diff --git a/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/DotBenchmark.kt b/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/DotBenchmark.kt index 33cb57c6f..64f9b5dff 100644 --- a/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/DotBenchmark.kt +++ b/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/DotBenchmark.kt @@ -14,7 +14,6 @@ import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM import space.kscience.kmath.linear.invoke import space.kscience.kmath.linear.linearSpace import space.kscience.kmath.operations.DoubleField -import space.kscience.kmath.operations.algebra import space.kscience.kmath.structures.Buffer import kotlin.random.Random @@ -25,11 +24,11 @@ internal class DotBenchmark { const val dim = 1000 //creating invertible matrix - val matrix1 = Double.algebra.linearSpace.buildMatrix(dim, dim) { i, j -> - if (i <= j) random.nextDouble() else 0.0 + val matrix1 = DoubleField.linearSpace.buildMatrix(dim, dim) { _, _ -> + random.nextDouble() } - val matrix2 = Double.algebra.linearSpace.buildMatrix(dim, dim) { i, j -> - if (i <= j) random.nextDouble() else 0.0 + val matrix2 = DoubleField.linearSpace.buildMatrix(dim, dim) { _, _ -> + random.nextDouble() } val cmMatrix1 = CMLinearSpace { matrix1.toCM() } @@ -65,7 +64,7 @@ internal class DotBenchmark { } @Benchmark - fun doubleDot(blackhole: Blackhole) = with(Double.algebra.linearSpace) { + fun doubleDot(blackhole: Blackhole) = with(DoubleField.linearSpace) { blackhole.consume(matrix1 dot matrix2) } } diff --git a/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/ExpressionsInterpretersBenchmark.kt b/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/ExpressionsInterpretersBenchmark.kt index 8c3c8ec2b..63e1511bd 100644 --- a/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/ExpressionsInterpretersBenchmark.kt +++ b/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/ExpressionsInterpretersBenchmark.kt @@ -75,8 +75,9 @@ internal class ExpressionsInterpretersBenchmark { private val algebra = DoubleField private const val times = 1_000_000 - private val functional = DoubleField.expressionInExtendedField { - bindSymbol(x) * number(2.0) + number(2.0) / bindSymbol(x) - number(16.0) / sin(bindSymbol(x)) + private val functional = DoubleField.expression { + val x = bindSymbol(Symbol.x) + x * number(2.0) + 2.0 / x - 16.0 / sin(x) } private val node = MstExtendedField { diff --git a/kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions/FunctionalExpressionAlgebra.kt b/kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions/FunctionalExpressionAlgebra.kt index bb7f36fc5..36ccb96f7 100644 --- a/kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions/FunctionalExpressionAlgebra.kt +++ b/kmath-core/src/commonMain/kotlin/space/kscience/kmath/expressions/FunctionalExpressionAlgebra.kt @@ -192,3 +192,7 @@ public inline fun > A.expressionInField( public inline fun > A.expressionInExtendedField( block: FunctionalExpressionExtendedField.() -> Expression, ): Expression = FunctionalExpressionExtendedField(this).block() + +public inline fun DoubleField.expression( + block: FunctionalExpressionExtendedField.() -> Expression, +): Expression = FunctionalExpressionExtendedField(this).block() diff --git a/kmath-core/src/commonMain/kotlin/space/kscience/kmath/linear/DoubleLinearSpace.kt b/kmath-core/src/commonMain/kotlin/space/kscience/kmath/linear/DoubleLinearSpace.kt index 4a1311b54..c2f53939f 100644 --- a/kmath-core/src/commonMain/kotlin/space/kscience/kmath/linear/DoubleLinearSpace.kt +++ b/kmath-core/src/commonMain/kotlin/space/kscience/kmath/linear/DoubleLinearSpace.kt @@ -13,7 +13,6 @@ import space.kscience.kmath.operations.DoubleBufferOperations import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.DoubleBuffer -import space.kscience.kmath.structures.indices public object DoubleLinearSpace : LinearSpace { @@ -30,7 +29,6 @@ public object DoubleLinearSpace : LinearSpace { initializer: DoubleField.(i: Int, j: Int) -> Double ): Matrix = ndRing(rows, columns).produce { (i, j) -> DoubleField.initializer(i, j) }.as2D() - override fun buildVector(size: Int, initializer: DoubleField.(Int) -> Double): DoubleBuffer = DoubleBuffer(size) { DoubleField.initializer(it) } @@ -50,9 +48,9 @@ public object DoubleLinearSpace : LinearSpace { // Create a continuous in-memory representation of this vector for better memory layout handling private fun Buffer.linearize() = if (this is DoubleBuffer) { - this + this.array } else { - DoubleBuffer(size) { get(it) } + DoubleArray(size) { get(it) } } @OptIn(PerformancePitfall::class) diff --git a/kmath-stat/src/commonMain/kotlin/space/kscience/kmath/stat/Mean.kt b/kmath-stat/src/commonMain/kotlin/space/kscience/kmath/stat/Mean.kt index 7daed5798..1d09fffd1 100644 --- a/kmath-stat/src/commonMain/kotlin/space/kscience/kmath/stat/Mean.kt +++ b/kmath-stat/src/commonMain/kotlin/space/kscience/kmath/stat/Mean.kt @@ -27,8 +27,13 @@ public class Mean( override suspend fun evaluate(data: Buffer): T = super.evaluate(data) - override suspend fun computeIntermediate(data: Buffer): Pair = - evaluateBlocking(data) to data.size + override suspend fun computeIntermediate(data: Buffer): Pair = group { + var res = zero + for (i in data.indices) { + res += data[i] + } + res to data.size + } override suspend fun composeIntermediate(first: Pair, second: Pair): Pair = group { first.first + second.first } to (first.second + second.second) @@ -38,13 +43,23 @@ public class Mean( } public companion object { - //TODO replace with optimized version which respects overflow + @Deprecated("Use Double.mean instead") public val double: Mean = Mean(DoubleField) { sum, count -> sum / count } + @Deprecated("Use Int.mean instead") public val int: Mean = Mean(IntRing) { sum, count -> sum / count } + @Deprecated("Use Long.mean instead") public val long: Mean = Mean(LongRing) { sum, count -> sum / count } public fun evaluate(buffer: Buffer): Double = double.evaluateBlocking(buffer) public fun evaluate(buffer: Buffer): Int = int.evaluateBlocking(buffer) public fun evaluate(buffer: Buffer): Long = long.evaluateBlocking(buffer) } -} \ No newline at end of file +} + + +//TODO replace with optimized version which respects overflow +public val Double.Companion.mean: Mean get() = Mean(DoubleField) { sum, count -> sum / count } +public val Int.Companion.mean: Mean get() = Mean(IntRing) { sum, count -> sum / count } +public val Long.Companion.mean: Mean get() = Mean(LongRing) { sum, count -> sum / count } + + diff --git a/kmath-stat/src/commonMain/kotlin/space/kscience/kmath/stat/Statistic.kt b/kmath-stat/src/commonMain/kotlin/space/kscience/kmath/stat/Statistic.kt index ab80fbe1c..107161514 100644 --- a/kmath-stat/src/commonMain/kotlin/space/kscience/kmath/stat/Statistic.kt +++ b/kmath-stat/src/commonMain/kotlin/space/kscience/kmath/stat/Statistic.kt @@ -8,7 +8,6 @@ package space.kscience.kmath.stat import kotlinx.coroutines.CoroutineDispatcher import kotlinx.coroutines.Dispatchers import kotlinx.coroutines.ExperimentalCoroutinesApi -import kotlinx.coroutines.FlowPreview import kotlinx.coroutines.flow.Flow import kotlinx.coroutines.flow.map import kotlinx.coroutines.flow.runningReduce @@ -18,16 +17,23 @@ import space.kscience.kmath.structures.Buffer /** * A function, that transforms a buffer of random quantities to some resulting value */ -public interface Statistic { +public fun interface Statistic { public suspend fun evaluate(data: Buffer): R } -public interface BlockingStatistic : Statistic { +public suspend operator fun Statistic.invoke(data: Buffer): R = evaluate(data) + +/** + * A statistic that is computed in a synchronous blocking mode + */ +public fun interface BlockingStatistic : Statistic { public fun evaluateBlocking(data: Buffer): R override suspend fun evaluate(data: Buffer): R = evaluateBlocking(data) } +public operator fun BlockingStatistic.invoke(data: Buffer): R = evaluateBlocking(data) + /** * A statistic tha could be computed separately on different blocks of data and then composed * @@ -48,8 +54,10 @@ public interface ComposableStatistic : Statistic { override suspend fun evaluate(data: Buffer): R = toResult(computeIntermediate(data)) } -@FlowPreview -@ExperimentalCoroutinesApi +/** + * Flow intermediate state of the [ComposableStatistic] + */ +@OptIn(ExperimentalCoroutinesApi::class) private fun ComposableStatistic.flowIntermediate( flow: Flow>, dispatcher: CoroutineDispatcher = Dispatchers.Default, @@ -64,7 +72,7 @@ private fun ComposableStatistic.flowIntermediate( * * The resulting flow contains values that include the whole previous statistics, not only the last chunk. */ -@OptIn(FlowPreview::class, ExperimentalCoroutinesApi::class) +@OptIn(ExperimentalCoroutinesApi::class) public fun ComposableStatistic.flow( flow: Flow>, dispatcher: CoroutineDispatcher = Dispatchers.Default, diff --git a/kmath-stat/src/jvmTest/kotlin/space/kscience/kmath/stat/StatisticTest.kt b/kmath-stat/src/jvmTest/kotlin/space/kscience/kmath/stat/StatisticTest.kt index c64bcc78c..2a3147869 100644 --- a/kmath-stat/src/jvmTest/kotlin/space/kscience/kmath/stat/StatisticTest.kt +++ b/kmath-stat/src/jvmTest/kotlin/space/kscience/kmath/stat/StatisticTest.kt @@ -5,11 +5,13 @@ package space.kscience.kmath.stat -import kotlinx.coroutines.flow.drop import kotlinx.coroutines.flow.first +import kotlinx.coroutines.flow.last +import kotlinx.coroutines.flow.take import kotlinx.coroutines.runBlocking import space.kscience.kmath.streaming.chunked import kotlin.test.Test +import kotlin.test.assertEquals internal class StatisticTest { //create a random number generator. @@ -22,12 +24,27 @@ internal class StatisticTest { val chunked = data.chunked(1000) @Test - fun testParallelMean() = runBlocking { - val average = Mean.double - .flow(chunked) //create a flow with results - .drop(99) // Skip first 99 values and use one with total data - .first() //get 1e5 data samples average - - println(average) + fun singleBlockingMean() { + val first = runBlocking { chunked.first()} + val res = Double.mean(first) + assertEquals(0.5,res, 1e-1) } + + @Test + fun singleSuspendMean() = runBlocking { + val first = runBlocking { chunked.first()} + val res = Double.mean(first) + assertEquals(0.5,res, 1e-1) + } + + @Test + fun parallelMean() = runBlocking { + val average = Double.mean + .flow(chunked) //create a flow from evaluated results + .take(100) // Take 100 data chunks from the source and accumulate them + .last() //get 1e5 data samples average + + assertEquals(0.5,average, 1e-3) + } + }