forked from kscience/kmath
Open epsilon to client to control numerical precision for power methods
This commit is contained in:
parent
3f0dff3ce9
commit
fe8579180d
@ -26,6 +26,6 @@ public interface LinearOpsTensorAlgebra<T, TensorType : TensorStructure<T>, Inde
|
||||
public fun TensorType.svd(): Triple<TensorType, TensorType, TensorType>
|
||||
|
||||
//https://pytorch.org/docs/stable/generated/torch.symeig.html
|
||||
public fun TensorType.symEig(eigenvectors: Boolean = true): Pair<TensorType, TensorType>
|
||||
public fun TensorType.symEig(): Pair<TensorType, TensorType>
|
||||
|
||||
}
|
@ -94,8 +94,10 @@ public class DoubleLinearOpsTensorAlgebra :
|
||||
return qTensor to rTensor
|
||||
}
|
||||
|
||||
override fun DoubleTensor.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> =
|
||||
svd(epsilon = 1e-10)
|
||||
|
||||
override fun DoubleTensor.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
public fun DoubleTensor.svd(epsilon: Double): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
val size = this.linearStructure.dim
|
||||
val commonShape = this.shape.sliceArray(0 until size - 2)
|
||||
val (n, m) = this.shape.sliceArray(size - 2 until size)
|
||||
@ -110,17 +112,20 @@ public class DoubleLinearOpsTensorAlgebra :
|
||||
matrix.shape,
|
||||
matrix.buffer.array().slice(matrix.bufferStart until matrix.bufferStart + size).toDoubleArray()
|
||||
)
|
||||
svdHelper(curMatrix, USV, m, n)
|
||||
svdHelper(curMatrix, USV, m, n, epsilon)
|
||||
}
|
||||
return Triple(resU.transpose(), resS, resV.transpose())
|
||||
}
|
||||
|
||||
override fun DoubleTensor.symEig(): Pair<DoubleTensor, DoubleTensor> =
|
||||
symEig(epsilon = 1e-15)
|
||||
|
||||
//http://hua-zhou.github.io/teaching/biostatm280-2017spring/slides/16-eigsvd/eigsvd.html
|
||||
override fun DoubleTensor.symEig(eigenvectors: Boolean): Pair<DoubleTensor, DoubleTensor> {
|
||||
checkSymmetric(this)
|
||||
val (u, s, v) = this.svd()
|
||||
public fun DoubleTensor.symEig(epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
|
||||
checkSymmetric(this, epsilon)
|
||||
val (u, s, v) = this.svd(epsilon)
|
||||
val shp = s.shape + intArrayOf(1)
|
||||
val utv = (u.transpose() dot v).map { if (abs(it) < 0.99) 0.0 else sign(it) }
|
||||
val utv = (u.transpose() dot v).map { if (abs(it) < 0.9) 0.0 else sign(it) }
|
||||
val eig = (utv dot s.view(shp)).view(s.shape)
|
||||
return Pair(eig, v)
|
||||
}
|
||||
|
@ -58,7 +58,7 @@ internal inline fun <T, TensorType : TensorStructure<T>,
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun DoubleTensorAlgebra.checkSymmetric(tensor: DoubleTensor): Unit =
|
||||
check(tensor.eq(tensor.transpose())){
|
||||
"Tensor is not symmetric about the last 2 dimensions"
|
||||
internal inline fun DoubleTensorAlgebra.checkSymmetric(tensor: DoubleTensor, epsilon: Double = 1e-6): Unit =
|
||||
check(tensor.eq(tensor.transpose(), epsilon)) {
|
||||
"Tensor is not symmetric about the last 2 dimensions at precision $epsilon"
|
||||
}
|
@ -246,7 +246,7 @@ internal inline fun DoubleLinearOpsTensorAlgebra.svd1d(a: DoubleTensor, epsilon:
|
||||
internal inline fun DoubleLinearOpsTensorAlgebra.svdHelper(
|
||||
matrix: DoubleTensor,
|
||||
USV: Pair<BufferedTensor<Double>, Pair<BufferedTensor<Double>, BufferedTensor<Double>>>,
|
||||
m: Int, n: Int
|
||||
m: Int, n: Int, epsilon: Double
|
||||
): Unit {
|
||||
val res = ArrayList<Triple<Double, DoubleTensor, DoubleTensor>>(0)
|
||||
val (matrixU, SV) = USV
|
||||
@ -267,12 +267,12 @@ internal inline fun DoubleLinearOpsTensorAlgebra.svdHelper(
|
||||
var u: DoubleTensor
|
||||
var norm: Double
|
||||
if (n > m) {
|
||||
v = svd1d(a)
|
||||
v = svd1d(a, epsilon)
|
||||
u = matrix.dot(v)
|
||||
norm = DoubleAnalyticTensorAlgebra { (u dot u).sqrt().value() }
|
||||
u = u.times(1.0 / norm)
|
||||
} else {
|
||||
u = svd1d(a)
|
||||
u = svd1d(a, epsilon)
|
||||
v = matrix.transpose(0, 1).dot(u)
|
||||
norm = DoubleAnalyticTensorAlgebra { (v dot v).sqrt().value() }
|
||||
v = v.times(1.0 / norm)
|
||||
|
@ -143,7 +143,7 @@ class TestDoubleLinearOpsTensorAlgebra {
|
||||
val tensorSigma = tensor + tensor.transpose()
|
||||
val (tensorS, tensorV) = tensorSigma.symEig()
|
||||
val tensorSigmaCalc = tensorV dot (diagonalEmbedding(tensorS) dot tensorV.transpose())
|
||||
assertTrue(tensorSigma.eq(tensorSigmaCalc, 0.01))
|
||||
assertTrue(tensorSigma.eq(tensorSigmaCalc))
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user