||||
" x.doubles = xValues\n",
|
|
||||||
" y.doubles = parabolas[257].yValues\n",
|
|
||||||
" }\n",
|
|
||||||
" scatter { \n",
|
|
||||||
" x.doubles = xValues\n",
|
|
||||||
" y.doubles = hyperbolas[252].yValues\n",
|
|
||||||
" }\n",
|
|
||||||
" }"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "oXB8lmju7YVYjMRXITKnhO",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"Plotly.plot { \n",
|
|
||||||
" histogram { \n",
|
|
||||||
" name = \"parabolae\"\n",
|
|
||||||
" x.numbers = parabolas.map { statistic(it) }\n",
|
|
||||||
" }\n",
|
|
||||||
" histogram { \n",
|
|
||||||
" name = \"hyperbolae\"\n",
|
|
||||||
" x.numbers = hyperbolas.map { statistic(it) }\n",
|
|
||||||
" }\n",
|
|
||||||
"}"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "8EIIecUZrt2NNrOkhxG5P0",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"val lossFunction: (XYStatistic) -> Double = { statistic ->\n",
|
|
||||||
" - abs(parabolas.sumOf { statistic(it) } - hyperbolas.sumOf { statistic(it) })\n",
|
|
||||||
"}"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "h7UmglJW5zXkAfKHK40oIL",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"source": [
|
|
||||||
"Using commons-math optimizer to optimize weights"
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"import org.apache.commons.math3.optim.*\n",
|
|
||||||
"import org.apache.commons.math3.optim.nonlinear.scalar.*\n",
|
|
||||||
"import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.*\n",
|
|
||||||
"\n",
|
|
||||||
"val optimizer = SimplexOptimizer(1e-1, Double.MAX_VALUE)\n",
|
|
||||||
"\n",
|
|
||||||
"val result = optimizer.optimize(\n",
|
|
||||||
" ObjectiveFunction { point ->\n",
|
|
||||||
" lossFunction(ConvolutionalXYStatistic(point))\n",
|
|
||||||
" },\n",
|
|
||||||
" NelderMeadSimplex(xValues.size),\n",
|
|
||||||
" InitialGuess(DoubleArray(xValues.size){ 1.0 }),\n",
|
|
||||||
" GoalType.MINIMIZE,\n",
|
|
||||||
" MaxEval(100000)\n",
|
|
||||||
")"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "0EG3K4aCUciMlgGQKPvJ57",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"source": [
|
|
||||||
"Print resulting weights of optimization"
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"result.point"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "LelUlY0ZSlJEO9yC6SLk5B",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"Plotly.plot { \n",
|
|
||||||
" scatter { \n",
|
|
||||||
" y.doubles = result.point\n",
|
|
||||||
" }\n",
|
|
||||||
"}"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "AuFOq5t9KpOIkGrOLsVXNf",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"source": [
|
|
||||||
"# The resulting statistic distribution"
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"val resultStatistic = ConvolutionalXYStatistic(result.point)\n",
|
|
||||||
"Plotly.plot { \n",
|
|
||||||
" histogram { \n",
|
|
||||||
" name = \"parabolae\"\n",
|
|
||||||
" x.numbers = parabolas.map { resultStatistic(it) }\n",
|
|
||||||
" }\n",
|
|
||||||
" histogram { \n",
|
|
||||||
" name = \"hyperbolae\"\n",
|
|
||||||
" x.numbers = hyperbolas.map { resultStatistic(it) }\n",
|
|
||||||
" }\n",
|
|
||||||
"}"
|
|
||||||
],
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"metadata": {
|
|
||||||
"datalore": {
|
|
||||||
"node_id": "zvmq42DRdM5mZ3SpzviHwI",
|
|
||||||
"type": "CODE",
|
|
||||||
"hide_input_from_viewers": false,
|
|
||||||
"hide_output_from_viewers": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"outputs": [],
|
|
||||||
"source": [],
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
}
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Kotlin",
|
|
||||||
"language": "kotlin",
|
|
||||||
"name": "kotlin"
|
|
||||||
},
|
|
||||||
"datalore": {
|
|
||||||
"version": 1,
|
|
||||||
"computation_mode": "JUPYTER",
|
|
||||||
"package_manager": "pip",
|
|
||||||
"base_environment": "default",
|
|
||||||
"packages": []
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 4
|
|
||||||
}
|
|
@ -1,26 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.ast
|
|
||||||
|
|
||||||
import space.kscience.kmath.ast.rendering.FeaturedMathRendererWithPostProcess
|
|
||||||
import space.kscience.kmath.ast.rendering.LatexSyntaxRenderer
|
|
||||||
import space.kscience.kmath.ast.rendering.MathMLSyntaxRenderer
|
|
||||||
import space.kscience.kmath.ast.rendering.renderWithStringBuilder
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val mst = "exp(sqrt(x))-asin(2*x)/(2e10+x^3)/(-12)".parseMath()
|
|
||||||
val syntax = FeaturedMathRendererWithPostProcess.Default.render(mst)
|
|
||||||
println("MathSyntax:")
|
|
||||||
println(syntax)
|
|
||||||
println()
|
|
||||||
val latex = LatexSyntaxRenderer.renderWithStringBuilder(syntax)
|
|
||||||
println("LaTeX:")
|
|
||||||
println(latex)
|
|
||||||
println()
|
|
||||||
val mathML = MathMLSyntaxRenderer.renderWithStringBuilder(syntax)
|
|
||||||
println("MathML:")
|
|
||||||
println(mathML)
|
|
||||||
}
|
|
@ -1,26 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.ast
|
|
||||||
|
|
||||||
import space.kscience.kmath.asm.compileToExpression
|
|
||||||
import space.kscience.kmath.expressions.MstExtendedField
|
|
||||||
import space.kscience.kmath.expressions.Symbol.Companion.x
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val expr = MstExtendedField {
|
|
||||||
x * 2.0 + number(2.0) / x - number(16.0) + asinh(x) / sin(x)
|
|
||||||
}.compileToExpression(Float64Field)
|
|
||||||
|
|
||||||
val m = DoubleArray(expr.indexer.symbols.size)
|
|
||||||
val xIdx = expr.indexer.indexOf(x)
|
|
||||||
|
|
||||||
repeat(10000000) {
|
|
||||||
m[xIdx] = 1.0
|
|
||||||
expr(m)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,27 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.ast
|
|
||||||
|
|
||||||
import space.kscience.kmath.expressions.Symbol.Companion.x
|
|
||||||
import space.kscience.kmath.expressions.derivative
|
|
||||||
import space.kscience.kmath.expressions.invoke
|
|
||||||
import space.kscience.kmath.expressions.toExpression
|
|
||||||
import space.kscience.kmath.kotlingrad.toKotlingradExpression
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
|
|
||||||
/**
|
|
||||||
* In this example, *x<sup>2</sup> − 4 x − 44* function is differentiated with Kotlin∇, and the
|
|
||||||
* derivation result is compared with valid derivative in a certain point.
|
|
||||||
*/
|
|
||||||
fun main() {
|
|
||||||
val actualDerivative = "x^2-4*x-44"
|
|
||||||
.parseMath()
|
|
||||||
.toKotlingradExpression(Float64Field)
|
|
||||||
.derivative(x)
|
|
||||||
|
|
||||||
val expectedDerivative = "2*x-4".parseMath().toExpression(Float64Field)
|
|
||||||
check(actualDerivative(x to 123.0) == expectedDerivative(x to 123.0))
|
|
||||||
}
|
|
@ -1,27 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.ast
|
|
||||||
|
|
||||||
import space.kscience.kmath.expressions.Symbol.Companion.x
|
|
||||||
import space.kscience.kmath.expressions.derivative
|
|
||||||
import space.kscience.kmath.expressions.invoke
|
|
||||||
import space.kscience.kmath.expressions.toExpression
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.symja.toSymjaExpression
|
|
||||||
|
|
||||||
/**
|
|
||||||
* In this example, *x<sup>2</sup> − 4 x − 44* function is differentiated with Symja, and the
|
|
||||||
* derivation result is compared with valid derivative in a certain point.
|
|
||||||
*/
|
|
||||||
fun main() {
|
|
||||||
val actualDerivative = "x^2-4*x-44"
|
|
||||||
.parseMath()
|
|
||||||
.toSymjaExpression(Float64Field)
|
|
||||||
.derivative(x)
|
|
||||||
|
|
||||||
val expectedDerivative = "2*x-4".parseMath().toExpression(Float64Field)
|
|
||||||
check(actualDerivative(x to 123.0) == expectedDerivative(x to 123.0))
|
|
||||||
}
|
|
@ -1,92 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.expressions
|
|
||||||
|
|
||||||
import space.kscience.kmath.UnstableKMathAPI
|
|
||||||
|
|
||||||
// Only kmath-core is needed.
|
|
||||||
|
|
||||||
// Let's declare some variables
|
|
||||||
val x by symbol
|
|
||||||
val y by symbol
|
|
||||||
val z by symbol
|
|
||||||
|
|
||||||
@OptIn(UnstableKMathAPI::class)
|
|
||||||
fun main() {
|
|
||||||
// Let's define some random expression.
|
|
||||||
val someExpression = Double.autodiff.differentiate {
|
|
||||||
// We bind variables `x` and `y` to the builder scope,
|
|
||||||
val x = bindSymbol(x)
|
|
||||||
val y = bindSymbol(y)
|
|
||||||
|
|
||||||
// Then we use the bindings to define expression `xy + x + y - 1`
|
|
||||||
x * y + x + y - 1
|
|
||||||
}
|
|
||||||
|
|
||||||
// Then we can evaluate it at any point ((-1, -1) in the case):
|
|
||||||
println(someExpression(x to -1.0, y to -1.0))
|
|
||||||
// >>> -2.0
|
|
||||||
|
|
||||||
// We can also construct its partial derivatives:
|
|
||||||
val dxExpression = someExpression.derivative(x) // ∂/∂x. Must be `y+1`
|
|
||||||
val dyExpression = someExpression.derivative(y) // ∂/∂y. Must be `x+1`
|
|
||||||
val dxdxExpression = someExpression.derivative(x, x) // ∂^2/∂x^2. Must be `0`
|
|
||||||
|
|
||||||
// We can evaluate them as well
|
|
||||||
println(dxExpression(x to 57.0, y to 6.0))
|
|
||||||
// >>> 7.0
|
|
||||||
println(dyExpression(x to -1.0, y to 179.0))
|
|
||||||
// >>> 0.0
|
|
||||||
println(dxdxExpression(x to 239.0, y to 30.0))
|
|
||||||
// >>> 0.0
|
|
||||||
|
|
||||||
// You can also provide extra arguments that obviously won't affect the result:
|
|
||||||
println(dxExpression(x to 57.0, y to 6.0, z to 42.0))
|
|
||||||
// >>> 7.0
|
|
||||||
println(dyExpression(x to -1.0, y to 179.0, z to 0.0))
|
|
||||||
// >>> 0.0
|
|
||||||
println(dxdxExpression(x to 239.0, y to 30.0, z to 100_000.0))
|
|
||||||
// >>> 0.0
|
|
||||||
|
|
||||||
// But in case you forgot to specify bound symbol's value, exception is thrown:
|
|
||||||
println(runCatching { someExpression(z to 4.0) })
|
|
||||||
// >>> Failure(java.lang.IllegalStateException: Symbol 'x' is not supported in ...)
|
|
||||||
|
|
||||||
// The reason is that the expression is evaluated lazily,
|
|
||||||
// and each `bindSymbol` operation actually substitutes the provided symbol with the corresponding value.
|
|
||||||
|
|
||||||
// For example, let there be an expression
|
|
||||||
val simpleExpression = Double.autodiff.differentiate {
|
|
||||||
val x = bindSymbol(x)
|
|
||||||
x pow 2
|
|
||||||
}
|
|
||||||
// When you evaluate it via
|
|
||||||
simpleExpression(x to 1.0, y to 57.0, z to 179.0)
|
|
||||||
// lambda above has the context of map `{x: 1.0, y: 57.0, z: 179.0}`.
|
|
||||||
// When x is bound, you can think of it as substitution `x -> 1.0`.
|
|
||||||
// Other values are unused which does not make any problem to us.
|
|
||||||
// But in the case the corresponding value is not provided,
|
|
||||||
// we cannot bind the variable. Thus, exception is thrown.
|
|
||||||
|
|
||||||
// There is also a function `bindSymbolOrNull` that fixes the problem:
|
|
||||||
val fixedExpression = Double.autodiff.differentiate {
|
|
||||||
val x = bindSymbolOrNull(x) ?: const(8.0)
|
|
||||||
x pow -2
|
|
||||||
}
|
|
||||||
println(fixedExpression())
|
|
||||||
// >>> 0.015625
|
|
||||||
// It works!
|
|
||||||
|
|
||||||
// The expression provides a bunch of operations:
|
|
||||||
// 1. Constant bindings (via `const` and `number`).
|
|
||||||
// 2. Variable bindings (via `bindVariable`, `bindVariableOrNull`).
|
|
||||||
// 3. Arithmetic operations (via `+`, `-`, `*`, and `-`).
|
|
||||||
// 4. Exponentiation (via `pow` or `power`).
|
|
||||||
// 5. `exp` and `ln`.
|
|
||||||
// 6. Trigonometrical functions (`sin`, `cos`, `tan`, `cot`).
|
|
||||||
// 7. Inverse trigonometrical functions (`asin`, `acos`, `atan`, `acot`).
|
|
||||||
// 8. Hyperbolic functions and inverse hyperbolic functions.
|
|
||||||
}
|
|
@ -1,113 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.fit
|
|
||||||
|
|
||||||
import kotlinx.html.br
|
|
||||||
import kotlinx.html.h3
|
|
||||||
import space.kscience.kmath.commons.optimization.CMOptimizer
|
|
||||||
import space.kscience.kmath.distributions.NormalDistribution
|
|
||||||
import space.kscience.kmath.expressions.autodiff
|
|
||||||
import space.kscience.kmath.expressions.symbol
|
|
||||||
import space.kscience.kmath.operations.asIterable
|
|
||||||
import space.kscience.kmath.operations.toList
|
|
||||||
import space.kscience.kmath.optimization.*
|
|
||||||
import space.kscience.kmath.random.RandomGenerator
|
|
||||||
import space.kscience.kmath.real.DoubleVector
|
|
||||||
import space.kscience.kmath.real.map
|
|
||||||
import space.kscience.kmath.real.step
|
|
||||||
import space.kscience.kmath.stat.chiSquaredExpression
|
|
||||||
import space.kscience.plotly.*
|
|
||||||
import space.kscience.plotly.models.ScatterMode
|
|
||||||
import space.kscience.plotly.models.TraceValues
|
|
||||||
import kotlin.math.pow
|
|
||||||
import kotlin.math.sqrt
|
|
||||||
|
|
||||||
// Forward declaration of symbols that will be used in expressions.
|
|
||||||
private val a by symbol
|
|
||||||
private val b by symbol
|
|
||||||
private val c by symbol
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Shortcut to use buffers in plotly
|
|
||||||
*/
|
|
||||||
operator fun TraceValues.invoke(vector: DoubleVector) {
|
|
||||||
numbers = vector.asIterable()
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Least squares fie with auto-differentiation. Uses `kmath-commons` and `kmath-for-real` modules.
|
|
||||||
*/
|
|
||||||
suspend fun main() {
|
|
||||||
//A generator for a normally distributed values
|
|
||||||
val generator = NormalDistribution(0.0, 1.0)
|
|
||||||
|
|
||||||
//A chain/flow of random values with the given seed
|
|
||||||
val chain = generator.sample(RandomGenerator.default(112667))
|
|
||||||
|
|
||||||
|
|
||||||
//Create a uniformly distributed x values like numpy.arrange
|
|
||||||
val x = 1.0..100.0 step 1.0
|
|
||||||
|
|
||||||
|
|
||||||
//Perform an operation on each x value (much more effective, than numpy)
|
|
||||||
val y = x.map { it ->
|
|
||||||
val value = it.pow(2) + it + 1
|
|
||||||
value + chain.next() * sqrt(value)
|
|
||||||
}
|
|
||||||
// this will also work, but less effective:
|
|
||||||
// val y = x.pow(2)+ x + 1 + chain.nextDouble()
|
|
||||||
|
|
||||||
// create same errors for all xs
|
|
||||||
val yErr = y.map { sqrt(it) }//RealVector.same(x.size, sigma)
|
|
||||||
|
|
||||||
// compute differentiable chi^2 sum for given model ax^2 + bx + c
|
|
||||||
val chi2 = Double.autodiff.chiSquaredExpression(x, y, yErr) { arg ->
|
|
||||||
//bind variables to autodiff context
|
|
||||||
val a = bindSymbol(a)
|
|
||||||
val b = bindSymbol(b)
|
|
||||||
//Include default value for c if it is not provided as a parameter
|
|
||||||
val c = bindSymbolOrNull(c) ?: one
|
|
||||||
a * arg.pow(2) + b * arg + c
|
|
||||||
}
|
|
||||||
|
|
||||||
//minimize the chi^2 in given starting point. Derivatives are not required, they are already included.
|
|
||||||
val result = chi2.optimizeWith(
|
|
||||||
CMOptimizer,
|
|
||||||
mapOf(a to 1.5, b to 0.9, c to 1.0),
|
|
||||||
) {
|
|
||||||
FunctionOptimizationTarget(OptimizationDirection.MINIMIZE)
|
|
||||||
}
|
|
||||||
|
|
||||||
//display a page with plot and numerical results
|
|
||||||
val page = Plotly.page {
|
|
||||||
plot {
|
|
||||||
scatter {
|
|
||||||
mode = ScatterMode.markers
|
|
||||||
x(x)
|
|
||||||
y(y)
|
|
||||||
error_y {
|
|
||||||
array = yErr.toList()
|
|
||||||
}
|
|
||||||
name = "data"
|
|
||||||
}
|
|
||||||
scatter {
|
|
||||||
mode = ScatterMode.lines
|
|
||||||
x(x)
|
|
||||||
y(x.map { result.result[a]!! * it.pow(2) + result.result[b]!! * it + 1 })
|
|
||||||
name = "fit"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
br()
|
|
||||||
h3 {
|
|
||||||
+"Fit result: $result"
|
|
||||||
}
|
|
||||||
h3 {
|
|
||||||
+"Chi2/dof = ${result.resultValue / (x.size - 3)}"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
page.makeFile()
|
|
||||||
}
|
|
@ -1,112 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.fit
|
|
||||||
|
|
||||||
import kotlinx.html.br
|
|
||||||
import kotlinx.html.h3
|
|
||||||
import space.kscience.attributes.Attributes
|
|
||||||
import space.kscience.kmath.data.XYErrorColumnarData
|
|
||||||
import space.kscience.kmath.distributions.NormalDistribution
|
|
||||||
import space.kscience.kmath.expressions.Symbol
|
|
||||||
import space.kscience.kmath.expressions.autodiff
|
|
||||||
import space.kscience.kmath.expressions.binding
|
|
||||||
import space.kscience.kmath.expressions.symbol
|
|
||||||
import space.kscience.kmath.operations.asIterable
|
|
||||||
import space.kscience.kmath.operations.toList
|
|
||||||
import space.kscience.kmath.optimization.*
|
|
||||||
import space.kscience.kmath.random.RandomGenerator
|
|
||||||
import space.kscience.kmath.real.map
|
|
||||||
import space.kscience.kmath.real.step
|
|
||||||
import space.kscience.plotly.*
|
|
||||||
import space.kscience.plotly.models.ScatterMode
|
|
||||||
import kotlin.math.abs
|
|
||||||
import kotlin.math.pow
|
|
||||||
import kotlin.math.sqrt
|
|
||||||
|
|
||||||
// Forward declaration of symbols that will be used in expressions.
|
|
||||||
private val a by symbol
|
|
||||||
private val b by symbol
|
|
||||||
private val c by symbol
|
|
||||||
private val d by symbol
|
|
||||||
private val e by symbol
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Least squares fie with auto-differentiation. Uses `kmath-commons` and `kmath-for-real` modules.
|
|
||||||
*/
|
|
||||||
suspend fun main() {
|
|
||||||
//A generator for a normally distributed values
|
|
||||||
val generator = NormalDistribution(0.0, 1.0)
|
|
||||||
|
|
||||||
//A chain/flow of random values with the given seed
|
|
||||||
val chain = generator.sample(RandomGenerator.default(112667))
|
|
||||||
|
|
||||||
|
|
||||||
//Create a uniformly distributed x values like numpy.arrange
|
|
||||||
val x = 1.0..100.0 step 1.0
|
|
||||||
|
|
||||||
|
|
||||||
//Perform an operation on each x value (much more effective, than numpy)
|
|
||||||
val y = x.map { it ->
|
|
||||||
val value = it.pow(2) + it + 1
|
|
||||||
value + chain.next() * sqrt(value)
|
|
||||||
}
|
|
||||||
// this will also work, but less effective:
|
|
||||||
// val y = x.pow(2)+ x + 1 + chain.nextDouble()
|
|
||||||
|
|
||||||
// create same errors for all xs
|
|
||||||
val yErr = y.map { sqrt(abs(it)) }
|
|
||||||
require(yErr.asIterable().all { it > 0 }) { "All errors must be strictly positive" }
|
|
||||||
|
|
||||||
val result = XYErrorColumnarData.of(x, y, yErr).fitWith(
|
|
||||||
QowOptimizer,
|
|
||||||
Double.autodiff,
|
|
||||||
mapOf(a to 0.9, b to 1.2, c to 2.0, e to 1.0, d to 1.0, e to 0.0),
|
|
||||||
attributes = Attributes(OptimizationParameters, listOf(a, b, c, d))
|
|
||||||
) { arg ->
|
|
||||||
//bind variables to autodiff context
|
|
||||||
val a by binding
|
|
||||||
val b by binding
|
|
||||||
//Include default value for c if it is not provided as a parameter
|
|
||||||
val c = bindSymbolOrNull(c) ?: one
|
|
||||||
val d by binding
|
|
||||||
val e by binding
|
|
||||||
|
|
||||||
a * arg.pow(2) + b * arg + c + d * arg.pow(3) + e / arg
|
|
||||||
}
|
|
||||||
|
|
||||||
println("Resulting chi2/dof: ${result.chiSquaredOrNull}/${result.dof}")
|
|
||||||
|
|
||||||
//display a page with plot and numerical results
|
|
||||||
val page = Plotly.page {
|
|
||||||
plot {
|
|
||||||
scatter {
|
|
||||||
mode = ScatterMode.markers
|
|
||||||
x(x)
|
|
||||||
y(y)
|
|
||||||
error_y {
|
|
||||||
array = yErr.toList()
|
|
||||||
}
|
|
||||||
name = "data"
|
|
||||||
}
|
|
||||||
scatter {
|
|
||||||
mode = ScatterMode.lines
|
|
||||||
x(x)
|
|
||||||
y(x.map { result.model(result.startPoint + result.result + (Symbol.x to it)) })
|
|
||||||
name = "fit"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
br()
|
|
||||||
h3 {
|
|
||||||
+"Fit result: ${result.result}"
|
|
||||||
}
|
|
||||||
h3 {
|
|
||||||
+"Chi2/dof = ${result.chiSquaredOrNull!! / result.dof}"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
page.makeFile()
|
|
||||||
}
|
|
@ -1,36 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.functions
|
|
||||||
|
|
||||||
import space.kscience.kmath.complex.Complex
|
|
||||||
import space.kscience.kmath.complex.ComplexField
|
|
||||||
import space.kscience.kmath.complex.ComplexField.div
|
|
||||||
import space.kscience.kmath.complex.ComplexField.minus
|
|
||||||
import space.kscience.kmath.complex.algebra
|
|
||||||
import space.kscience.kmath.integration.gaussIntegrator
|
|
||||||
import space.kscience.kmath.integration.integrate
|
|
||||||
import space.kscience.kmath.integration.value
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import kotlin.math.pow
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
//Define a function
|
|
||||||
val function: Function1D<Double> = { x -> 3 * x.pow(2) + 2 * x + 1 }
|
|
||||||
|
|
||||||
//get the result of the integration
|
|
||||||
val result = Float64Field.gaussIntegrator.integrate(0.0..10.0, function = function)
|
|
||||||
|
|
||||||
//the value is nullable because in some cases the integration could not succeed
|
|
||||||
println(result.value)
|
|
||||||
|
|
||||||
|
|
||||||
repeat(100000) {
|
|
||||||
Complex.algebra.gaussIntegrator.integrate(0.0..1.0, intervals = 1000) { x: Double ->
|
|
||||||
// sin(1 / x) + i * cos(1 / x)
|
|
||||||
1 / x - ComplexField.i / x
|
|
||||||
}.value
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,51 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.functions
|
|
||||||
|
|
||||||
import space.kscience.kmath.interpolation.SplineInterpolator
|
|
||||||
import space.kscience.kmath.interpolation.interpolatePolynomials
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.plotly.Plotly
|
|
||||||
import space.kscience.plotly.UnstablePlotlyAPI
|
|
||||||
import space.kscience.plotly.makeFile
|
|
||||||
import space.kscience.plotly.models.functionXY
|
|
||||||
import space.kscience.plotly.scatter
|
|
||||||
import kotlin.math.PI
|
|
||||||
import kotlin.math.sin
|
|
||||||
|
|
||||||
@OptIn(UnstablePlotlyAPI::class)
|
|
||||||
fun main() {
|
|
||||||
val data = (0..10).map {
|
|
||||||
val x = it.toDouble() / 5 * PI
|
|
||||||
x to sin(x)
|
|
||||||
}
|
|
||||||
|
|
||||||
val polynomial: PiecewisePolynomial<Double> = SplineInterpolator(Float64Field).interpolatePolynomials(data)
|
|
||||||
|
|
||||||
val function = polynomial.asFunction(Float64Field, 0.0)
|
|
||||||
|
|
||||||
val cmInterpolate = org.apache.commons.math3.analysis.interpolation.SplineInterpolator().interpolate(
|
|
||||||
data.map { it.first }.toDoubleArray(),
|
|
||||||
data.map { it.second }.toDoubleArray()
|
|
||||||
)
|
|
||||||
|
|
||||||
Plotly.plot {
|
|
||||||
scatter {
|
|
||||||
name = "interpolated"
|
|
||||||
x.numbers = data.map { it.first }
|
|
||||||
y.numbers = x.doubles.map { function(it) }
|
|
||||||
}
|
|
||||||
scatter {
|
|
||||||
name = "original"
|
|
||||||
functionXY(0.0..(2 * PI), 0.1) { sin(it) }
|
|
||||||
}
|
|
||||||
scatter {
|
|
||||||
name = "cm"
|
|
||||||
x.numbers = data.map { it.first }
|
|
||||||
y.numbers = x.doubles.map { cmInterpolate.value(it) }
|
|
||||||
}
|
|
||||||
}.makeFile()
|
|
||||||
}
|
|
@ -1,45 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.functions
|
|
||||||
|
|
||||||
import space.kscience.kmath.interpolation.interpolatePolynomials
|
|
||||||
import space.kscience.kmath.interpolation.splineInterpolator
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.real.map
|
|
||||||
import space.kscience.kmath.real.step
|
|
||||||
import space.kscience.plotly.Plotly
|
|
||||||
import space.kscience.plotly.UnstablePlotlyAPI
|
|
||||||
import space.kscience.plotly.makeFile
|
|
||||||
import space.kscience.plotly.models.functionXY
|
|
||||||
import space.kscience.plotly.scatter
|
|
||||||
|
|
||||||
@OptIn(UnstablePlotlyAPI::class)
|
|
||||||
fun main() {
|
|
||||||
val function: Function1D<Double> = { x ->
|
|
||||||
if (x in 30.0..50.0) {
|
|
||||||
1.0
|
|
||||||
} else {
|
|
||||||
0.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
val xs = 0.0..100.0 step 0.5
|
|
||||||
val ys = xs.map(function)
|
|
||||||
|
|
||||||
val polynomial: PiecewisePolynomial<Double> = Float64Field.splineInterpolator.interpolatePolynomials(xs, ys)
|
|
||||||
|
|
||||||
val polyFunction = polynomial.asFunction(Float64Field, 0.0)
|
|
||||||
|
|
||||||
Plotly.plot {
|
|
||||||
scatter {
|
|
||||||
name = "interpolated"
|
|
||||||
functionXY(25.0..55.0, 0.1) { polyFunction(it) }
|
|
||||||
}
|
|
||||||
scatter {
|
|
||||||
name = "original"
|
|
||||||
functionXY(25.0..55.0, 0.1) { function(it) }
|
|
||||||
}
|
|
||||||
}.makeFile()
|
|
||||||
}
|
|
@ -1,32 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.functions
|
|
||||||
|
|
||||||
import space.kscience.kmath.integration.gaussIntegrator
|
|
||||||
import space.kscience.kmath.integration.integrate
|
|
||||||
import space.kscience.kmath.integration.value
|
|
||||||
import space.kscience.kmath.nd.StructureND
|
|
||||||
import space.kscience.kmath.nd.structureND
|
|
||||||
import space.kscience.kmath.nd.withNdAlgebra
|
|
||||||
import space.kscience.kmath.operations.algebra
|
|
||||||
import kotlin.math.pow
|
|
||||||
|
|
||||||
fun main(): Unit = Double.algebra.withNdAlgebra(2, 2) {
|
|
||||||
|
|
||||||
//Produce a diagonal StructureND
|
|
||||||
fun diagonal(v: Double) = structureND { (i, j) ->
|
|
||||||
if (i == j) v else 0.0
|
|
||||||
}
|
|
||||||
|
|
||||||
//Define a function in a nd space
|
|
||||||
val function: (Double) -> StructureND<Double> = { x: Double -> 3 * x.pow(2) + 2 * diagonal(x) + 1 }
|
|
||||||
|
|
||||||
//get the result of the integration
|
|
||||||
val result = gaussIntegrator.integrate(0.0..10.0, function = function)
|
|
||||||
|
|
||||||
//the value is nullable because in some cases the integration could not succeed
|
|
||||||
println(result.value)
|
|
||||||
}
|
|
@ -1,15 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.jafama
|
|
||||||
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val a = 2.0
|
|
||||||
val b = StrictJafamaDoubleField { exp(a) }
|
|
||||||
println(JafamaDoubleField { b + a })
|
|
||||||
println(StrictJafamaDoubleField { ln(b) })
|
|
||||||
}
|
|
@ -1,31 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.linear
|
|
||||||
|
|
||||||
import kotlin.random.Random
|
|
||||||
import kotlin.time.measureTime
|
|
||||||
|
|
||||||
fun main() = with(Float64ParallelLinearSpace) {
|
|
||||||
val random = Random(12224)
|
|
||||||
val dim = 1000
|
|
||||||
|
|
||||||
//creating invertible matrix
|
|
||||||
val matrix1 = buildMatrix(dim, dim) { i, j ->
|
|
||||||
if (i <= j) random.nextDouble() else 0.0
|
|
||||||
}
|
|
||||||
val matrix2 = buildMatrix(dim, dim) { i, j ->
|
|
||||||
if (i <= j) random.nextDouble() else 0.0
|
|
||||||
}
|
|
||||||
|
|
||||||
val time = measureTime {
|
|
||||||
repeat(30) {
|
|
||||||
matrix1 dot matrix2
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
println(time)
|
|
||||||
|
|
||||||
}
|
|
@ -1,33 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.linear
|
|
||||||
|
|
||||||
import space.kscience.kmath.real.*
|
|
||||||
import space.kscience.kmath.structures.Float64Buffer
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val x0 = DoubleVector(0.0, 0.0, 0.0)
|
|
||||||
val sigma = DoubleVector(1.0, 1.0, 1.0)
|
|
||||||
|
|
||||||
val gaussian: (Point<Double>) -> Double = { x ->
|
|
||||||
require(x.size == x0.size)
|
|
||||||
kotlin.math.exp(-((x - x0) / sigma).square().sum())
|
|
||||||
}
|
|
||||||
|
|
||||||
fun ((Point<Double>) -> Double).grad(x: Point<Double>): Point<Double> {
|
|
||||||
require(x.size == x0.size)
|
|
||||||
return Float64Buffer(x.size) { i ->
|
|
||||||
val h = sigma[i] / 5
|
|
||||||
val dVector = Float64Buffer(x.size) { if (it == i) h else 0.0 }
|
|
||||||
val f1 = this(x + dVector / 2)
|
|
||||||
val f0 = this(x - dVector / 2)
|
|
||||||
(f1 - f0) / h
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
println(gaussian.grad(x0))
|
|
||||||
|
|
||||||
}
|
|
@ -1,27 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.linear
|
|
||||||
|
|
||||||
import kotlin.random.Random
|
|
||||||
import kotlin.time.measureTime
|
|
||||||
|
|
||||||
fun main(): Unit = with(Float64LinearSpace) {
|
|
||||||
val random = Random(1224)
|
|
||||||
val dim = 500
|
|
||||||
|
|
||||||
//creating invertible matrix
|
|
||||||
val u = buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
|
|
||||||
val l = buildMatrix(dim, dim) { i, j -> if (i >= j) random.nextDouble() else 0.0 }
|
|
||||||
val matrix = l dot u
|
|
||||||
|
|
||||||
val time = measureTime {
|
|
||||||
repeat(20) {
|
|
||||||
lupSolver().inverse(matrix)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
println(time)
|
|
||||||
}
|
|
@ -1,11 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.operations
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val res = BigIntField { number(1) * 2 }
|
|
||||||
println("bigint:$res")
|
|
||||||
}
|
|
@ -1,40 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.operations
|
|
||||||
|
|
||||||
import space.kscience.kmath.complex.Complex
|
|
||||||
import space.kscience.kmath.complex.algebra
|
|
||||||
import space.kscience.kmath.complex.ndAlgebra
|
|
||||||
import space.kscience.kmath.nd.BufferND
|
|
||||||
import space.kscience.kmath.nd.StructureND
|
|
||||||
import space.kscience.kmath.nd.structureND
|
|
||||||
|
|
||||||
fun main() = Complex.algebra {
|
|
||||||
val complex = 2 + 2 * i
|
|
||||||
println(complex * 8 - 5 * i)
|
|
||||||
|
|
||||||
//flat buffer
|
|
||||||
val buffer = with(bufferAlgebra) {
|
|
||||||
buffer(8) { Complex(it, -it) }.map { Complex(it.im, it.re) }
|
|
||||||
}
|
|
||||||
println(buffer)
|
|
||||||
|
|
||||||
// 2d element
|
|
||||||
val element: BufferND<Complex> = ndAlgebra.structureND(2, 2) { (i, j) ->
|
|
||||||
Complex(i - j, i + j)
|
|
||||||
}
|
|
||||||
println(element)
|
|
||||||
|
|
||||||
// 1d element operation
|
|
||||||
val result: StructureND<Complex> = ndAlgebra {
|
|
||||||
val a = structureND(8) { (it) -> i * it - it.toDouble() }
|
|
||||||
val b = 3
|
|
||||||
val c = Complex(1.0, 1.0)
|
|
||||||
|
|
||||||
(a pow b) + c
|
|
||||||
}
|
|
||||||
println(result)
|
|
||||||
}
|
|
@ -1,30 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.operations
|
|
||||||
|
|
||||||
import space.kscience.kmath.commons.linear.CMLinearSpace
|
|
||||||
import space.kscience.kmath.linear.matrix
|
|
||||||
import space.kscience.kmath.nd.Float64BufferND
|
|
||||||
import space.kscience.kmath.nd.Structure2D
|
|
||||||
import space.kscience.kmath.nd.mutableStructureND
|
|
||||||
import space.kscience.kmath.nd.ndAlgebra
|
|
||||||
import space.kscience.kmath.viktor.viktorAlgebra
|
|
||||||
import kotlin.collections.component1
|
|
||||||
import kotlin.collections.component2
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val viktorStructure = Float64Field.viktorAlgebra.mutableStructureND(2, 2) { (i, j) ->
|
|
||||||
if (i == j) 2.0 else 0.0
|
|
||||||
}
|
|
||||||
|
|
||||||
val cmMatrix: Structure2D<Double> = CMLinearSpace.matrix(2, 2)(0.0, 1.0, 0.0, 3.0)
|
|
||||||
|
|
||||||
val res: Float64BufferND = Float64Field.ndAlgebra {
|
|
||||||
exp(viktorStructure) + 2.0 * cmMatrix
|
|
||||||
}
|
|
||||||
|
|
||||||
println(res)
|
|
||||||
}
|
|
@ -1,17 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.series
|
|
||||||
|
|
||||||
import kotlinx.datetime.Instant
|
|
||||||
import space.kscience.kmath.operations.algebra
|
|
||||||
import space.kscience.kmath.operations.bufferAlgebra
|
|
||||||
import kotlin.time.Duration
|
|
||||||
|
|
||||||
fun SeriesAlgebra.Companion.time(zero: Instant, step: Duration) = MonotonicSeriesAlgebra(
|
|
||||||
bufferAlgebra = Double.algebra.bufferAlgebra,
|
|
||||||
offsetToLabel = { zero + step * it },
|
|
||||||
labelToOffset = { (it - zero) / step }
|
|
||||||
)
|
|
@ -1,64 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.series
|
|
||||||
|
|
||||||
|
|
||||||
import kotlinx.html.h1
|
|
||||||
import kotlinx.html.p
|
|
||||||
import space.kscience.kmath.operations.algebra
|
|
||||||
import space.kscience.kmath.operations.bufferAlgebra
|
|
||||||
import space.kscience.kmath.operations.toList
|
|
||||||
import space.kscience.kmath.stat.KMComparisonResult
|
|
||||||
import space.kscience.kmath.stat.ksComparisonStatistic
|
|
||||||
import space.kscience.kmath.structures.Buffer
|
|
||||||
import space.kscience.kmath.structures.slice
|
|
||||||
import space.kscience.plotly.*
|
|
||||||
import kotlin.math.PI
|
|
||||||
|
|
||||||
fun Double.Companion.seriesAlgebra() = Double.algebra.bufferAlgebra.seriesAlgebra()
|
|
||||||
|
|
||||||
|
|
||||||
fun main() = with(Double.seriesAlgebra()) {
|
|
||||||
|
|
||||||
|
|
||||||
fun Plot.plotSeries(name: String, buffer: Buffer<Double>) {
|
|
||||||
scatter {
|
|
||||||
this.name = name
|
|
||||||
x.numbers = buffer.labels
|
|
||||||
y.numbers = buffer.toList()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
val s1 = series(100) { sin(2 * PI * it / 100) + 1.0 }
|
|
||||||
|
|
||||||
val s2 = s1.slice(20..50).moveTo(40)
|
|
||||||
|
|
||||||
val s3: Buffer<Double> = s1.zip(s2) { l, r -> l + r } //s1 + s2
|
|
||||||
val s4 = s3.map { ln(it) }
|
|
||||||
|
|
||||||
val kmTest: KMComparisonResult<Double> = ksComparisonStatistic(s1, s2)
|
|
||||||
|
|
||||||
Plotly.page {
|
|
||||||
h1 { +"This is my plot" }
|
|
||||||
p {
|
|
||||||
+"Kolmogorov-smirnov test for s1 and s2: ${kmTest.value}"
|
|
||||||
}
|
|
||||||
plot {
|
|
||||||
plotSeries("s1", s1)
|
|
||||||
plotSeries("s2", s2)
|
|
||||||
plotSeries("s3", s3)
|
|
||||||
plotSeries("s4", s4)
|
|
||||||
layout {
|
|
||||||
xaxis {
|
|
||||||
range(0.0..100.0)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}.makeFile()
|
|
||||||
|
|
||||||
}
|
|
@ -1,50 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.series
|
|
||||||
|
|
||||||
|
|
||||||
import space.kscience.kmath.structures.Buffer
|
|
||||||
import space.kscience.kmath.structures.Float64Buffer
|
|
||||||
import space.kscience.kmath.structures.asBuffer
|
|
||||||
import space.kscience.kmath.structures.toDoubleArray
|
|
||||||
import space.kscience.plotly.*
|
|
||||||
import space.kscience.plotly.models.Scatter
|
|
||||||
import space.kscience.plotly.models.ScatterMode
|
|
||||||
import kotlin.random.Random
|
|
||||||
|
|
||||||
fun main(): Unit = with(Double.seriesAlgebra()) {
|
|
||||||
|
|
||||||
val random = Random(1234)
|
|
||||||
|
|
||||||
val arrayOfRandoms = DoubleArray(20) { random.nextDouble() }
|
|
||||||
|
|
||||||
val series1: Float64Buffer = arrayOfRandoms.asBuffer()
|
|
||||||
val series2: Series<Double> = series1.moveBy(3)
|
|
||||||
|
|
||||||
val res = series2 - series1
|
|
||||||
|
|
||||||
println(res.size)
|
|
||||||
|
|
||||||
println(res)
|
|
||||||
|
|
||||||
fun Plot.series(name: String, buffer: Buffer<Double>, block: Scatter.() -> Unit = {}) {
|
|
||||||
scatter {
|
|
||||||
this.name = name
|
|
||||||
x.numbers = buffer.offsetIndices
|
|
||||||
y.doubles = buffer.toDoubleArray()
|
|
||||||
block()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Plotly.plot {
|
|
||||||
series("series1", series1)
|
|
||||||
series("series2", series2)
|
|
||||||
series("dif", res) {
|
|
||||||
mode = ScatterMode.lines
|
|
||||||
line.color("magenta")
|
|
||||||
}
|
|
||||||
}.makeFile(resourceLocation = ResourceLocation.REMOTE)
|
|
||||||
}
|
|
@ -1,72 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.stat
|
|
||||||
|
|
||||||
import kotlinx.coroutines.Dispatchers
|
|
||||||
import kotlinx.coroutines.async
|
|
||||||
import kotlinx.coroutines.runBlocking
|
|
||||||
import org.apache.commons.rng.sampling.distribution.BoxMullerNormalizedGaussianSampler
|
|
||||||
import org.apache.commons.rng.simple.RandomSource
|
|
||||||
import space.kscience.kmath.random.RandomGenerator
|
|
||||||
import space.kscience.kmath.samplers.GaussianSampler
|
|
||||||
import java.time.Duration
|
|
||||||
import java.time.Instant
|
|
||||||
import org.apache.commons.rng.sampling.distribution.GaussianSampler as CMGaussianSampler
|
|
||||||
|
|
||||||
private suspend fun runKMathChained(): Duration {
|
|
||||||
val generator = RandomGenerator.fromSource(RandomSource.MT, 123L)
|
|
||||||
val normal = GaussianSampler(7.0, 2.0)
|
|
||||||
val chain = normal.sample(generator)
|
|
||||||
val startTime = Instant.now()
|
|
||||||
var sum = 0.0
|
|
||||||
|
|
||||||
repeat(10000001) { counter ->
|
|
||||||
sum += chain.next()
|
|
||||||
|
|
||||||
if (counter % 100000 == 0) {
|
|
||||||
val duration = Duration.between(startTime, Instant.now())
|
|
||||||
val meanValue = sum / counter
|
|
||||||
println("Chain sampler completed $counter elements in $duration: $meanValue")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return Duration.between(startTime, Instant.now())
|
|
||||||
}
|
|
||||||
|
|
||||||
private fun runCMDirect(): Duration {
|
|
||||||
val rng = RandomSource.create(RandomSource.MT, 123L)
|
|
||||||
|
|
||||||
val sampler = CMGaussianSampler.of(
|
|
||||||
BoxMullerNormalizedGaussianSampler.of(rng),
|
|
||||||
7.0,
|
|
||||||
2.0
|
|
||||||
)
|
|
||||||
|
|
||||||
val startTime = Instant.now()
|
|
||||||
var sum = 0.0
|
|
||||||
|
|
||||||
repeat(10000001) { counter ->
|
|
||||||
sum += sampler.sample()
|
|
||||||
|
|
||||||
if (counter % 100000 == 0) {
|
|
||||||
val duration = Duration.between(startTime, Instant.now())
|
|
||||||
val meanValue = sum / counter
|
|
||||||
println("Direct sampler completed $counter elements in $duration: $meanValue")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return Duration.between(startTime, Instant.now())
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Comparing chain sampling performance with direct sampling performance
|
|
||||||
*/
|
|
||||||
fun main(): Unit = runBlocking(Dispatchers.Default) {
|
|
||||||
val directJob = async { runCMDirect() }
|
|
||||||
val chainJob = async { runKMathChained() }
|
|
||||||
println("KMath Chained: ${chainJob.await()}")
|
|
||||||
println("Apache Direct: ${directJob.await()}")
|
|
||||||
}
|
|
@ -1,39 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.stat
|
|
||||||
|
|
||||||
import kotlinx.coroutines.runBlocking
|
|
||||||
import space.kscience.kmath.chains.Chain
|
|
||||||
import space.kscience.kmath.chains.combineWithState
|
|
||||||
import space.kscience.kmath.distributions.NormalDistribution
|
|
||||||
import space.kscience.kmath.random.RandomGenerator
|
|
||||||
|
|
||||||
private data class AveragingChainState(var num: Int = 0, var value: Double = 0.0)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Averaging.
|
|
||||||
*/
|
|
||||||
private fun Chain<Double>.mean(): Chain<Double> = combineWithState(AveragingChainState(), { it.copy() }) { chain ->
|
|
||||||
val next = chain.next()
|
|
||||||
num++
|
|
||||||
value += next
|
|
||||||
return@combineWithState value / num
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val normal = NormalDistribution(0.0, 2.0)
|
|
||||||
val chain = normal.sample(RandomGenerator.default).mean()
|
|
||||||
|
|
||||||
runBlocking {
|
|
||||||
repeat(10001) { counter ->
|
|
||||||
val mean = chain.next()
|
|
||||||
if (counter % 1000 == 0) {
|
|
||||||
println("[$counter] Average value is $mean")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,66 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
@file:Suppress("unused")
|
|
||||||
|
|
||||||
package space.kscience.kmath.structures
|
|
||||||
|
|
||||||
import space.kscience.kmath.complex.*
|
|
||||||
import space.kscience.kmath.linear.transposed
|
|
||||||
import space.kscience.kmath.nd.StructureND
|
|
||||||
import space.kscience.kmath.nd.as2D
|
|
||||||
import space.kscience.kmath.nd.ndAlgebra
|
|
||||||
import space.kscience.kmath.nd.structureND
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
import kotlin.system.measureTimeMillis
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val dim = 1000
|
|
||||||
val n = 1000
|
|
||||||
|
|
||||||
val realField = Float64Field.ndAlgebra(dim, dim)
|
|
||||||
val complexField: ComplexFieldND = ComplexField.ndAlgebra(dim, dim)
|
|
||||||
|
|
||||||
val realTime = measureTimeMillis {
|
|
||||||
realField {
|
|
||||||
var res: StructureND<Double> = one
|
|
||||||
repeat(n) {
|
|
||||||
res += 1.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
println("Real addition completed in $realTime millis")
|
|
||||||
|
|
||||||
val complexTime = measureTimeMillis {
|
|
||||||
complexField {
|
|
||||||
var res: StructureND<Complex> = one
|
|
||||||
repeat(n) {
|
|
||||||
res += 1.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
println("Complex addition completed in $complexTime millis")
|
|
||||||
}
|
|
||||||
|
|
||||||
fun complexExample() {
|
|
||||||
//Create a context for 2-d structure with complex values
|
|
||||||
ComplexField {
|
|
||||||
withNdAlgebra(4, 8) {
|
|
||||||
//a constant real-valued structure
|
|
||||||
val x = one * 2.5
|
|
||||||
operator fun Number.plus(other: Complex) = Complex(this.toDouble() + other.re, other.im)
|
|
||||||
//a structure generator specific to this context
|
|
||||||
val matrix = structureND { (k, l) -> k + l * i }
|
|
||||||
//Perform sum
|
|
||||||
val sum = matrix + x + 1.0
|
|
||||||
|
|
||||||
//Represent the sum as 2d-structure and transpose
|
|
||||||
sum.as2D().transposed()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,92 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.structures
|
|
||||||
|
|
||||||
import kotlinx.coroutines.DelicateCoroutinesApi
|
|
||||||
import kotlinx.coroutines.GlobalScope
|
|
||||||
import org.nd4j.linalg.factory.Nd4j
|
|
||||||
import space.kscience.kmath.nd.*
|
|
||||||
import space.kscience.kmath.nd4j.nd4j
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
import space.kscience.kmath.viktor.ViktorFieldND
|
|
||||||
import kotlin.contracts.InvocationKind
|
|
||||||
import kotlin.contracts.contract
|
|
||||||
import kotlin.system.measureTimeMillis
|
|
||||||
|
|
||||||
internal inline fun measureAndPrint(title: String, block: () -> Unit) {
|
|
||||||
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
|
|
||||||
val time = measureTimeMillis(block)
|
|
||||||
println("$title completed in $time millis")
|
|
||||||
}
|
|
||||||
|
|
||||||
@OptIn(DelicateCoroutinesApi::class)
|
|
||||||
fun main() {
|
|
||||||
// initializing Nd4j
|
|
||||||
Nd4j.zeros(0)
|
|
||||||
val dim = 1000
|
|
||||||
val n = 1000
|
|
||||||
val shape = ShapeND(dim, dim)
|
|
||||||
|
|
||||||
|
|
||||||
// specialized nd-field for Double. It works as generic Double field as well.
|
|
||||||
val doubleField = Float64Field.ndAlgebra
|
|
||||||
//A generic field. It should be used for objects, not primitives.
|
|
||||||
val genericField = BufferedFieldOpsND(Float64Field)
|
|
||||||
// Nd4j specialized field.
|
|
||||||
val nd4jField = Float64Field.nd4j
|
|
||||||
//viktor field
|
|
||||||
val viktorField = ViktorFieldND(dim, dim)
|
|
||||||
//parallel processing based on Java Streams
|
|
||||||
val parallelField = Float64Field.ndStreaming(dim, dim)
|
|
||||||
|
|
||||||
measureAndPrint("Boxing addition") {
|
|
||||||
genericField {
|
|
||||||
var res: StructureND<Double> = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
measureAndPrint("Specialized addition") {
|
|
||||||
doubleField {
|
|
||||||
var res: StructureND<Double> = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
measureAndPrint("Nd4j specialized addition") {
|
|
||||||
nd4jField {
|
|
||||||
var res: StructureND<Double> = one(shape)
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
measureAndPrint("Viktor addition") {
|
|
||||||
viktorField {
|
|
||||||
var res: StructureND<Double> = one
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
measureAndPrint("Parallel stream addition") {
|
|
||||||
parallelField {
|
|
||||||
var res: StructureND<Double> = one
|
|
||||||
repeat(n) { res += 1.0 }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
measureAndPrint("Lazy addition") {
|
|
||||||
val res = doubleField.one(shape).mapAsync(GlobalScope) {
|
|
||||||
var c = 0.0
|
|
||||||
repeat(n) {
|
|
||||||
c += 1.0
|
|
||||||
}
|
|
||||||
c
|
|
||||||
}
|
|
||||||
|
|
||||||
res.elements().forEach { it.second }
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,127 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.structures
|
|
||||||
|
|
||||||
import space.kscience.kmath.PerformancePitfall
|
|
||||||
import space.kscience.kmath.nd.*
|
|
||||||
import space.kscience.kmath.operations.DoubleField
|
|
||||||
import space.kscience.kmath.operations.ExtendedField
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.operations.NumbersAddOps
|
|
||||||
import java.util.*
|
|
||||||
import java.util.stream.IntStream
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A demonstration implementation of NDField over Real using Java [java.util.stream.DoubleStream] for parallel
|
|
||||||
* execution.
|
|
||||||
*/
|
|
||||||
class StreamDoubleFieldND(override val shape: ShapeND) : FieldND<Double, Float64Field>,
|
|
||||||
NumbersAddOps<StructureND<Double>>,
|
|
||||||
ExtendedField<StructureND<Double>> {
|
|
||||||
|
|
||||||
private val strides = ColumnStrides(shape)
|
|
||||||
override val elementAlgebra: Float64Field get() = Float64Field
|
|
||||||
override val zero: BufferND<Double> by lazy { structureND(shape) { zero } }
|
|
||||||
override val one: BufferND<Double> by lazy { structureND(shape) { one } }
|
|
||||||
|
|
||||||
override fun number(value: Number): BufferND<Double> {
|
|
||||||
val d = value.toDouble() // minimize conversions
|
|
||||||
return structureND(shape) { d }
|
|
||||||
}
|
|
||||||
|
|
||||||
@OptIn(PerformancePitfall::class)
|
|
||||||
private val StructureND<Double>.buffer: Float64Buffer
|
|
||||||
get() = when {
|
|
||||||
shape != this@StreamDoubleFieldND.shape -> throw ShapeMismatchException(
|
|
||||||
this@StreamDoubleFieldND.shape,
|
|
||||||
shape
|
|
||||||
)
|
|
||||||
|
|
||||||
this is BufferND && indices == this@StreamDoubleFieldND.strides -> this.buffer as Float64Buffer
|
|
||||||
else -> Float64Buffer(strides.linearSize) { offset -> get(strides.index(offset)) }
|
|
||||||
}
|
|
||||||
|
|
||||||
override fun structureND(shape: ShapeND, initializer: Float64Field.(IntArray) -> Double): BufferND<Double> {
|
|
||||||
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
|
|
||||||
val index = strides.index(offset)
|
|
||||||
Float64Field.initializer(index)
|
|
||||||
}.toArray()
|
|
||||||
|
|
||||||
return BufferND(strides, array.asBuffer())
|
|
||||||
}
|
|
||||||
|
|
||||||
override fun mutableStructureND(
|
|
||||||
shape: ShapeND,
|
|
||||||
initializer: DoubleField.(IntArray) -> Double,
|
|
||||||
): MutableBufferND<Double> {
|
|
||||||
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
|
|
||||||
val index = strides.index(offset)
|
|
||||||
DoubleField.initializer(index)
|
|
||||||
}.toArray()
|
|
||||||
|
|
||||||
return MutableBufferND(strides, array.asBuffer())
|
|
||||||
}
|
|
||||||
|
|
||||||
@OptIn(PerformancePitfall::class)
|
|
||||||
override fun StructureND<Double>.map(
|
|
||||||
transform: Float64Field.(Double) -> Double,
|
|
||||||
): BufferND<Double> {
|
|
||||||
val array = Arrays.stream(buffer.array).parallel().map { Float64Field.transform(it) }.toArray()
|
|
||||||
return BufferND(strides, array.asBuffer())
|
|
||||||
}
|
|
||||||
|
|
||||||
@OptIn(PerformancePitfall::class)
|
|
||||||
override fun StructureND<Double>.mapIndexed(
|
|
||||||
transform: Float64Field.(index: IntArray, Double) -> Double,
|
|
||||||
): BufferND<Double> {
|
|
||||||
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
|
|
||||||
Float64Field.transform(
|
|
||||||
strides.index(offset),
|
|
||||||
buffer.array[offset]
|
|
||||||
)
|
|
||||||
}.toArray()
|
|
||||||
|
|
||||||
return BufferND(strides, array.asBuffer())
|
|
||||||
}
|
|
||||||
|
|
||||||
@OptIn(PerformancePitfall::class)
|
|
||||||
override fun zip(
|
|
||||||
left: StructureND<Double>,
|
|
||||||
right: StructureND<Double>,
|
|
||||||
transform: Float64Field.(Double, Double) -> Double,
|
|
||||||
): BufferND<Double> {
|
|
||||||
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
|
|
||||||
Float64Field.transform(left.buffer.array[offset], right.buffer.array[offset])
|
|
||||||
}.toArray()
|
|
||||||
return BufferND(strides, array.asBuffer())
|
|
||||||
}
|
|
||||||
|
|
||||||
override fun StructureND<Double>.unaryMinus(): StructureND<Double> = map { -it }
|
|
||||||
|
|
||||||
override fun scale(a: StructureND<Double>, value: Double): StructureND<Double> = a.map { it * value }
|
|
||||||
|
|
||||||
override fun power(arg: StructureND<Double>, pow: Number): BufferND<Double> = arg.map { power(it, pow) }
|
|
||||||
|
|
||||||
override fun exp(arg: StructureND<Double>): BufferND<Double> = arg.map { exp(it) }
|
|
||||||
|
|
||||||
override fun ln(arg: StructureND<Double>): BufferND<Double> = arg.map { ln(it) }
|
|
||||||
|
|
||||||
override fun sin(arg: StructureND<Double>): BufferND<Double> = arg.map { sin(it) }
|
|
||||||
override fun cos(arg: StructureND<Double>): BufferND<Double> = arg.map { cos(it) }
|
|
||||||
override fun tan(arg: StructureND<Double>): BufferND<Double> = arg.map { tan(it) }
|
|
||||||
override fun asin(arg: StructureND<Double>): BufferND<Double> = arg.map { asin(it) }
|
|
||||||
override fun acos(arg: StructureND<Double>): BufferND<Double> = arg.map { acos(it) }
|
|
||||||
override fun atan(arg: StructureND<Double>): BufferND<Double> = arg.map { atan(it) }
|
|
||||||
|
|
||||||
override fun sinh(arg: StructureND<Double>): BufferND<Double> = arg.map { sinh(it) }
|
|
||||||
override fun cosh(arg: StructureND<Double>): BufferND<Double> = arg.map { cosh(it) }
|
|
||||||
override fun tanh(arg: StructureND<Double>): BufferND<Double> = arg.map { tanh(it) }
|
|
||||||
override fun asinh(arg: StructureND<Double>): BufferND<Double> = arg.map { asinh(it) }
|
|
||||||
override fun acosh(arg: StructureND<Double>): BufferND<Double> = arg.map { acosh(it) }
|
|
||||||
override fun atanh(arg: StructureND<Double>): BufferND<Double> = arg.map { atanh(it) }
|
|
||||||
}
|
|
||||||
|
|
||||||
fun Float64Field.ndStreaming(vararg shape: Int): StreamDoubleFieldND = StreamDoubleFieldND(ShapeND(shape))
|
|
@ -1,45 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.structures
|
|
||||||
|
|
||||||
import space.kscience.kmath.PerformancePitfall
|
|
||||||
import space.kscience.kmath.nd.BufferND
|
|
||||||
import space.kscience.kmath.nd.ColumnStrides
|
|
||||||
import space.kscience.kmath.nd.ShapeND
|
|
||||||
import kotlin.system.measureTimeMillis
|
|
||||||
|
|
||||||
@Suppress("ASSIGNED_BUT_NEVER_ACCESSED_VARIABLE")
|
|
||||||
@OptIn(PerformancePitfall::class)
|
|
||||||
fun main() {
|
|
||||||
val n = 6000
|
|
||||||
val array = DoubleArray(n * n) { 1.0 }
|
|
||||||
val buffer = Float64Buffer(array)
|
|
||||||
val strides = ColumnStrides(ShapeND(n, n))
|
|
||||||
val structure = BufferND(strides, buffer)
|
|
||||||
|
|
||||||
measureTimeMillis {
|
|
||||||
var res = 0.0
|
|
||||||
strides.asSequence().forEach { res = structure[it] }
|
|
||||||
} // warmup
|
|
||||||
|
|
||||||
val time1 = measureTimeMillis {
|
|
||||||
var res = 0.0
|
|
||||||
strides.asSequence().forEach { res = structure[it] }
|
|
||||||
}
|
|
||||||
println("Structure reading finished in $time1 millis")
|
|
||||||
|
|
||||||
val time2 = measureTimeMillis {
|
|
||||||
var res = 0.0
|
|
||||||
strides.asSequence().forEach { res = buffer[strides.offset(it)] }
|
|
||||||
}
|
|
||||||
println("Buffer reading finished in $time2 millis")
|
|
||||||
|
|
||||||
val time3 = measureTimeMillis {
|
|
||||||
var res = 0.0
|
|
||||||
strides.asSequence().forEach { res = array[strides.offset(it)] }
|
|
||||||
}
|
|
||||||
println("Array reading finished in $time3 millis")
|
|
||||||
}
|
|
@ -1,42 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.structures
|
|
||||||
|
|
||||||
import space.kscience.kmath.nd.BufferND
|
|
||||||
import space.kscience.kmath.operations.mapToBuffer
|
|
||||||
import kotlin.system.measureTimeMillis
|
|
||||||
|
|
||||||
private inline fun <T, reified R : Any> BufferND<T>.mapToBufferND(
|
|
||||||
bufferFactory: BufferFactory<R> = BufferFactory(),
|
|
||||||
crossinline block: (T) -> R,
|
|
||||||
): BufferND<R> = BufferND(indices, buffer.mapToBuffer(bufferFactory, block))
|
|
||||||
|
|
||||||
@Suppress("UNUSED_VARIABLE")
|
|
||||||
fun main() {
|
|
||||||
val n = 6000
|
|
||||||
val structure = BufferND(n, n) { 1.0 }
|
|
||||||
structure.mapToBufferND { it + 1 } // warm-up
|
|
||||||
val time1 = measureTimeMillis { val res = structure.mapToBufferND { it + 1 } }
|
|
||||||
println("Structure mapping finished in $time1 millis")
|
|
||||||
val array = DoubleArray(n * n) { 1.0 }
|
|
||||||
|
|
||||||
val time2 = measureTimeMillis {
|
|
||||||
val target = DoubleArray(n * n)
|
|
||||||
val res = array.forEachIndexed { index, value -> target[index] = value + 1 }
|
|
||||||
}
|
|
||||||
|
|
||||||
println("Array mapping finished in $time2 millis")
|
|
||||||
|
|
||||||
val buffer = Float64Buffer(DoubleArray(n * n) { 1.0 })
|
|
||||||
|
|
||||||
val time3 = measureTimeMillis {
|
|
||||||
val target = Float64Buffer(DoubleArray(n * n))
|
|
||||||
val res = array.forEachIndexed { index, value ->
|
|
||||||
target[index] = value + 1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
println("Buffer mapping finished in $time3 millis")
|
|
||||||
}
|
|
@ -1,23 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.structures
|
|
||||||
|
|
||||||
import space.kscience.kmath.operations.Float64Field
|
|
||||||
import space.kscience.kmath.operations.buffer
|
|
||||||
import space.kscience.kmath.operations.bufferAlgebra
|
|
||||||
import space.kscience.kmath.operations.withSize
|
|
||||||
|
|
||||||
inline fun <reified R : Any> MutableBuffer.Companion.same(
|
|
||||||
n: Int,
|
|
||||||
value: R,
|
|
||||||
): MutableBuffer<R> = MutableBuffer(n) { value }
|
|
||||||
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
with(Float64Field.bufferAlgebra.withSize(5)) {
|
|
||||||
println(number(2.0) + buffer(1, 2, 3, 4, 5))
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,26 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2023 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.structures
|
|
||||||
|
|
||||||
import space.kscience.kmath.PerformancePitfall
|
|
||||||
import space.kscience.kmath.nd.*
|
|
||||||
import space.kscience.kmath.operations.algebra
|
|
||||||
|
|
||||||
@OptIn(PerformancePitfall::class)
|
|
||||||
fun main(): Unit = with(Double.algebra.ndAlgebra) {
|
|
||||||
val structure: MutableStructure2D<Double> = mutableStructureND(ShapeND(2, 2)) { (i, j) ->
|
|
||||||
i.toDouble() + j.toDouble()
|
|
||||||
}.as2D()
|
|
||||||
|
|
||||||
structure[0, 1] = -2.0
|
|
||||||
|
|
||||||
val structure2 = mutableStructureND(2, 2) { (i, j) -> i.toDouble() + j.toDouble() }.as2D()
|
|
||||||
|
|
||||||
structure2[0, 1] = 2.0
|
|
||||||
|
|
||||||
|
|
||||||
println(structure + structure2)
|
|
||||||
}
|
|
@ -1,35 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.structures
|
|
||||||
|
|
||||||
import space.kscience.kmath.dimensions.D2
|
|
||||||
import space.kscience.kmath.dimensions.D3
|
|
||||||
import space.kscience.kmath.dimensions.DMatrixContext
|
|
||||||
import space.kscience.kmath.dimensions.Dimension
|
|
||||||
|
|
||||||
private fun DMatrixContext<Double, *>.simple() {
|
|
||||||
val m1 = produce<D2, D3> { i, j -> (i + j).toDouble() }
|
|
||||||
val m2 = produce<D3, D2> { i, j -> (i + j).toDouble() }
|
|
||||||
|
|
||||||
//Dimension-safe addition
|
|
||||||
m1.transposed() + m2
|
|
||||||
}
|
|
||||||
|
|
||||||
private object D5 : Dimension {
|
|
||||||
override val dim: Int = 5
|
|
||||||
}
|
|
||||||
|
|
||||||
private fun DMatrixContext<Double, *>.custom() {
|
|
||||||
val m1 = produce<D2, D5> { i, j -> (i + j).toDouble() }
|
|
||||||
val m2 = produce<D5, D2> { i, j -> (i - j).toDouble() }
|
|
||||||
val m3 = produce<D2, D2> { i, j -> (i - j).toDouble() }
|
|
||||||
(m1 dot m2) + m3
|
|
||||||
}
|
|
||||||
|
|
||||||
fun main(): Unit = with(DMatrixContext.real) {
|
|
||||||
simple()
|
|
||||||
custom()
|
|
||||||
}
|
|
@ -1,92 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.tensors.LevenbergMarquardt.StaticLm
|
|
||||||
|
|
||||||
import space.kscience.kmath.nd.ShapeND
|
|
||||||
import space.kscience.kmath.nd.as2D
|
|
||||||
import space.kscience.kmath.nd.component1
|
|
||||||
import space.kscience.kmath.tensors.LevenbergMarquardt.funcDifficultForLm
|
|
||||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
|
|
||||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.div
|
|
||||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
|
||||||
import space.kscience.kmath.tensors.core.LMInput
|
|
||||||
import space.kscience.kmath.tensors.core.levenbergMarquardt
|
|
||||||
import kotlin.math.roundToInt
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val NData = 200
|
|
||||||
var t_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D()
|
|
||||||
for (i in 0 until NData) {
|
|
||||||
t_example[i, 0] = t_example[i, 0] * (i + 1) - 104
|
|
||||||
}
|
|
||||||
|
|
||||||
val Nparams = 15
|
|
||||||
var p_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D()
|
|
||||||
for (i in 0 until Nparams) {
|
|
||||||
p_example[i, 0] = p_example[i, 0] + i - 25
|
|
||||||
}
|
|
||||||
|
|
||||||
val exampleNumber = 1
|
|
||||||
|
|
||||||
var y_hat = funcDifficultForLm(t_example, p_example, exampleNumber)
|
|
||||||
|
|
||||||
var p_init = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
|
|
||||||
for (i in 0 until Nparams) {
|
|
||||||
p_init[i, 0] = (p_example[i, 0] + 0.9)
|
|
||||||
}
|
|
||||||
|
|
||||||
var t = t_example
|
|
||||||
val y_dat = y_hat
|
|
||||||
val weight = 1.0 / Nparams * 1.0 - 0.085
|
|
||||||
val dp = BroadcastDoubleTensorAlgebra.fromArray(
|
|
||||||
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
|
|
||||||
).as2D()
|
|
||||||
var p_min = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
|
|
||||||
p_min = p_min.div(1.0 / -50.0)
|
|
||||||
val p_max = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
|
|
||||||
p_min = p_min.div(1.0 / 50.0)
|
|
||||||
val opts = doubleArrayOf(3.0, 10000.0, 1e-6, 1e-6, 1e-6, 1e-6, 1e-2, 11.0, 9.0, 1.0)
|
|
||||||
// val opts = doubleArrayOf(3.0, 10000.0, 1e-6, 1e-6, 1e-6, 1e-6, 1e-3, 11.0, 9.0, 1.0)
|
|
||||||
|
|
||||||
val inputData = LMInput(
|
|
||||||
::funcDifficultForLm,
|
|
||||||
p_init.as2D(),
|
|
||||||
t,
|
|
||||||
y_dat,
|
|
||||||
weight,
|
|
||||||
dp,
|
|
||||||
p_min.as2D(),
|
|
||||||
p_max.as2D(),
|
|
||||||
opts[1].toInt(),
|
|
||||||
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
|
|
||||||
doubleArrayOf(opts[6], opts[7], opts[8]),
|
|
||||||
opts[9].toInt(),
|
|
||||||
10,
|
|
||||||
1
|
|
||||||
)
|
|
||||||
|
|
||||||
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
|
|
||||||
|
|
||||||
println("Parameters:")
|
|
||||||
for (i in 0 until result.resultParameters.shape.component1()) {
|
|
||||||
val x = (result.resultParameters[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
print("$x ")
|
|
||||||
}
|
|
||||||
println()
|
|
||||||
|
|
||||||
println("Y true and y received:")
|
|
||||||
var y_hat_after = funcDifficultForLm(t_example, result.resultParameters, exampleNumber)
|
|
||||||
for (i in 0 until y_hat.shape.component1()) {
|
|
||||||
val x = (y_hat[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
val y = (y_hat_after[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
println("$x $y")
|
|
||||||
}
|
|
||||||
|
|
||||||
println("Сhi_sq:")
|
|
||||||
println(result.resultChiSq)
|
|
||||||
println("Number of iterations:")
|
|
||||||
println(result.iterations)
|
|
||||||
}
|
|
@ -1,59 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.tensors.LevenbergMarquardt.StaticLm
|
|
||||||
|
|
||||||
import space.kscience.kmath.nd.ShapeND
|
|
||||||
import space.kscience.kmath.nd.as2D
|
|
||||||
import space.kscience.kmath.nd.component1
|
|
||||||
import space.kscience.kmath.tensors.LevenbergMarquardt.funcDifficultForLm
|
|
||||||
import space.kscience.kmath.tensors.LevenbergMarquardt.funcEasyForLm
|
|
||||||
import space.kscience.kmath.tensors.LevenbergMarquardt.getStartDataForFuncEasy
|
|
||||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
|
||||||
import space.kscience.kmath.tensors.core.LMInput
|
|
||||||
import space.kscience.kmath.tensors.core.levenbergMarquardt
|
|
||||||
import kotlin.math.roundToInt
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val startedData = getStartDataForFuncEasy()
|
|
||||||
val inputData = LMInput(
|
|
||||||
::funcEasyForLm,
|
|
||||||
DoubleTensorAlgebra.ones(ShapeND(intArrayOf(4, 1))).as2D(),
|
|
||||||
startedData.t,
|
|
||||||
startedData.y_dat,
|
|
||||||
startedData.weight,
|
|
||||||
startedData.dp,
|
|
||||||
startedData.p_min,
|
|
||||||
startedData.p_max,
|
|
||||||
startedData.opts[1].toInt(),
|
|
||||||
doubleArrayOf(startedData.opts[2], startedData.opts[3], startedData.opts[4], startedData.opts[5]),
|
|
||||||
doubleArrayOf(startedData.opts[6], startedData.opts[7], startedData.opts[8]),
|
|
||||||
startedData.opts[9].toInt(),
|
|
||||||
10,
|
|
||||||
startedData.example_number
|
|
||||||
)
|
|
||||||
|
|
||||||
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
|
|
||||||
|
|
||||||
println("Parameters:")
|
|
||||||
for (i in 0 until result.resultParameters.shape.component1()) {
|
|
||||||
val x = (result.resultParameters[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
print("$x ")
|
|
||||||
}
|
|
||||||
println()
|
|
||||||
|
|
||||||
println("Y true and y received:")
|
|
||||||
var y_hat_after = funcDifficultForLm(startedData.t, result.resultParameters, startedData.example_number)
|
|
||||||
for (i in 0 until startedData.y_dat.shape.component1()) {
|
|
||||||
val x = (startedData.y_dat[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
val y = (y_hat_after[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
println("$x $y")
|
|
||||||
}
|
|
||||||
|
|
||||||
println("Сhi_sq:")
|
|
||||||
println(result.resultChiSq)
|
|
||||||
println("Number of iterations:")
|
|
||||||
println(result.iterations)
|
|
||||||
}
|
|
@ -1,91 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.tensors.LevenbergMarquardt.StaticLm
|
|
||||||
|
|
||||||
import space.kscience.kmath.nd.ShapeND
|
|
||||||
import space.kscience.kmath.nd.as2D
|
|
||||||
import space.kscience.kmath.nd.component1
|
|
||||||
import space.kscience.kmath.tensors.LevenbergMarquardt.funcMiddleForLm
|
|
||||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra
|
|
||||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.div
|
|
||||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
|
||||||
import space.kscience.kmath.tensors.core.LMInput
|
|
||||||
import space.kscience.kmath.tensors.core.levenbergMarquardt
|
|
||||||
import kotlin.math.roundToInt
|
|
||||||
|
|
||||||
fun main() {
|
|
||||||
val NData = 100
|
|
||||||
var t_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(NData, 1))).as2D()
|
|
||||||
for (i in 0 until NData) {
|
|
||||||
t_example[i, 0] = t_example[i, 0] * (i + 1)
|
|
||||||
}
|
|
||||||
|
|
||||||
val Nparams = 20
|
|
||||||
var p_example = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1))).as2D()
|
|
||||||
for (i in 0 until Nparams) {
|
|
||||||
p_example[i, 0] = p_example[i, 0] + i - 25
|
|
||||||
}
|
|
||||||
|
|
||||||
val exampleNumber = 1
|
|
||||||
|
|
||||||
var y_hat = funcMiddleForLm(t_example, p_example, exampleNumber)
|
|
||||||
|
|
||||||
var p_init = DoubleTensorAlgebra.zeros(ShapeND(intArrayOf(Nparams, 1))).as2D()
|
|
||||||
for (i in 0 until Nparams) {
|
|
||||||
p_init[i, 0] = (p_example[i, 0] + 0.9)
|
|
||||||
}
|
|
||||||
|
|
||||||
var t = t_example
|
|
||||||
val y_dat = y_hat
|
|
||||||
val weight = 1.0
|
|
||||||
val dp = BroadcastDoubleTensorAlgebra.fromArray(
|
|
||||||
ShapeND(intArrayOf(1, 1)), DoubleArray(1) { -0.01 }
|
|
||||||
).as2D()
|
|
||||||
var p_min = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
|
|
||||||
p_min = p_min.div(1.0 / -50.0)
|
|
||||||
val p_max = DoubleTensorAlgebra.ones(ShapeND(intArrayOf(Nparams, 1)))
|
|
||||||
p_min = p_min.div(1.0 / 50.0)
|
|
||||||
val opts = doubleArrayOf(3.0, 7000.0, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 11.0, 9.0, 1.0)
|
|
||||||
|
|
||||||
val inputData = LMInput(
|
|
||||||
::funcMiddleForLm,
|
|
||||||
p_init.as2D(),
|
|
||||||
t,
|
|
||||||
y_dat,
|
|
||||||
weight,
|
|
||||||
dp,
|
|
||||||
p_min.as2D(),
|
|
||||||
p_max.as2D(),
|
|
||||||
opts[1].toInt(),
|
|
||||||
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
|
|
||||||
doubleArrayOf(opts[6], opts[7], opts[8]),
|
|
||||||
opts[9].toInt(),
|
|
||||||
10,
|
|
||||||
1
|
|
||||||
)
|
|
||||||
|
|
||||||
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
|
|
||||||
|
|
||||||
println("Parameters:")
|
|
||||||
for (i in 0 until result.resultParameters.shape.component1()) {
|
|
||||||
val x = (result.resultParameters[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
print("$x ")
|
|
||||||
}
|
|
||||||
println()
|
|
||||||
|
|
||||||
|
|
||||||
var y_hat_after = funcMiddleForLm(t_example, result.resultParameters, exampleNumber)
|
|
||||||
for (i in 0 until y_hat.shape.component1()) {
|
|
||||||
val x = (y_hat[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
val y = (y_hat_after[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
println("$x $y")
|
|
||||||
}
|
|
||||||
|
|
||||||
println("Сhi_sq:")
|
|
||||||
println(result.resultChiSq)
|
|
||||||
println("Number of iterations:")
|
|
||||||
println(result.iterations)
|
|
||||||
}
|
|
@ -1,75 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.tensors.LevenbergMarquardt.StreamingLm
|
|
||||||
|
|
||||||
import kotlinx.coroutines.delay
|
|
||||||
import kotlinx.coroutines.flow.Flow
|
|
||||||
import kotlinx.coroutines.flow.flow
|
|
||||||
import space.kscience.kmath.nd.MutableStructure2D
|
|
||||||
import space.kscience.kmath.nd.ShapeND
|
|
||||||
import space.kscience.kmath.nd.as2D
|
|
||||||
import space.kscience.kmath.nd.component1
|
|
||||||
import space.kscience.kmath.tensors.LevenbergMarquardt.StartDataLm
|
|
||||||
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.zeros
|
|
||||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
|
||||||
import space.kscience.kmath.tensors.core.LMInput
|
|
||||||
import space.kscience.kmath.tensors.core.levenbergMarquardt
|
|
||||||
import kotlin.random.Random
|
|
||||||
|
|
||||||
fun streamLm(
|
|
||||||
lm_func: (MutableStructure2D<Double>, MutableStructure2D<Double>, Int) -> (MutableStructure2D<Double>),
|
|
||||||
startData: StartDataLm, launchFrequencyInMs: Long, numberOfLaunches: Int,
|
|
||||||
): Flow<MutableStructure2D<Double>> = flow {
|
|
||||||
|
|
||||||
var example_number = startData.example_number
|
|
||||||
var p_init = startData.p_init
|
|
||||||
var t = startData.t
|
|
||||||
var y_dat = startData.y_dat
|
|
||||||
val weight = startData.weight
|
|
||||||
val dp = startData.dp
|
|
||||||
val p_min = startData.p_min
|
|
||||||
val p_max = startData.p_max
|
|
||||||
val opts = startData.opts
|
|
||||||
|
|
||||||
var steps = numberOfLaunches
|
|
||||||
val isEndless = (steps <= 0)
|
|
||||||
|
|
||||||
val inputData = LMInput(
|
|
||||||
lm_func,
|
|
||||||
p_init,
|
|
||||||
t,
|
|
||||||
y_dat,
|
|
||||||
weight,
|
|
||||||
dp,
|
|
||||||
p_min,
|
|
||||||
p_max,
|
|
||||||
opts[1].toInt(),
|
|
||||||
doubleArrayOf(opts[2], opts[3], opts[4], opts[5]),
|
|
||||||
doubleArrayOf(opts[6], opts[7], opts[8]),
|
|
||||||
opts[9].toInt(),
|
|
||||||
10,
|
|
||||||
example_number
|
|
||||||
)
|
|
||||||
|
|
||||||
while (isEndless || steps > 0) {
|
|
||||||
val result = DoubleTensorAlgebra.levenbergMarquardt(inputData)
|
|
||||||
emit(result.resultParameters)
|
|
||||||
delay(launchFrequencyInMs)
|
|
||||||
inputData.realValues = generateNewYDat(y_dat, 0.1)
|
|
||||||
inputData.startParameters = result.resultParameters
|
|
||||||
if (!isEndless) steps -= 1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fun generateNewYDat(y_dat: MutableStructure2D<Double>, delta: Double): MutableStructure2D<Double> {
|
|
||||||
val n = y_dat.shape.component1()
|
|
||||||
val y_dat_new = zeros(ShapeND(intArrayOf(n, 1))).as2D()
|
|
||||||
for (i in 0 until n) {
|
|
||||||
val randomEps = Random.nextDouble(delta + delta) - delta
|
|
||||||
y_dat_new[i, 0] = y_dat[i, 0] + randomEps
|
|
||||||
}
|
|
||||||
return y_dat_new
|
|
||||||
}
|
|
@ -1,33 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright 2018-2024 KMath contributors.
|
|
||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
|
||||||
*/
|
|
||||||
|
|
||||||
package space.kscience.kmath.tensors.LevenbergMarquardt.StreamingLm
|
|
||||||
|
|
||||||
import space.kscience.kmath.nd.component1
|
|
||||||
import space.kscience.kmath.tensors.LevenbergMarquardt.funcDifficultForLm
|
|
||||||
import space.kscience.kmath.tensors.LevenbergMarquardt.getStartDataForFuncDifficult
|
|
||||||
import kotlin.math.roundToInt
|
|
||||||
|
|
||||||
suspend fun main() {
|
|
||||||
val startData = getStartDataForFuncDifficult()
|
|
||||||
// Создание потока:
|
|
||||||
val lmFlow = streamLm(::funcDifficultForLm, startData, 0, 100)
|
|
||||||
var initialTime = System.currentTimeMillis()
|
|
||||||
var lastTime: Long
|
|
||||||
val launches = mutableListOf<Long>()
|
|
||||||
// Запуск потока
|
|
||||||
lmFlow.collect { parameters ->
|
|
||||||
lastTime = System.currentTimeMillis()
|
|
||||||
launches.add(lastTime - initialTime)
|
|
||||||
initialTime = lastTime
|
|
||||||
for (i in 0 until parameters.shape.component1()) {
|
|
||||||
val x = (parameters[i, 0] * 10000).roundToInt() / 10000.0
|
|
||||||
print("$x ")
|
|
||||||
if (i == parameters.shape.component1() - 1) println()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
println("Average without first is: ${launches.subList(1, launches.size - 1).average()}")
|
|
||||||
}
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user