forked from kscience/kmath
Finishing fixes
This commit is contained in:
parent
7d88fb0166
commit
f8e91c2402
@ -20,9 +20,11 @@
|
||||
- Kmath-memory is moved on top of core.
|
||||
|
||||
### Deprecated
|
||||
- ND4J engine
|
||||
|
||||
### Removed
|
||||
- `asPolynomial` function due to scope pollution
|
||||
- Codegend for ejml (450 lines of codegen for 1000 lines of code is too much)
|
||||
|
||||
### Fixed
|
||||
- Median statistics
|
||||
|
@ -99,7 +99,7 @@ class ExpressionsInterpretersBenchmark {
|
||||
private val estree = node.estreeCompileToExpression(Float64Field)
|
||||
|
||||
private val raw = Expression<Double> { args ->
|
||||
val x = args[x]!!
|
||||
val x = args.getValue(x)
|
||||
x * 2.0 + 2.0 / x - 16.0 / sin(x)
|
||||
}
|
||||
}
|
||||
|
@ -13,10 +13,7 @@ import space.kscience.kmath.expressions.autodiff
|
||||
import space.kscience.kmath.expressions.symbol
|
||||
import space.kscience.kmath.operations.asIterable
|
||||
import space.kscience.kmath.operations.toList
|
||||
import space.kscience.kmath.optimization.FunctionOptimizationTarget
|
||||
import space.kscience.kmath.optimization.optimizeWith
|
||||
import space.kscience.kmath.optimization.result
|
||||
import space.kscience.kmath.optimization.resultValue
|
||||
import space.kscience.kmath.optimization.*
|
||||
import space.kscience.kmath.random.RandomGenerator
|
||||
import space.kscience.kmath.real.DoubleVector
|
||||
import space.kscience.kmath.real.map
|
||||
@ -80,8 +77,9 @@ suspend fun main() {
|
||||
val result = chi2.optimizeWith(
|
||||
CMOptimizer,
|
||||
mapOf(a to 1.5, b to 0.9, c to 1.0),
|
||||
FunctionOptimizationTarget.MINIMIZE
|
||||
)
|
||||
){
|
||||
FunctionOptimizationTarget(OptimizationDirection.MINIMIZE)
|
||||
}
|
||||
|
||||
//display a page with plot and numerical results
|
||||
val page = Plotly.page {
|
||||
|
@ -7,6 +7,7 @@ package space.kscience.kmath.fit
|
||||
|
||||
import kotlinx.html.br
|
||||
import kotlinx.html.h3
|
||||
import space.kscience.attributes.Attributes
|
||||
import space.kscience.kmath.data.XYErrorColumnarData
|
||||
import space.kscience.kmath.distributions.NormalDistribution
|
||||
import space.kscience.kmath.expressions.Symbol
|
||||
@ -64,7 +65,7 @@ suspend fun main() {
|
||||
QowOptimizer,
|
||||
Double.autodiff,
|
||||
mapOf(a to 0.9, b to 1.2, c to 2.0, e to 1.0, d to 1.0, e to 0.0),
|
||||
OptimizationParameters(a, b, c, d)
|
||||
attributes = Attributes(OptimizationParameters, listOf(a, b, c, d))
|
||||
) { arg ->
|
||||
//bind variables to autodiff context
|
||||
val a by binding
|
||||
|
@ -8,7 +8,6 @@ package space.kscience.kmath.functions
|
||||
import space.kscience.kmath.interpolation.SplineInterpolator
|
||||
import space.kscience.kmath.interpolation.interpolatePolynomials
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.structures.Float64Buffer
|
||||
import space.kscience.plotly.Plotly
|
||||
import space.kscience.plotly.UnstablePlotlyAPI
|
||||
import space.kscience.plotly.makeFile
|
||||
@ -24,9 +23,7 @@ fun main() {
|
||||
x to sin(x)
|
||||
}
|
||||
|
||||
val polynomial: PiecewisePolynomial<Double> = SplineInterpolator(
|
||||
Float64Field, ::Float64Buffer
|
||||
).interpolatePolynomials(data)
|
||||
val polynomial: PiecewisePolynomial<Double> = SplineInterpolator(Float64Field).interpolatePolynomials(data)
|
||||
|
||||
val function = polynomial.asFunction(Float64Field, 0.0)
|
||||
|
||||
|
@ -8,7 +8,7 @@
|
||||
package space.kscience.kmath.structures
|
||||
|
||||
import space.kscience.kmath.complex.*
|
||||
import space.kscience.kmath.linear.transpose
|
||||
import space.kscience.kmath.linear.transposed
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.nd.ndAlgebra
|
||||
@ -60,7 +60,7 @@ fun complexExample() {
|
||||
val sum = matrix + x + 1.0
|
||||
|
||||
//Represent the sum as 2d-structure and transpose
|
||||
sum.as2D().transpose()
|
||||
sum.as2D().transposed()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ package space.kscience.kmath.structures
|
||||
|
||||
import space.kscience.kmath.PerformancePitfall
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.ExtendedField
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.operations.NumbersAddOps
|
||||
|
@ -6,20 +6,18 @@
|
||||
package space.kscience.kmath.structures
|
||||
|
||||
import space.kscience.kmath.nd.BufferND
|
||||
import space.kscience.kmath.nd.ShapeND
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.operations.mapToBuffer
|
||||
import kotlin.system.measureTimeMillis
|
||||
|
||||
private inline fun <T, reified R : Any> BufferND<T>.mapToBufferND(
|
||||
bufferFactory: BufferFactory<R> = BufferFactory.auto(),
|
||||
bufferFactory: BufferFactory<R> = BufferFactory(),
|
||||
crossinline block: (T) -> R,
|
||||
): BufferND<R> = BufferND(indices, buffer.mapToBuffer(bufferFactory, block))
|
||||
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
fun main() {
|
||||
val n = 6000
|
||||
val structure = StructureND.buffered(ShapeND(n, n), Buffer.Companion::auto) { 1.0 }
|
||||
val structure = BufferND(n, n) { 1.0 }
|
||||
structure.mapToBufferND { it + 1 } // warm-up
|
||||
val time1 = measureTimeMillis { val res = structure.mapToBufferND { it + 1 } }
|
||||
println("Structure mapping finished in $time1 millis")
|
||||
|
@ -13,7 +13,7 @@ import space.kscience.kmath.operations.withSize
|
||||
inline fun <reified R : Any> MutableBuffer.Companion.same(
|
||||
n: Int,
|
||||
value: R
|
||||
): MutableBuffer<R> = auto(n) { value }
|
||||
): MutableBuffer<R> = MutableBuffer(n) { value }
|
||||
|
||||
|
||||
fun main() {
|
||||
|
@ -7,16 +7,20 @@ package space.kscience.kmath.commons.linear
|
||||
|
||||
import org.apache.commons.math3.linear.*
|
||||
import org.apache.commons.math3.linear.LUDecomposition
|
||||
import org.apache.commons.math3.linear.SingularValueDecomposition
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.linear.*
|
||||
import space.kscience.kmath.linear.CholeskyDecomposition
|
||||
import space.kscience.kmath.linear.QRDecomposition
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.nd.StructureAttribute
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.Float64Buffer
|
||||
import kotlin.reflect.cast
|
||||
import space.kscience.kmath.structures.Float64
|
||||
import space.kscience.kmath.structures.IntBuffer
|
||||
import space.kscience.kmath.structures.asBuffer
|
||||
|
||||
public class CMMatrix(public val origin: RealMatrix) : Matrix<Double> {
|
||||
override val type: SafeType<Double> get() = DoubleField.type
|
||||
@ -109,45 +113,44 @@ public object CMLinearSpace : LinearSpace<Double, Float64Field> {
|
||||
|
||||
val origin = structure.toCM().origin
|
||||
|
||||
return when (attribute) {
|
||||
IsDiagonal -> if (origin is DiagonalMatrix) IsDiagonal else null
|
||||
val raw: Any? = when (attribute) {
|
||||
IsDiagonal -> if (origin is DiagonalMatrix) Unit else null
|
||||
Determinant -> LUDecomposition(origin).determinant
|
||||
LUP -> GenericLupDecomposition {
|
||||
private val lup by lazy { LUDecomposition(origin) }
|
||||
override val determinant: Double by lazy { lup.determinant }
|
||||
override val l: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(lup.l).withAttribute(LowerTriangular) }
|
||||
override val u: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(lup.u).withAttribute(UpperTriangular) }
|
||||
override val p: Matrix<Double> by lazy { CMMatrix(lup.p) }
|
||||
|
||||
LUP -> object : LupDecomposition<Float64> {
|
||||
val lup by lazy { LUDecomposition(origin) }
|
||||
override val pivot: IntBuffer get() = lup.pivot.asBuffer()
|
||||
override val l: Matrix<Float64> get() = lup.l.wrap()
|
||||
override val u: Matrix<Float64> get() = lup.u.wrap()
|
||||
}
|
||||
|
||||
CholeskyDecompositionAttribute -> object : CholeskyDecompositionAttribute<Double> {
|
||||
override val l: Matrix<Double> by lazy<Matrix<Double>> {
|
||||
val cholesky = CholeskyDecomposition(origin)
|
||||
CMMatrix(cholesky.l).withAttribute(LowerTriangular)
|
||||
}
|
||||
Cholesky -> object : CholeskyDecomposition<Float64> {
|
||||
val cmCholesky by lazy { org.apache.commons.math3.linear.CholeskyDecomposition(origin) }
|
||||
override val l: Matrix<Double> get() = cmCholesky.l.wrap()
|
||||
}
|
||||
|
||||
QRDecompositionAttribute -> object : QRDecompositionAttribute<Double> {
|
||||
private val qr by lazy { QRDecomposition(origin) }
|
||||
override val q: Matrix<Double> by lazy<Matrix<Double>> {
|
||||
CMMatrix(qr.q).withAttribute(
|
||||
OrthogonalAttribute
|
||||
)
|
||||
}
|
||||
override val r: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(qr.r).withAttribute(UpperTriangular) }
|
||||
QR -> object : QRDecomposition<Float64> {
|
||||
val cmQr by lazy { org.apache.commons.math3.linear.QRDecomposition(origin) }
|
||||
override val q: Matrix<Float64> get() = cmQr.q.wrap().withAttribute(OrthogonalAttribute)
|
||||
override val r: Matrix<Float64> get() = cmQr.r.wrap().withAttribute(UpperTriangular)
|
||||
}
|
||||
|
||||
SVDAttribute -> object : SVDAttribute<Double> {
|
||||
private val sv by lazy { SingularValueDecomposition(origin) }
|
||||
override val u: Matrix<Double> by lazy { CMMatrix(sv.u) }
|
||||
override val s: Matrix<Double> by lazy { CMMatrix(sv.s) }
|
||||
override val v: Matrix<Double> by lazy { CMMatrix(sv.v) }
|
||||
override val singularValues: Point<Double> by lazy { Float64Buffer(sv.singularValues) }
|
||||
SVD -> object : space.kscience.kmath.linear.SingularValueDecomposition<Float64> {
|
||||
val cmSvd by lazy { SingularValueDecomposition(origin) }
|
||||
|
||||
override val u: Matrix<Float64> get() = cmSvd.u.wrap()
|
||||
override val s: Matrix<Float64> get() = cmSvd.s.wrap()
|
||||
override val v: Matrix<Float64> get() = cmSvd.v.wrap()
|
||||
override val singularValues: Point<Float64> get() = cmSvd.singularValues.asBuffer()
|
||||
|
||||
}
|
||||
|
||||
else -> null
|
||||
}?.let(type::cast)
|
||||
}
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
return raw as V?
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
public operator fun CMMatrix.plus(other: CMMatrix): CMMatrix = CMMatrix(origin.add(other.origin))
|
||||
|
@ -3,6 +3,7 @@
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
@file:OptIn(UnstableKMathAPI::class)
|
||||
|
||||
package space.kscience.kmath.commons.optimization
|
||||
|
||||
import org.apache.commons.math3.optim.*
|
||||
@ -20,7 +21,6 @@ import space.kscience.kmath.expressions.Symbol
|
||||
import space.kscience.kmath.expressions.SymbolIndexer
|
||||
import space.kscience.kmath.expressions.derivative
|
||||
import space.kscience.kmath.expressions.withSymbols
|
||||
import space.kscience.kmath.misc.log
|
||||
import space.kscience.kmath.optimization.*
|
||||
import kotlin.collections.set
|
||||
import kotlin.reflect.KClass
|
||||
@ -28,7 +28,7 @@ import kotlin.reflect.KClass
|
||||
public operator fun PointValuePair.component1(): DoubleArray = point
|
||||
public operator fun PointValuePair.component2(): Double = value
|
||||
|
||||
public object CMOptimizerEngine: OptimizationAttribute<() -> MultivariateOptimizer>
|
||||
public object CMOptimizerEngine : OptimizationAttribute<() -> MultivariateOptimizer>
|
||||
|
||||
/**
|
||||
* Specify a Commons-maths optimization engine
|
||||
@ -37,7 +37,7 @@ public fun AttributesBuilder<FunctionOptimization<Double>>.cmEngine(optimizerBui
|
||||
set(CMOptimizerEngine, optimizerBuilder)
|
||||
}
|
||||
|
||||
public object CMOptimizerData: SetAttribute<SymbolIndexer.() -> OptimizationData>
|
||||
public object CMOptimizerData : SetAttribute<SymbolIndexer.() -> OptimizationData>
|
||||
|
||||
/**
|
||||
* Specify Commons-maths optimization data.
|
||||
@ -118,21 +118,24 @@ public object CMOptimizer : Optimizer<Double, FunctionOptimization<Double>> {
|
||||
|
||||
val logger = problem.attributes[OptimizationLog]
|
||||
|
||||
for (feature in problem.attributes) {
|
||||
when (feature) {
|
||||
is CMOptimizerData -> feature.data.forEach { dataBuilder ->
|
||||
addOptimizationData(dataBuilder())
|
||||
}
|
||||
is FunctionOptimizationTarget -> when (feature) {
|
||||
FunctionOptimizationTarget.MAXIMIZE -> addOptimizationData(GoalType.MAXIMIZE)
|
||||
FunctionOptimizationTarget.MINIMIZE -> addOptimizationData(GoalType.MINIMIZE)
|
||||
}
|
||||
else -> logger?.log { "The feature $feature is unused in optimization" }
|
||||
problem.attributes[CMOptimizerData]?.let { builders: Set<SymbolIndexer.() -> OptimizationData> ->
|
||||
builders.forEach { dataBuilder ->
|
||||
addOptimizationData(dataBuilder())
|
||||
}
|
||||
}
|
||||
|
||||
problem.attributes[FunctionOptimizationTarget]?.let { direction: OptimizationDirection ->
|
||||
when (direction) {
|
||||
OptimizationDirection.MAXIMIZE -> addOptimizationData(GoalType.MAXIMIZE)
|
||||
OptimizationDirection.MINIMIZE -> addOptimizationData(GoalType.MINIMIZE)
|
||||
}
|
||||
}
|
||||
|
||||
val (point, value) = cmOptimizer.optimize(*optimizationData.values.toTypedArray())
|
||||
return problem.withAttributes(OptimizationResult(point.toMap()), OptimizationValue(value))
|
||||
return problem.withAttributes {
|
||||
result(point.toMap())
|
||||
value(value)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -7,6 +7,8 @@ package space.kscience.kmath.commons.integration
|
||||
|
||||
import org.junit.jupiter.api.Test
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.integration.IntegrandAbsoluteAccuracy
|
||||
import space.kscience.kmath.integration.IntegrandRelativeAccuracy
|
||||
import space.kscience.kmath.integration.integrate
|
||||
import space.kscience.kmath.integration.value
|
||||
import space.kscience.kmath.operations.Float64Field.sin
|
||||
@ -27,8 +29,8 @@ internal class IntegrationTest {
|
||||
@Test
|
||||
fun customSimpson() {
|
||||
val res = CMIntegrator.simpson().integrate(0.0..PI, {
|
||||
targetRelativeAccuracy = 1e-4
|
||||
targetAbsoluteAccuracy = 1e-4
|
||||
IntegrandRelativeAccuracy(1e-4)
|
||||
IntegrandAbsoluteAccuracy(1e-4)
|
||||
}, function).value
|
||||
assertTrue { abs(res - 2) < 1e-3 }
|
||||
assertTrue { abs(res - 2) > 1e-12 }
|
||||
|
@ -73,8 +73,9 @@ internal class OptimizeTest {
|
||||
val result: FunctionOptimization<Double> = chi2.optimizeWith(
|
||||
CMOptimizer,
|
||||
mapOf(a to 1.5, b to 0.9, c to 1.0),
|
||||
FunctionOptimizationTarget.MINIMIZE
|
||||
)
|
||||
){
|
||||
FunctionOptimizationTarget(OptimizationDirection.MINIMIZE)
|
||||
}
|
||||
println(result)
|
||||
println("Chi2/dof = ${result.resultValue / (x.size - 3)}")
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ package space.kscience.kmath.expressions
|
||||
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.attributes.WithType
|
||||
import space.kscience.attributes.safeTypeOf
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.Algebra
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
@ -30,12 +31,18 @@ public interface Expression<T> : WithType<T> {
|
||||
public operator fun invoke(arguments: Map<Symbol, T>): T
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an expression from a functional block.
|
||||
*/
|
||||
public fun <T> Expression(type: SafeType<T>, block: (Map<Symbol, T>) -> T): Expression<T> = object : Expression<T> {
|
||||
override fun invoke(arguments: Map<Symbol, T>): T = block(arguments)
|
||||
|
||||
override val type: SafeType<T> = type
|
||||
}
|
||||
|
||||
public inline fun <reified T> Expression(noinline block: (Map<Symbol, T>) -> T): Expression<T> =
|
||||
Expression(safeTypeOf<T>(), block)
|
||||
|
||||
/**
|
||||
* Specialization of [Expression] for [Double] allowing better performance because of using array.
|
||||
*/
|
||||
|
@ -15,14 +15,19 @@ import space.kscience.kmath.operations.*
|
||||
import space.kscience.kmath.structures.*
|
||||
|
||||
public interface LupDecomposition<T> {
|
||||
public val linearSpace: LinearSpace<T, Field<T>>
|
||||
public val elementAlgebra: Field<T> get() = linearSpace.elementAlgebra
|
||||
|
||||
public val pivot: IntBuffer
|
||||
public val l: Matrix<T>
|
||||
public val u: Matrix<T>
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a pivot matrix from pivot vector using provided [LinearSpace]
|
||||
*/
|
||||
public fun <T> LupDecomposition<T>.pivotMatrix(linearSpace: LinearSpace<T, Ring<T>>): Matrix<T> =
|
||||
VirtualMatrix(linearSpace.type, l.rowNum, l.colNum) { row, column ->
|
||||
if (column == pivot[row]) linearSpace.elementAlgebra.one else linearSpace.elementAlgebra.zero
|
||||
}
|
||||
|
||||
/**
|
||||
* Matrices with this feature support LU factorization with partial pivoting: *[p] · a = [l] · [u]* where
|
||||
* *a* is the owning matrix.
|
||||
@ -31,12 +36,14 @@ public interface LupDecomposition<T> {
|
||||
* @param lu combined L and U matrix
|
||||
*/
|
||||
public class GenericLupDecomposition<T>(
|
||||
override val linearSpace: LinearSpace<T, Field<T>>,
|
||||
public val linearSpace: LinearSpace<T, Field<T>>,
|
||||
private val lu: Matrix<T>,
|
||||
override val pivot: IntBuffer,
|
||||
private val even: Boolean,
|
||||
) : LupDecomposition<T> {
|
||||
|
||||
private val elementAlgebra get() = linearSpace.elementAlgebra
|
||||
|
||||
override val l: Matrix<T>
|
||||
get() = VirtualMatrix(lu.type, lu.rowNum, lu.colNum, attributes = Attributes(LowerTriangular)) { i, j ->
|
||||
when {
|
||||
@ -51,11 +58,6 @@ public class GenericLupDecomposition<T>(
|
||||
if (j >= i) lu[i, j] else elementAlgebra.zero
|
||||
}
|
||||
|
||||
public val pivotMatrix: Matrix<T>
|
||||
get() = VirtualMatrix(linearSpace.type, l.rowNum, l.colNum) { row, column ->
|
||||
if (column == pivot[row]) elementAlgebra.one else elementAlgebra.zero
|
||||
}
|
||||
|
||||
public val determinant: T by lazy {
|
||||
elementAlgebra { (0 until l.shape[0]).fold(if (even) one else -one) { value, i -> value * lu[i, i] } }
|
||||
}
|
||||
@ -79,7 +81,7 @@ internal fun <T : Comparable<T>> LinearSpace<T, Ring<T>>.abs(value: T): T =
|
||||
public fun <T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
|
||||
matrix: Matrix<T>,
|
||||
checkSingular: (T) -> Boolean,
|
||||
): LupDecomposition<T> = elementAlgebra {
|
||||
): GenericLupDecomposition<T> = elementAlgebra {
|
||||
require(matrix.rowNum == matrix.colNum) { "LU decomposition supports only square matrices" }
|
||||
val m = matrix.colNum
|
||||
val pivot = IntArray(matrix.rowNum)
|
||||
@ -156,7 +158,7 @@ public fun <T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
|
||||
public fun LinearSpace<Double, Float64Field>.lup(
|
||||
matrix: Matrix<Double>,
|
||||
singularityThreshold: Double = 1e-11,
|
||||
): LupDecomposition<Double> = lup(matrix) { it < singularityThreshold }
|
||||
): GenericLupDecomposition<Double> = lup(matrix) { it < singularityThreshold }
|
||||
|
||||
internal fun <T> LinearSpace<T, Field<T>>.solve(
|
||||
lup: LupDecomposition<T>,
|
||||
|
@ -25,5 +25,4 @@ public class TransposedMatrix<T>(public val origin: Matrix<T>) : Matrix<T> {
|
||||
/**
|
||||
* Create a virtual transposed matrix without copying anything. `A.transpose().transpose() === A`
|
||||
*/
|
||||
public val <T> Matrix<T>.transposed: Matrix<T>
|
||||
get() = (this as? TransposedMatrix<T>)?.origin ?: TransposedMatrix(this)
|
||||
public fun <T> Matrix<T>.transposed(): Matrix<T> = (this as? TransposedMatrix<T>)?.origin ?: TransposedMatrix(this)
|
@ -5,9 +5,11 @@
|
||||
|
||||
package space.kscience.kmath.nd
|
||||
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.PerformancePitfall
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.*
|
||||
import space.kscience.kmath.structures.Float64
|
||||
import space.kscience.kmath.structures.Float64Buffer
|
||||
import kotlin.contracts.InvocationKind
|
||||
import kotlin.contracts.contract
|
||||
@ -20,7 +22,10 @@ import kotlin.math.pow as kpow
|
||||
public class Float64BufferND(
|
||||
indexes: ShapeIndexer,
|
||||
override val buffer: Float64Buffer,
|
||||
) : MutableBufferND<Double>(indexes, buffer), MutableStructureNDOfDouble{
|
||||
) : MutableBufferND<Double>(indexes, buffer), MutableStructureNDOfDouble {
|
||||
|
||||
override val type: SafeType<Float64> get() = Float64Field.type
|
||||
|
||||
override fun getDouble(index: IntArray): Double = buffer[indices.offset(index)]
|
||||
|
||||
override fun setDouble(index: IntArray, value: Double) {
|
||||
|
@ -5,9 +5,15 @@
|
||||
|
||||
package space.kscience.kmath.nd
|
||||
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.PerformancePitfall
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.operations.Int32Field
|
||||
import space.kscience.kmath.structures.Float64
|
||||
|
||||
public interface StructureNDOfDouble : StructureND<Double> {
|
||||
override val type: SafeType<Float64> get() = Float64Field.type
|
||||
|
||||
/**
|
||||
* Guaranteed non-blocking access to content
|
||||
*/
|
||||
@ -22,6 +28,7 @@ public fun StructureND<Double>.getDouble(index: IntArray): Double =
|
||||
if (this is StructureNDOfDouble) getDouble(index) else get(index)
|
||||
|
||||
public interface MutableStructureNDOfDouble : StructureNDOfDouble, MutableStructureND<Double> {
|
||||
|
||||
/**
|
||||
* Guaranteed non-blocking access to content
|
||||
*/
|
||||
@ -34,6 +41,9 @@ public fun MutableStructureND<Double>.getDouble(index: IntArray): Double =
|
||||
|
||||
|
||||
public interface StructureNDOfInt : StructureND<Int> {
|
||||
|
||||
override val type: SafeType<Int> get() = Int32Field.type
|
||||
|
||||
/**
|
||||
* Guaranteed non-blocking access to content
|
||||
*/
|
||||
|
@ -40,7 +40,7 @@ class DoubleLUSolverTest {
|
||||
//Check determinant
|
||||
assertEquals(7.0, lup.determinant)
|
||||
|
||||
assertMatrixEquals(lup.pivotMatrix dot matrix, lup.l dot lup.u)
|
||||
assertMatrixEquals(lup.pivotMatrix(this) dot matrix, lup.l dot lup.u)
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -21,7 +21,7 @@ class MatrixTest {
|
||||
@Test
|
||||
fun testTranspose() = Double.algebra.linearSpace.run {
|
||||
val matrix = one(3, 3)
|
||||
val transposed = matrix.transposed
|
||||
val transposed = matrix.transposed()
|
||||
assertTrue { StructureND.contentEquals(matrix, transposed) }
|
||||
}
|
||||
|
||||
|
@ -6,6 +6,7 @@ kscience {
|
||||
jvm()
|
||||
js()
|
||||
native()
|
||||
wasm()
|
||||
|
||||
dependencies {
|
||||
api(project(":kmath-core"))
|
||||
|
@ -7,6 +7,7 @@ package space.kscience.kmath.streaming
|
||||
|
||||
import kotlinx.coroutines.flow.*
|
||||
import kotlinx.coroutines.runBlocking
|
||||
import space.kscience.kmath.operations.Int32Ring
|
||||
import space.kscience.kmath.operations.asSequence
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
@ -14,7 +15,7 @@ import kotlin.test.assertEquals
|
||||
internal class RingBufferTest {
|
||||
@Test
|
||||
fun push() {
|
||||
val buffer = RingBuffer.build(20, Double.NaN)
|
||||
val buffer = RingBuffer(20, Double.NaN)
|
||||
runBlocking {
|
||||
for (i in 1..30) {
|
||||
buffer.push(i.toDouble())
|
||||
@ -30,7 +31,7 @@ internal class RingBufferTest {
|
||||
while (true) emit(i++)
|
||||
}
|
||||
|
||||
val windowed = flow.windowed(10)
|
||||
val windowed = flow.windowed(10, Int32Ring)
|
||||
|
||||
runBlocking {
|
||||
@Suppress("UNUSED_VARIABLE") val first = windowed.take(1).single()
|
||||
|
@ -6,6 +6,7 @@ kscience{
|
||||
jvm()
|
||||
js()
|
||||
native()
|
||||
wasm()
|
||||
|
||||
dependencies{
|
||||
api(projects.kmathCore)
|
||||
|
@ -153,7 +153,7 @@ public value class DMatrixContext<T : Any, out A : Ring<T>>(public val context:
|
||||
context.run { this@unaryMinus.unaryMinus() }.coerce()
|
||||
|
||||
public inline fun <reified R : Dimension, reified C : Dimension> DMatrix<T, C, R>.transposed(): DMatrix<T, R, C> =
|
||||
context.run { (this@transposed as Matrix<T>).transposed }.coerce()
|
||||
context.run { (this@transposed as Matrix<T>).transposed() }.coerce()
|
||||
|
||||
public companion object {
|
||||
public val real: DMatrixContext<Double, Float64Field> = DMatrixContext(Double.algebra.linearSpace)
|
||||
|
@ -0,0 +1,23 @@
|
||||
/*
|
||||
* Copyright 2018-2024 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.dimensions
|
||||
|
||||
import kotlin.reflect.KClass
|
||||
|
||||
private val dimensionMap: MutableMap<Int, Dimension> = hashMapOf(1 to D1, 2 to D2, 3 to D3)
|
||||
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
public actual fun <D : Dimension> Dimension.Companion.resolve(type: KClass<D>): D = dimensionMap
|
||||
.entries
|
||||
.map(MutableMap.MutableEntry<Int, Dimension>::value)
|
||||
.find { it::class == type } as? D
|
||||
?: error("Can't resolve dimension $type")
|
||||
|
||||
public actual fun Dimension.Companion.of(dim: Int): Dimension = dimensionMap.getOrPut(dim) {
|
||||
object : Dimension {
|
||||
override val dim: Int get() = dim
|
||||
}
|
||||
}
|
@ -1,15 +1,15 @@
|
||||
import space.kscience.kmath.ejml.codegen.ejmlCodegen
|
||||
|
||||
plugins {
|
||||
id("space.kscience.gradle.jvm")
|
||||
}
|
||||
|
||||
val ejmlVerision = "0.43.1"
|
||||
|
||||
dependencies {
|
||||
api("org.ejml:ejml-ddense:0.41")
|
||||
api("org.ejml:ejml-fdense:0.41")
|
||||
api("org.ejml:ejml-dsparse:0.41")
|
||||
api("org.ejml:ejml-fsparse:0.41")
|
||||
api(project(":kmath-core"))
|
||||
api("org.ejml:ejml-ddense:$ejmlVerision")
|
||||
api("org.ejml:ejml-fdense:$ejmlVerision")
|
||||
api("org.ejml:ejml-dsparse:$ejmlVerision")
|
||||
api("org.ejml:ejml-fsparse:$ejmlVerision")
|
||||
api(projects.kmathCore)
|
||||
}
|
||||
|
||||
readme {
|
||||
@ -32,10 +32,10 @@ readme {
|
||||
) { "LinearSpace implementations." }
|
||||
}
|
||||
|
||||
kotlin.sourceSets.main {
|
||||
val codegen by tasks.creating {
|
||||
ejmlCodegen(kotlin.srcDirs.first().absolutePath + "/space/kscience/kmath/ejml/_generated.kt")
|
||||
}
|
||||
|
||||
kotlin.srcDirs(files().builtBy(codegen))
|
||||
}
|
||||
//kotlin.sourceSets.main {
|
||||
// val codegen by tasks.creating {
|
||||
// ejmlCodegen(kotlin.srcDirs.first().absolutePath + "/space/kscience/kmath/ejml/_generated.kt")
|
||||
// }
|
||||
//
|
||||
// kotlin.srcDirs(files().builtBy(codegen))
|
||||
//}
|
||||
|
@ -17,21 +17,18 @@ import org.ejml.sparse.csc.CommonOps_DSCC
|
||||
import org.ejml.sparse.csc.CommonOps_FSCC
|
||||
import org.ejml.sparse.csc.factory.DecompositionFactory_DSCC
|
||||
import org.ejml.sparse.csc.factory.DecompositionFactory_FSCC
|
||||
import org.ejml.sparse.csc.factory.LinearSolverFactory_DSCC
|
||||
import org.ejml.sparse.csc.factory.LinearSolverFactory_FSCC
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.attributes.safeTypeOf
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.linear.*
|
||||
import space.kscience.kmath.linear.Matrix
|
||||
import space.kscience.kmath.nd.StructureFeature
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.nd.StructureAttribute
|
||||
import space.kscience.kmath.operations.Float32Field
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.DoubleBuffer
|
||||
import space.kscience.kmath.structures.FloatBuffer
|
||||
import kotlin.reflect.KClass
|
||||
import kotlin.reflect.cast
|
||||
import space.kscience.kmath.structures.Float32
|
||||
import space.kscience.kmath.structures.IntBuffer
|
||||
import space.kscience.kmath.structures.asBuffer
|
||||
|
||||
/**
|
||||
* [EjmlVector] specialization for [Double].
|
||||
@ -78,7 +75,6 @@ public class EjmlFloatMatrix<out M : FMatrix>(override val origin: M) : EjmlMatr
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* [EjmlLinearSpace] implementation based on [CommonOps_DDRM], [DecompositionFactory_DDRM] operations and
|
||||
* [DMatrixRMaj] matrices.
|
||||
@ -143,10 +139,10 @@ public object EjmlLinearSpaceDDRM : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
val out = DMatrixRMaj(1, 1)
|
||||
|
||||
CommonOps_DDRM.add(
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra { -one },
|
||||
other.toEjml().origin,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
)
|
||||
|
||||
@ -167,12 +163,12 @@ public object EjmlLinearSpaceDDRM : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
|
||||
override fun Matrix<Double>.plus(other: Matrix<Double>): EjmlDoubleMatrix<DMatrixRMaj> {
|
||||
val out = DMatrixRMaj(1, 1)
|
||||
|
||||
|
||||
CommonOps_DDRM.add(
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra.one,
|
||||
other.toEjml().origin,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
)
|
||||
|
||||
@ -217,77 +213,65 @@ public object EjmlLinearSpaceDDRM : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
|
||||
override fun Double.times(v: Point<Double>): EjmlDoubleVector<DMatrixRMaj> = v * this
|
||||
|
||||
@UnstableKMathAPI
|
||||
override fun <F : StructureFeature> computeFeature(structure: Matrix<Double>, type: KClass<out F>): F? {
|
||||
structure.getFeature(type)?.let { return it }
|
||||
override fun <V, A : StructureAttribute<V>> computeAttribute(structure: Structure2D<Double>, attribute: A): V? {
|
||||
val origin = structure.toEjml().origin
|
||||
|
||||
return when (type) {
|
||||
InverseMatrixFeature::class -> object : InverseMatrixFeature<Double> {
|
||||
override val inverse: Matrix<Double> by lazy {
|
||||
val res = origin.copy()
|
||||
CommonOps_DDRM.invert(res)
|
||||
res.wrapMatrix()
|
||||
}
|
||||
val raw: Any? = when (attribute) {
|
||||
Inverted -> {
|
||||
val res = origin.copy()
|
||||
CommonOps_DDRM.invert(res)
|
||||
res.wrapMatrix()
|
||||
}
|
||||
|
||||
DeterminantFeature::class -> object : DeterminantFeature<Double> {
|
||||
override val determinant: Double by lazy { CommonOps_DDRM.det(origin) }
|
||||
}
|
||||
|
||||
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<Double> {
|
||||
private val svd by lazy {
|
||||
DecompositionFactory_DDRM.svd(origin.numRows, origin.numCols, true, true, false)
|
||||
Determinant -> CommonOps_DDRM.det(origin)
|
||||
SVD -> object : SingularValueDecomposition<Double> {
|
||||
val ejmlSvd by lazy {
|
||||
DecompositionFactory_DDRM
|
||||
.svd(origin.numRows, origin.numCols, true, true, false)
|
||||
.apply { decompose(origin.copy()) }
|
||||
}
|
||||
override val u: Matrix<Double> get() = ejmlSvd.getU(null, false).wrapMatrix()
|
||||
|
||||
override val s: Matrix<Double> get() = ejmlSvd.getW(null).wrapMatrix()
|
||||
override val v: Matrix<Double> get() = ejmlSvd.getV(null, false).wrapMatrix()
|
||||
override val singularValues: Point<Double> get() = ejmlSvd.singularValues.asBuffer()
|
||||
|
||||
override val u: Matrix<Double> by lazy { svd.getU(null, false).wrapMatrix() }
|
||||
override val s: Matrix<Double> by lazy { svd.getW(null).wrapMatrix() }
|
||||
override val v: Matrix<Double> by lazy { svd.getV(null, false).wrapMatrix() }
|
||||
override val singularValues: Point<Double> by lazy { DoubleBuffer(svd.singularValues) }
|
||||
}
|
||||
|
||||
QRDecompositionFeature::class -> object : QRDecompositionFeature<Double> {
|
||||
private val qr by lazy {
|
||||
DecompositionFactory_DDRM.qr().apply { decompose(origin.copy()) }
|
||||
}
|
||||
|
||||
override val q: Matrix<Double> by lazy {
|
||||
qr.getQ(null, false).wrapMatrix().withFeature(OrthogonalFeature)
|
||||
}
|
||||
|
||||
override val r: Matrix<Double> by lazy { qr.getR(null, false).wrapMatrix().withFeature(UFeature) }
|
||||
QR -> object : QRDecomposition<Double> {
|
||||
val ejmlQr by lazy { DecompositionFactory_DDRM.qr().apply { decompose(origin.copy()) } }
|
||||
override val q: Matrix<Double> get() = ejmlQr.getQ(null, false).wrapMatrix()
|
||||
override val r: Matrix<Double> get() = ejmlQr.getR(null, false).wrapMatrix()
|
||||
}
|
||||
|
||||
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Double> {
|
||||
Cholesky -> object : CholeskyDecomposition<Double> {
|
||||
override val l: Matrix<Double> by lazy {
|
||||
val cholesky =
|
||||
DecompositionFactory_DDRM.chol(structure.rowNum, true).apply { decompose(origin.copy()) }
|
||||
|
||||
cholesky.getT(null).wrapMatrix().withFeature(LFeature)
|
||||
cholesky.getT(null).wrapMatrix().withAttribute(LowerTriangular)
|
||||
}
|
||||
}
|
||||
|
||||
LupDecompositionFeature::class -> object : LupDecompositionFeature<Double> {
|
||||
LUP -> object : LupDecomposition<Double> {
|
||||
private val lup by lazy {
|
||||
DecompositionFactory_DDRM.lu(origin.numRows, origin.numCols).apply { decompose(origin.copy()) }
|
||||
}
|
||||
|
||||
override val l: Matrix<Double> by lazy {
|
||||
lup.getLower(null).wrapMatrix().withFeature(LFeature)
|
||||
}
|
||||
override val l: Matrix<Double>
|
||||
get() = lup.getLower(null).wrapMatrix().withAttribute(LowerTriangular)
|
||||
|
||||
override val u: Matrix<Double> by lazy {
|
||||
lup.getUpper(null).wrapMatrix().withFeature(UFeature)
|
||||
}
|
||||
|
||||
override val p: Matrix<Double> by lazy { lup.getRowPivot(null).wrapMatrix() }
|
||||
override val u: Matrix<Double>
|
||||
get() = lup.getUpper(null).wrapMatrix().withAttribute(UpperTriangular)
|
||||
override val pivot: IntBuffer get() = lup.getRowPivotV(null).asBuffer()
|
||||
}
|
||||
|
||||
else -> null
|
||||
}?.let{
|
||||
type.cast(it)
|
||||
}
|
||||
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
return raw as V?
|
||||
}
|
||||
|
||||
/**
|
||||
@ -318,7 +302,6 @@ public object EjmlLinearSpaceDDRM : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* [EjmlLinearSpace] implementation based on [CommonOps_FDRM], [DecompositionFactory_FDRM] operations and
|
||||
* [FMatrixRMaj] matrices.
|
||||
@ -383,10 +366,10 @@ public object EjmlLinearSpaceFDRM : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
val out = FMatrixRMaj(1, 1)
|
||||
|
||||
CommonOps_FDRM.add(
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra { -one },
|
||||
other.toEjml().origin,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
)
|
||||
|
||||
@ -407,12 +390,12 @@ public object EjmlLinearSpaceFDRM : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
|
||||
override fun Matrix<Float>.plus(other: Matrix<Float>): EjmlFloatMatrix<FMatrixRMaj> {
|
||||
val out = FMatrixRMaj(1, 1)
|
||||
|
||||
|
||||
CommonOps_FDRM.add(
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra.one,
|
||||
other.toEjml().origin,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
)
|
||||
|
||||
@ -457,77 +440,65 @@ public object EjmlLinearSpaceFDRM : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
|
||||
override fun Float.times(v: Point<Float>): EjmlFloatVector<FMatrixRMaj> = v * this
|
||||
|
||||
@UnstableKMathAPI
|
||||
override fun <F : StructureFeature> computeFeature(structure: Matrix<Float>, type: KClass<out F>): F? {
|
||||
structure.getFeature(type)?.let { return it }
|
||||
override fun <V, A : StructureAttribute<V>> computeAttribute(structure: Structure2D<Float32>, attribute: A): V? {
|
||||
val origin = structure.toEjml().origin
|
||||
|
||||
return when (type) {
|
||||
InverseMatrixFeature::class -> object : InverseMatrixFeature<Float> {
|
||||
override val inverse: Matrix<Float> by lazy {
|
||||
val res = origin.copy()
|
||||
CommonOps_FDRM.invert(res)
|
||||
res.wrapMatrix()
|
||||
}
|
||||
val raw: Any? = when (attribute) {
|
||||
Inverted -> {
|
||||
val res = origin.copy()
|
||||
CommonOps_FDRM.invert(res)
|
||||
res.wrapMatrix()
|
||||
}
|
||||
|
||||
DeterminantFeature::class -> object : DeterminantFeature<Float> {
|
||||
override val determinant: Float by lazy { CommonOps_FDRM.det(origin) }
|
||||
}
|
||||
|
||||
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<Float> {
|
||||
private val svd by lazy {
|
||||
DecompositionFactory_FDRM.svd(origin.numRows, origin.numCols, true, true, false)
|
||||
Determinant -> CommonOps_FDRM.det(origin)
|
||||
SVD -> object : SingularValueDecomposition<Float32> {
|
||||
val ejmlSvd by lazy {
|
||||
DecompositionFactory_FDRM
|
||||
.svd(origin.numRows, origin.numCols, true, true, false)
|
||||
.apply { decompose(origin.copy()) }
|
||||
}
|
||||
override val u: Matrix<Float32> get() = ejmlSvd.getU(null, false).wrapMatrix()
|
||||
|
||||
override val s: Matrix<Float32> get() = ejmlSvd.getW(null).wrapMatrix()
|
||||
override val v: Matrix<Float32> get() = ejmlSvd.getV(null, false).wrapMatrix()
|
||||
override val singularValues: Point<Float32> get() = ejmlSvd.singularValues.asBuffer()
|
||||
|
||||
override val u: Matrix<Float> by lazy { svd.getU(null, false).wrapMatrix() }
|
||||
override val s: Matrix<Float> by lazy { svd.getW(null).wrapMatrix() }
|
||||
override val v: Matrix<Float> by lazy { svd.getV(null, false).wrapMatrix() }
|
||||
override val singularValues: Point<Float> by lazy { FloatBuffer(svd.singularValues) }
|
||||
}
|
||||
|
||||
QRDecompositionFeature::class -> object : QRDecompositionFeature<Float> {
|
||||
private val qr by lazy {
|
||||
DecompositionFactory_FDRM.qr().apply { decompose(origin.copy()) }
|
||||
}
|
||||
|
||||
override val q: Matrix<Float> by lazy {
|
||||
qr.getQ(null, false).wrapMatrix().withFeature(OrthogonalFeature)
|
||||
}
|
||||
|
||||
override val r: Matrix<Float> by lazy { qr.getR(null, false).wrapMatrix().withFeature(UFeature) }
|
||||
QR -> object : QRDecomposition<Float32> {
|
||||
val ejmlQr by lazy { DecompositionFactory_FDRM.qr().apply { decompose(origin.copy()) } }
|
||||
override val q: Matrix<Float32> get() = ejmlQr.getQ(null, false).wrapMatrix()
|
||||
override val r: Matrix<Float32> get() = ejmlQr.getR(null, false).wrapMatrix()
|
||||
}
|
||||
|
||||
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Float> {
|
||||
override val l: Matrix<Float> by lazy {
|
||||
Cholesky -> object : CholeskyDecomposition<Float32> {
|
||||
override val l: Matrix<Float32> by lazy {
|
||||
val cholesky =
|
||||
DecompositionFactory_FDRM.chol(structure.rowNum, true).apply { decompose(origin.copy()) }
|
||||
|
||||
cholesky.getT(null).wrapMatrix().withFeature(LFeature)
|
||||
cholesky.getT(null).wrapMatrix().withAttribute(LowerTriangular)
|
||||
}
|
||||
}
|
||||
|
||||
LupDecompositionFeature::class -> object : LupDecompositionFeature<Float> {
|
||||
LUP -> object : LupDecomposition<Float32> {
|
||||
private val lup by lazy {
|
||||
DecompositionFactory_FDRM.lu(origin.numRows, origin.numCols).apply { decompose(origin.copy()) }
|
||||
}
|
||||
|
||||
override val l: Matrix<Float> by lazy {
|
||||
lup.getLower(null).wrapMatrix().withFeature(LFeature)
|
||||
}
|
||||
override val l: Matrix<Float32>
|
||||
get() = lup.getLower(null).wrapMatrix().withAttribute(LowerTriangular)
|
||||
|
||||
override val u: Matrix<Float> by lazy {
|
||||
lup.getUpper(null).wrapMatrix().withFeature(UFeature)
|
||||
}
|
||||
|
||||
override val p: Matrix<Float> by lazy { lup.getRowPivot(null).wrapMatrix() }
|
||||
override val u: Matrix<Float32>
|
||||
get() = lup.getUpper(null).wrapMatrix().withAttribute(UpperTriangular)
|
||||
override val pivot: IntBuffer get() = lup.getRowPivotV(null).asBuffer()
|
||||
}
|
||||
|
||||
else -> null
|
||||
}?.let{
|
||||
type.cast(it)
|
||||
}
|
||||
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
return raw as V?
|
||||
}
|
||||
|
||||
/**
|
||||
@ -558,7 +529,6 @@ public object EjmlLinearSpaceFDRM : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* [EjmlLinearSpace] implementation based on [CommonOps_DSCC], [DecompositionFactory_DSCC] operations and
|
||||
* [DMatrixSparseCSC] matrices.
|
||||
@ -623,12 +593,12 @@ public object EjmlLinearSpaceDSCC : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
val out = DMatrixSparseCSC(1, 1)
|
||||
|
||||
CommonOps_DSCC.add(
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra { -one },
|
||||
other.toEjml().origin,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
)
|
||||
|
||||
@ -649,14 +619,14 @@ public object EjmlLinearSpaceDSCC : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
|
||||
override fun Matrix<Double>.plus(other: Matrix<Double>): EjmlDoubleMatrix<DMatrixSparseCSC> {
|
||||
val out = DMatrixSparseCSC(1, 1)
|
||||
|
||||
|
||||
CommonOps_DSCC.add(
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra.one,
|
||||
other.toEjml().origin,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
)
|
||||
|
||||
@ -672,7 +642,7 @@ public object EjmlLinearSpaceDSCC : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
elementAlgebra.one,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
)
|
||||
|
||||
@ -688,7 +658,7 @@ public object EjmlLinearSpaceDSCC : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
elementAlgebra { -one },
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
)
|
||||
|
||||
@ -705,64 +675,52 @@ public object EjmlLinearSpaceDSCC : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
|
||||
override fun Double.times(v: Point<Double>): EjmlDoubleVector<DMatrixSparseCSC> = v * this
|
||||
|
||||
@UnstableKMathAPI
|
||||
override fun <F : StructureFeature> computeFeature(structure: Matrix<Double>, type: KClass<out F>): F? {
|
||||
structure.getFeature(type)?.let { return it }
|
||||
override fun <V, A : StructureAttribute<V>> computeAttribute(structure: Structure2D<Double>, attribute: A): V? {
|
||||
val origin = structure.toEjml().origin
|
||||
|
||||
return when (type) {
|
||||
QRDecompositionFeature::class -> object : QRDecompositionFeature<Double> {
|
||||
private val qr by lazy {
|
||||
DecompositionFactory_DSCC.qr(FillReducing.NONE).apply { decompose(origin.copy()) }
|
||||
}
|
||||
|
||||
override val q: Matrix<Double> by lazy {
|
||||
qr.getQ(null, false).wrapMatrix().withFeature(OrthogonalFeature)
|
||||
}
|
||||
|
||||
override val r: Matrix<Double> by lazy { qr.getR(null, false).wrapMatrix().withFeature(UFeature) }
|
||||
val raw: Any? = when (attribute) {
|
||||
Inverted -> {
|
||||
val res = DMatrixRMaj(origin.numRows,origin.numCols)
|
||||
CommonOps_DSCC.invert(origin,res)
|
||||
res.wrapMatrix()
|
||||
}
|
||||
|
||||
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Double> {
|
||||
Determinant -> CommonOps_DSCC.det(origin)
|
||||
|
||||
QR -> object : QRDecomposition<Double> {
|
||||
val ejmlQr by lazy { DecompositionFactory_DSCC.qr(FillReducing.NONE).apply { decompose(origin.copy()) } }
|
||||
override val q: Matrix<Double> get() = ejmlQr.getQ(null, false).wrapMatrix()
|
||||
override val r: Matrix<Double> get() = ejmlQr.getR(null, false).wrapMatrix()
|
||||
}
|
||||
|
||||
Cholesky -> object : CholeskyDecomposition<Double> {
|
||||
override val l: Matrix<Double> by lazy {
|
||||
val cholesky =
|
||||
DecompositionFactory_DSCC.cholesky().apply { decompose(origin.copy()) }
|
||||
|
||||
(cholesky.getT(null) as DMatrix).wrapMatrix().withFeature(LFeature)
|
||||
(cholesky.getT(null) as DMatrix).wrapMatrix().withAttribute(LowerTriangular)
|
||||
}
|
||||
}
|
||||
|
||||
LUDecompositionFeature::class, DeterminantFeature::class, InverseMatrixFeature::class -> object :
|
||||
LUDecompositionFeature<Double>, DeterminantFeature<Double>, InverseMatrixFeature<Double> {
|
||||
private val lu by lazy {
|
||||
LUP -> object : LupDecomposition<Double> {
|
||||
private val lup by lazy {
|
||||
DecompositionFactory_DSCC.lu(FillReducing.NONE).apply { decompose(origin.copy()) }
|
||||
}
|
||||
|
||||
override val l: Matrix<Double> by lazy {
|
||||
lu.getLower(null).wrapMatrix().withFeature(LFeature)
|
||||
}
|
||||
override val l: Matrix<Double>
|
||||
get() = lup.getLower(null).wrapMatrix().withAttribute(LowerTriangular)
|
||||
|
||||
override val u: Matrix<Double> by lazy {
|
||||
lu.getUpper(null).wrapMatrix().withFeature(UFeature)
|
||||
}
|
||||
|
||||
override val inverse: Matrix<Double> by lazy {
|
||||
var a = origin
|
||||
val inverse = DMatrixRMaj(1, 1)
|
||||
val solver = LinearSolverFactory_DSCC.lu(FillReducing.NONE)
|
||||
if (solver.modifiesA()) a = a.copy()
|
||||
val i = CommonOps_DDRM.identity(a.numRows)
|
||||
solver.solve(i, inverse)
|
||||
inverse.wrapMatrix()
|
||||
}
|
||||
|
||||
override val determinant: Double by lazy { elementAlgebra.number(lu.computeDeterminant().real) }
|
||||
override val u: Matrix<Double>
|
||||
get() = lup.getUpper(null).wrapMatrix().withAttribute(UpperTriangular)
|
||||
override val pivot: IntBuffer get() = lup.getRowPivotV(null).asBuffer()
|
||||
}
|
||||
|
||||
else -> null
|
||||
}?.let{
|
||||
type.cast(it)
|
||||
}
|
||||
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
return raw as V?
|
||||
}
|
||||
|
||||
/**
|
||||
@ -793,7 +751,6 @@ public object EjmlLinearSpaceDSCC : EjmlLinearSpace<Double, Float64Field, DMatri
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* [EjmlLinearSpace] implementation based on [CommonOps_FSCC], [DecompositionFactory_FSCC] operations and
|
||||
* [FMatrixSparseCSC] matrices.
|
||||
@ -858,12 +815,12 @@ public object EjmlLinearSpaceFSCC : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
val out = FMatrixSparseCSC(1, 1)
|
||||
|
||||
CommonOps_FSCC.add(
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra { -one },
|
||||
other.toEjml().origin,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
)
|
||||
|
||||
@ -884,14 +841,14 @@ public object EjmlLinearSpaceFSCC : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
|
||||
override fun Matrix<Float>.plus(other: Matrix<Float>): EjmlFloatMatrix<FMatrixSparseCSC> {
|
||||
val out = FMatrixSparseCSC(1, 1)
|
||||
|
||||
|
||||
CommonOps_FSCC.add(
|
||||
elementAlgebra.one,
|
||||
toEjml().origin,
|
||||
elementAlgebra.one,
|
||||
other.toEjml().origin,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
)
|
||||
|
||||
@ -907,7 +864,7 @@ public object EjmlLinearSpaceFSCC : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
elementAlgebra.one,
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
)
|
||||
|
||||
@ -923,7 +880,7 @@ public object EjmlLinearSpaceFSCC : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
elementAlgebra { -one },
|
||||
other.toEjml().origin,
|
||||
out,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
)
|
||||
|
||||
@ -939,65 +896,52 @@ public object EjmlLinearSpaceFSCC : EjmlLinearSpace<Float, Float32Field, FMatrix
|
||||
}
|
||||
|
||||
override fun Float.times(v: Point<Float>): EjmlFloatVector<FMatrixSparseCSC> = v * this
|
||||
|
||||
@UnstableKMathAPI
|
||||
override fun <F : StructureFeature> computeFeature(structure: Matrix<Float>, type: KClass<out F>): F? {
|
||||
structure.getFeature(type)?.let { return it }
|
||||
override fun <V, A : StructureAttribute<V>> computeAttribute(structure: Structure2D<Float32>, attribute: A): V? {
|
||||
val origin = structure.toEjml().origin
|
||||
|
||||
return when (type) {
|
||||
QRDecompositionFeature::class -> object : QRDecompositionFeature<Float> {
|
||||
private val qr by lazy {
|
||||
DecompositionFactory_FSCC.qr(FillReducing.NONE).apply { decompose(origin.copy()) }
|
||||
}
|
||||
|
||||
override val q: Matrix<Float> by lazy {
|
||||
qr.getQ(null, false).wrapMatrix().withFeature(OrthogonalFeature)
|
||||
}
|
||||
|
||||
override val r: Matrix<Float> by lazy { qr.getR(null, false).wrapMatrix().withFeature(UFeature) }
|
||||
val raw: Any? = when (attribute) {
|
||||
Inverted -> {
|
||||
val res = FMatrixRMaj(origin.numRows,origin.numCols)
|
||||
CommonOps_FSCC.invert(origin,res)
|
||||
res.wrapMatrix()
|
||||
}
|
||||
|
||||
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Float> {
|
||||
override val l: Matrix<Float> by lazy {
|
||||
Determinant -> CommonOps_FSCC.det(origin)
|
||||
|
||||
QR -> object : QRDecomposition<Float32> {
|
||||
val ejmlQr by lazy { DecompositionFactory_FSCC.qr(FillReducing.NONE).apply { decompose(origin.copy()) } }
|
||||
override val q: Matrix<Float32> get() = ejmlQr.getQ(null, false).wrapMatrix()
|
||||
override val r: Matrix<Float32> get() = ejmlQr.getR(null, false).wrapMatrix()
|
||||
}
|
||||
|
||||
Cholesky -> object : CholeskyDecomposition<Float32> {
|
||||
override val l: Matrix<Float32> by lazy {
|
||||
val cholesky =
|
||||
DecompositionFactory_FSCC.cholesky().apply { decompose(origin.copy()) }
|
||||
|
||||
(cholesky.getT(null) as FMatrix).wrapMatrix().withFeature(LFeature)
|
||||
(cholesky.getT(null) as FMatrix).wrapMatrix().withAttribute(LowerTriangular)
|
||||
}
|
||||
}
|
||||
|
||||
LUDecompositionFeature::class, DeterminantFeature::class, InverseMatrixFeature::class -> object :
|
||||
LUDecompositionFeature<Float>, DeterminantFeature<Float>, InverseMatrixFeature<Float> {
|
||||
private val lu by lazy {
|
||||
LUP -> object : LupDecomposition<Float32> {
|
||||
private val lup by lazy {
|
||||
DecompositionFactory_FSCC.lu(FillReducing.NONE).apply { decompose(origin.copy()) }
|
||||
}
|
||||
|
||||
override val l: Matrix<Float> by lazy {
|
||||
lu.getLower(null).wrapMatrix().withFeature(LFeature)
|
||||
}
|
||||
override val l: Matrix<Float32>
|
||||
get() = lup.getLower(null).wrapMatrix().withAttribute(LowerTriangular)
|
||||
|
||||
override val u: Matrix<Float> by lazy {
|
||||
lu.getUpper(null).wrapMatrix().withFeature(UFeature)
|
||||
}
|
||||
|
||||
override val inverse: Matrix<Float> by lazy {
|
||||
var a = origin
|
||||
val inverse = FMatrixRMaj(1, 1)
|
||||
val solver = LinearSolverFactory_FSCC.lu(FillReducing.NONE)
|
||||
if (solver.modifiesA()) a = a.copy()
|
||||
val i = CommonOps_FDRM.identity(a.numRows)
|
||||
solver.solve(i, inverse)
|
||||
inverse.wrapMatrix()
|
||||
}
|
||||
|
||||
override val determinant: Float by lazy { elementAlgebra.number(lu.computeDeterminant().real) }
|
||||
override val u: Matrix<Float32>
|
||||
get() = lup.getUpper(null).wrapMatrix().withAttribute(UpperTriangular)
|
||||
override val pivot: IntBuffer get() = lup.getRowPivotV(null).asBuffer()
|
||||
}
|
||||
|
||||
else -> null
|
||||
}?.let{
|
||||
type.cast(it)
|
||||
}
|
||||
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
return raw as V?
|
||||
}
|
||||
|
||||
/**
|
@ -58,19 +58,19 @@ internal class EjmlMatrixTest {
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
@Test
|
||||
fun features() {
|
||||
fun features() = EjmlLinearSpaceDDRM {
|
||||
val m = randomMatrix
|
||||
val w = EjmlDoubleMatrix(m)
|
||||
val det: Determinant<Double> = EjmlLinearSpaceDDRM.attributeForOrNull(w) ?: fail()
|
||||
assertEquals(CommonOps_DDRM.det(m), det.determinant)
|
||||
val lup: LupDecompositionAttribute<Double> = EjmlLinearSpaceDDRM.attributeForOrNull(w) ?: fail()
|
||||
val det: Double = w.getOrComputeAttribute(Determinant) ?: fail()
|
||||
assertEquals(CommonOps_DDRM.det(m), det)
|
||||
val lup: LupDecomposition<Double> = w.getOrComputeAttribute(LUP) ?: fail()
|
||||
|
||||
val ludecompositionF64 = DecompositionFactory_DDRM.lu(m.numRows, m.numCols)
|
||||
.also { it.decompose(m.copy()) }
|
||||
|
||||
assertMatrixEquals(EjmlDoubleMatrix(ludecompositionF64.getLower(null)), lup.l)
|
||||
assertMatrixEquals(EjmlDoubleMatrix(ludecompositionF64.getUpper(null)), lup.u)
|
||||
assertMatrixEquals(EjmlDoubleMatrix(ludecompositionF64.getRowPivot(null)), lup.p)
|
||||
assertMatrixEquals(EjmlDoubleMatrix(ludecompositionF64.getRowPivot(null)), lup.pivotMatrix(this))
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -6,6 +6,7 @@ kscience {
|
||||
jvm()
|
||||
js()
|
||||
native()
|
||||
wasm()
|
||||
|
||||
dependencies {
|
||||
api(projects.kmathCore)
|
||||
|
@ -7,7 +7,7 @@ package space.kscience.kmath.real
|
||||
|
||||
import space.kscience.kmath.linear.asMatrix
|
||||
import space.kscience.kmath.linear.linearSpace
|
||||
import space.kscience.kmath.linear.transpose
|
||||
import space.kscience.kmath.linear.transposed
|
||||
import space.kscience.kmath.operations.algebra
|
||||
import space.kscience.kmath.structures.Float64Buffer
|
||||
import kotlin.test.Test
|
||||
@ -34,7 +34,7 @@ internal class DoubleVectorTest {
|
||||
val vector1 = Float64Buffer(5) { it.toDouble() }
|
||||
val vector2 = Float64Buffer(5) { 5 - it.toDouble() }
|
||||
val matrix1 = vector1.asMatrix()
|
||||
val matrix2 = vector2.asMatrix().transpose()
|
||||
val matrix2 = vector2.asMatrix().transposed()
|
||||
val product = matrix1 dot matrix2
|
||||
assertEquals(5.0, product[1, 0])
|
||||
assertEquals(6.0, product[2, 2])
|
||||
|
@ -6,7 +6,6 @@ kscience{
|
||||
jvm()
|
||||
js()
|
||||
native()
|
||||
|
||||
wasm()
|
||||
|
||||
dependencies {
|
||||
|
@ -92,7 +92,7 @@ public inline fun <reified T : Any> GaussIntegrator<T>.integrate(
|
||||
range: ClosedRange<Double>,
|
||||
order: Int = 10,
|
||||
intervals: Int = 10,
|
||||
attributesBuilder: AttributesBuilder<UnivariateIntegrand<T>>.() -> Unit,
|
||||
attributesBuilder: AttributesBuilder<UnivariateIntegrand<T>>.() -> Unit = {},
|
||||
noinline function: (Double) -> T,
|
||||
): UnivariateIntegrand<T> {
|
||||
require(range.endInclusive > range.start) { "The range upper bound should be higher than lower bound" }
|
||||
|
@ -23,7 +23,7 @@ import space.kscience.kmath.structures.MutableBufferFactory
|
||||
*/
|
||||
public class SplineInterpolator<T : Comparable<T>>(
|
||||
override val algebra: Field<T>,
|
||||
public val bufferFactory: MutableBufferFactory<T>,
|
||||
public val bufferFactory: MutableBufferFactory<T> = algebra.bufferFactory,
|
||||
) : PolynomialInterpolator<T> {
|
||||
//TODO possibly optimize zeroed buffers
|
||||
|
||||
|
@ -9,6 +9,7 @@ package space.kscience.kmath.functions.testUtils
|
||||
|
||||
import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.operations.ScaleOperations
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
|
||||
|
||||
class IntModulo {
|
||||
@ -109,15 +110,17 @@ class IntModulo {
|
||||
}
|
||||
|
||||
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE")
|
||||
class IntModuloRing : Ring<IntModulo>, ScaleOperations<IntModulo> {
|
||||
class IntModuloRing(modulus: Int) : Ring<IntModulo>, ScaleOperations<IntModulo> {
|
||||
|
||||
val modulus: Int
|
||||
|
||||
constructor(modulus: Int) {
|
||||
init {
|
||||
require(modulus != 0) { "modulus can not be zero" }
|
||||
this.modulus = if (modulus < 0) -modulus else modulus
|
||||
}
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<IntModulo> = MutableBufferFactory()
|
||||
|
||||
override inline val zero: IntModulo get() = IntModulo(0, modulus, toCheckInput = false)
|
||||
override inline val one: IntModulo get() = IntModulo(1, modulus, toCheckInput = false)
|
||||
|
||||
|
@ -10,6 +10,7 @@ package space.kscience.kmath.functions.testUtils
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.Field
|
||||
import space.kscience.kmath.operations.NumbersAddOps
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
|
||||
@Suppress("NAME_SHADOWING")
|
||||
class Rational {
|
||||
@ -159,6 +160,7 @@ class Rational {
|
||||
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE")
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
object RationalField : Field<Rational>, NumbersAddOps<Rational> {
|
||||
override val bufferFactory: MutableBufferFactory<Rational> = MutableBufferFactory()
|
||||
override inline val zero: Rational get() = Rational.ZERO
|
||||
override inline val one: Rational get() = Rational.ONE
|
||||
|
||||
|
@ -18,15 +18,15 @@ import kotlin.test.assertEquals
|
||||
class SplineIntegralTest {
|
||||
|
||||
@Test
|
||||
fun integratePolynomial(){
|
||||
fun integratePolynomial() {
|
||||
val polynomial = Polynomial(1.0, 2.0, 3.0)
|
||||
val integral = polynomial.integrate(Float64Field,1.0..2.0)
|
||||
val integral = polynomial.integrate(Float64Field, 1.0..2.0)
|
||||
assertEquals(11.0, integral, 0.001)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun gaussSin() {
|
||||
val res = Float64Field.splineIntegrator.integrate(0.0..2 * PI, IntegrandMaxCalls(5)) { x ->
|
||||
val res = Float64Field.splineIntegrator.integrate(0.0..2 * PI, { IntegrandMaxCalls(5) }) { x ->
|
||||
sin(x)
|
||||
}
|
||||
assertEquals(0.0, res.value, 1e-2)
|
||||
@ -34,8 +34,8 @@ class SplineIntegralTest {
|
||||
|
||||
@Test
|
||||
fun gaussUniform() {
|
||||
val res = Float64Field.splineIntegrator.integrate(35.0..100.0, IntegrandMaxCalls(20)) { x ->
|
||||
if(x in 30.0..50.0){
|
||||
val res = Float64Field.splineIntegrator.integrate(35.0..100.0, { IntegrandMaxCalls(20) }) { x ->
|
||||
if (x in 30.0..50.0) {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
|
@ -7,8 +7,8 @@ package space.kscience.kmath.geometry
|
||||
|
||||
import kotlinx.serialization.SerialName
|
||||
import kotlinx.serialization.Serializable
|
||||
import space.kscience.kmath.geometry.euclidean2d.DoubleVector2D
|
||||
import space.kscience.kmath.geometry.euclidean3d.DoubleVector3D
|
||||
import space.kscience.kmath.geometry.euclidean2d.Float64Vector2D
|
||||
import space.kscience.kmath.geometry.euclidean3d.Float64Vector3D
|
||||
|
||||
/**
|
||||
* A line formed by [start] vector of start and a [direction] vector. Direction vector is not necessarily normalized,
|
||||
@ -25,8 +25,8 @@ private data class LineImpl<out V : Any>(override val start: V, override val dir
|
||||
|
||||
public fun <V : Any> Line(base: V, direction: V): Line<V> = LineImpl(base, direction)
|
||||
|
||||
public typealias Line2D = Line<DoubleVector2D>
|
||||
public typealias Line3D = Line<DoubleVector3D>
|
||||
public typealias Line2D = Line<Float64Vector2D>
|
||||
public typealias Line3D = Line<Float64Vector3D>
|
||||
|
||||
/**
|
||||
* A directed line segment between [begin] and [end]
|
||||
@ -49,5 +49,5 @@ public fun <V : Any> LineSegment<V>.line(algebra: GeometrySpace<V, *>): Line<V>
|
||||
Line(begin, end - begin)
|
||||
}
|
||||
|
||||
public typealias LineSegment2D = LineSegment<DoubleVector2D>
|
||||
public typealias LineSegment3D = LineSegment<DoubleVector3D>
|
||||
public typealias LineSegment2D = LineSegment<Float64Vector2D>
|
||||
public typealias LineSegment3D = LineSegment<Float64Vector3D>
|
||||
|
@ -5,6 +5,7 @@
|
||||
|
||||
package space.kscience.kmath.geometry
|
||||
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.linear.Point
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
|
||||
@ -33,6 +34,9 @@ public fun <T> Buffer<T>.asVector3D(): Vector3D<T> = object : Vector3D<T> {
|
||||
require(this@asVector3D.size == 3) { "Buffer of size 3 is required for Vector3D" }
|
||||
}
|
||||
|
||||
override val type: SafeType<T> = this@asVector3D.type
|
||||
|
||||
|
||||
override val x: T get() = this@asVector3D[0]
|
||||
override val y: T get() = this@asVector3D[1]
|
||||
override val z: T get() = this@asVector3D[2]
|
||||
|
@ -11,6 +11,8 @@ import kotlinx.serialization.builtins.serializer
|
||||
import kotlinx.serialization.descriptors.SerialDescriptor
|
||||
import kotlinx.serialization.encoding.Decoder
|
||||
import kotlinx.serialization.encoding.Encoder
|
||||
import space.kscience.kmath.operations.Group
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
import kotlin.jvm.JvmInline
|
||||
import kotlin.math.PI
|
||||
import kotlin.math.floor
|
||||
@ -28,11 +30,19 @@ public sealed interface Angle : Comparable<Angle> {
|
||||
public operator fun div(other: Angle): Double
|
||||
public operator fun unaryMinus(): Angle
|
||||
|
||||
public companion object {
|
||||
public val zero: Radians = Radians(0.0)
|
||||
public companion object: Group<Angle> {
|
||||
override val zero: Radians = Radians(0.0)
|
||||
public val pi: Radians = Radians(PI)
|
||||
public val piTimes2: Radians = Radians(PI * 2)
|
||||
public val piDiv2: Radians = Radians(PI / 2)
|
||||
|
||||
|
||||
override fun add(left: Angle, right: Angle): Angle = left + right
|
||||
|
||||
@Suppress("EXTENSION_SHADOWED_BY_MEMBER")
|
||||
override fun Angle.unaryMinus(): Angle = -this
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<Angle> = MutableBufferFactory()
|
||||
}
|
||||
}
|
||||
|
||||
@ -43,7 +53,7 @@ public object AngleSerializer : KSerializer<Angle> {
|
||||
override fun deserialize(decoder: Decoder): Angle = decoder.decodeDouble().degrees
|
||||
|
||||
override fun serialize(encoder: Encoder, value: Angle) {
|
||||
encoder.encodeDouble(value.degrees)
|
||||
encoder.encodeDouble(value.toDegrees().value)
|
||||
}
|
||||
}
|
||||
|
||||
@ -56,16 +66,16 @@ public value class Radians(public val value: Double) : Angle {
|
||||
override fun toRadians(): Radians = this
|
||||
override fun toDegrees(): Degrees = Degrees(value * 180 / PI)
|
||||
|
||||
public override fun plus(other: Angle): Radians = Radians(value + other.radians)
|
||||
public override fun minus(other: Angle): Radians = Radians(value - other.radians)
|
||||
public override fun plus(other: Angle): Radians = Radians(value + other.toRadians().value)
|
||||
public override fun minus(other: Angle): Radians = Radians(value - other.toRadians().value)
|
||||
|
||||
public override fun times(other: Number): Radians = Radians(value * other.toDouble())
|
||||
public override fun div(other: Number): Radians = Radians(value / other.toDouble())
|
||||
override fun div(other: Angle): Double = value / other.radians
|
||||
override fun div(other: Angle): Double = value / other.toRadians().value
|
||||
|
||||
public override fun unaryMinus(): Radians = Radians(-value)
|
||||
|
||||
override fun compareTo(other: Angle): Int = value.compareTo(other.radians)
|
||||
override fun compareTo(other: Angle): Int = value.compareTo(other.toRadians().value)
|
||||
}
|
||||
|
||||
public fun sin(angle: Angle): Double = kotlin.math.sin(angle.toRadians().value)
|
||||
@ -85,16 +95,16 @@ public value class Degrees(public val value: Double) : Angle {
|
||||
override fun toRadians(): Radians = Radians(value * PI / 180)
|
||||
override fun toDegrees(): Degrees = this
|
||||
|
||||
public override fun plus(other: Angle): Degrees = Degrees(value + other.degrees)
|
||||
public override fun minus(other: Angle): Degrees = Degrees(value - other.degrees)
|
||||
public override fun plus(other: Angle): Degrees = Degrees(value + other.toDegrees().value)
|
||||
public override fun minus(other: Angle): Degrees = Degrees(value - other.toDegrees().value)
|
||||
|
||||
public override fun times(other: Number): Degrees = Degrees(value * other.toDouble())
|
||||
public override fun div(other: Number): Degrees = Degrees(value / other.toDouble())
|
||||
override fun div(other: Angle): Double = value / other.degrees
|
||||
override fun div(other: Angle): Double = value / other.toDegrees().value
|
||||
|
||||
public override fun unaryMinus(): Degrees = Degrees(-value)
|
||||
|
||||
override fun compareTo(other: Angle): Int = value.compareTo(other.degrees)
|
||||
override fun compareTo(other: Angle): Int = value.compareTo(other.toDegrees().value)
|
||||
}
|
||||
|
||||
public val Number.degrees: Degrees get() = Degrees(toDouble())
|
||||
@ -106,6 +116,6 @@ public val Angle.degrees: Double get() = toDegrees().value
|
||||
* Normalized angle 2 PI range symmetric around [center]. By default, uses (0, 2PI) range.
|
||||
*/
|
||||
public fun Angle.normalized(center: Angle = Angle.pi): Angle =
|
||||
this - Angle.piTimes2 * floor((radians + PI - center.radians) / PI / 2)
|
||||
this - Angle.piTimes2 * floor((toRadians().value + PI - center.toRadians().value) / PI / 2)
|
||||
|
||||
public fun abs(angle: Angle): Angle = if (angle < Angle.zero) -angle else angle
|
@ -11,19 +11,22 @@ import kotlinx.serialization.Serializable
|
||||
import kotlinx.serialization.descriptors.SerialDescriptor
|
||||
import kotlinx.serialization.encoding.Decoder
|
||||
import kotlinx.serialization.encoding.Encoder
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.geometry.GeometrySpace
|
||||
import space.kscience.kmath.geometry.Vector2D
|
||||
import space.kscience.kmath.operations.Float32Field
|
||||
import space.kscience.kmath.structures.Float32
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
import kotlin.math.pow
|
||||
import kotlin.math.sqrt
|
||||
|
||||
@Serializable(Float32Space2D.VectorSerializer::class)
|
||||
public interface Float32Vector2D : Vector2D<Float>
|
||||
public interface Float32Vector2D : Vector2D<Float32>{
|
||||
override val type: SafeType<Float32> get() = Float32Field.type
|
||||
}
|
||||
|
||||
|
||||
public object Float32Space2D : GeometrySpace<Float32Vector2D, Float32> {
|
||||
|
||||
@Serializable
|
||||
@SerialName("Float32Vector2D")
|
||||
private data class Vector2DImpl(
|
||||
@ -72,6 +75,8 @@ public object Float32Space2D : GeometrySpace<Float32Vector2D, Float32> {
|
||||
public val yAxis: Float32Vector2D = vector(0.0, 1.0)
|
||||
|
||||
override val defaultPrecision: Float32 = 1e-3f
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<Float32Vector2D> = MutableBufferFactory()
|
||||
}
|
||||
|
||||
public fun Float32Vector2D(x: Number, y: Number): Float32Vector2D = Float32Space2D.vector(x, y)
|
||||
|
@ -11,66 +11,77 @@ import kotlinx.serialization.Serializable
|
||||
import kotlinx.serialization.descriptors.SerialDescriptor
|
||||
import kotlinx.serialization.encoding.Decoder
|
||||
import kotlinx.serialization.encoding.Encoder
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.geometry.GeometrySpace
|
||||
import space.kscience.kmath.geometry.Vector2D
|
||||
import space.kscience.kmath.linear.Float64LinearSpace
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.operations.ScaleOperations
|
||||
import space.kscience.kmath.structures.Float64
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
import kotlin.math.pow
|
||||
import kotlin.math.sqrt
|
||||
|
||||
|
||||
public typealias DoubleVector2D = Vector2D<Double>
|
||||
public typealias Float64Vector2D = Vector2D<Double>
|
||||
@Serializable(Float64Space2D.VectorSerializer::class)
|
||||
public interface Float64Vector2D : Vector2D<Float64> {
|
||||
override val type: SafeType<Float64> get() = Float64Field.type
|
||||
}
|
||||
|
||||
@Deprecated("Use Float64Vector2D", ReplaceWith("Float64Vector2D"))
|
||||
public typealias DoubleVector2D = Float64Vector2D
|
||||
|
||||
public val Vector2D<Double>.r: Double get() = Float64Space2D.norm(this)
|
||||
|
||||
|
||||
/**
|
||||
* 2D Euclidean space
|
||||
*/
|
||||
public object Float64Space2D : GeometrySpace<DoubleVector2D>, ScaleOperations<DoubleVector2D> {
|
||||
public object Float64Space2D : GeometrySpace<Float64Vector2D, Float64>, ScaleOperations<Float64Vector2D> {
|
||||
|
||||
|
||||
@Serializable
|
||||
@SerialName("Float64Vector2D")
|
||||
private data class Vector2DImpl(
|
||||
override val x: Double,
|
||||
override val y: Double,
|
||||
) : DoubleVector2D
|
||||
) : Float64Vector2D
|
||||
|
||||
public object VectorSerializer : KSerializer<DoubleVector2D> {
|
||||
public object VectorSerializer : KSerializer<Float64Vector2D> {
|
||||
private val proxySerializer = Vector2DImpl.serializer()
|
||||
override val descriptor: SerialDescriptor get() = proxySerializer.descriptor
|
||||
|
||||
override fun deserialize(decoder: Decoder): DoubleVector2D = decoder.decodeSerializableValue(proxySerializer)
|
||||
override fun deserialize(decoder: Decoder): Float64Vector2D = decoder.decodeSerializableValue(proxySerializer)
|
||||
|
||||
override fun serialize(encoder: Encoder, value: DoubleVector2D) {
|
||||
override fun serialize(encoder: Encoder, value: Float64Vector2D) {
|
||||
val vector = value as? Vector2DImpl ?: Vector2DImpl(value.x, value.y)
|
||||
encoder.encodeSerializableValue(proxySerializer, vector)
|
||||
}
|
||||
}
|
||||
|
||||
public fun vector(x: Number, y: Number): DoubleVector2D = Vector2DImpl(x.toDouble(), y.toDouble())
|
||||
public fun vector(x: Number, y: Number): Float64Vector2D = Vector2DImpl(x.toDouble(), y.toDouble())
|
||||
|
||||
override val zero: DoubleVector2D by lazy { vector(0.0, 0.0) }
|
||||
override val zero: Float64Vector2D by lazy { vector(0.0, 0.0) }
|
||||
|
||||
override fun norm(arg: DoubleVector2D): Double = sqrt(arg.x.pow(2) + arg.y.pow(2))
|
||||
override fun norm(arg: Float64Vector2D): Double = sqrt(arg.x.pow(2) + arg.y.pow(2))
|
||||
|
||||
override fun DoubleVector2D.unaryMinus(): DoubleVector2D = vector(-x, -y)
|
||||
override fun Float64Vector2D.unaryMinus(): Float64Vector2D = vector(-x, -y)
|
||||
|
||||
override fun DoubleVector2D.distanceTo(other: DoubleVector2D): Double = norm(this - other)
|
||||
override fun add(left: DoubleVector2D, right: DoubleVector2D): DoubleVector2D =
|
||||
override fun Float64Vector2D.distanceTo(other: Float64Vector2D): Double = norm(this - other)
|
||||
override fun add(left: Float64Vector2D, right: Float64Vector2D): Float64Vector2D =
|
||||
vector(left.x + right.x, left.y + right.y)
|
||||
|
||||
override fun scale(a: DoubleVector2D, value: Double): DoubleVector2D = vector(a.x * value, a.y * value)
|
||||
override fun DoubleVector2D.dot(other: DoubleVector2D): Double = x * other.x + y * other.y
|
||||
override fun scale(a: Float64Vector2D, value: Double): Float64Vector2D = vector(a.x * value, a.y * value)
|
||||
override fun Float64Vector2D.dot(other: Float64Vector2D): Double = x * other.x + y * other.y
|
||||
|
||||
public val xAxis: DoubleVector2D = vector(1.0, 0.0)
|
||||
public val yAxis: DoubleVector2D = vector(0.0, 1.0)
|
||||
public val xAxis: Float64Vector2D = vector(1.0, 0.0)
|
||||
public val yAxis: Float64Vector2D = vector(0.0, 1.0)
|
||||
|
||||
override val defaultPrecision: Double = 1e-6
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<Float64Vector2D> = MutableBufferFactory()
|
||||
}
|
||||
|
||||
public fun Float64Vector2D(x: Number, y: Number): Float64Vector2D = Float64Space2D.vector(x, y)
|
||||
|
||||
public val Float64Vector2D.r: Float64 get() = Float64Space2D.norm(this)
|
||||
|
||||
public val Float64Field.euclidean2D: Float64Space2D get() = Float64Space2D
|
@ -11,15 +11,19 @@ import kotlinx.serialization.Serializable
|
||||
import kotlinx.serialization.descriptors.SerialDescriptor
|
||||
import kotlinx.serialization.encoding.Decoder
|
||||
import kotlinx.serialization.encoding.Encoder
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.geometry.GeometrySpace
|
||||
import space.kscience.kmath.geometry.Vector3D
|
||||
import space.kscience.kmath.operations.Float32Field
|
||||
import space.kscience.kmath.structures.Float32
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
import kotlin.math.pow
|
||||
import kotlin.math.sqrt
|
||||
|
||||
@Serializable(Float32Space3D.VectorSerializer::class)
|
||||
public interface Float32Vector3D : Vector3D<Float>
|
||||
public interface Float32Vector3D : Vector3D<Float>{
|
||||
override val type: SafeType<Float32> get() = Float32Field.type
|
||||
}
|
||||
|
||||
|
||||
public object Float32Space3D : GeometrySpace<Float32Vector3D, Float32> {
|
||||
@ -101,6 +105,8 @@ public object Float32Space3D : GeometrySpace<Float32Vector3D, Float32> {
|
||||
public val zAxis: Float32Vector3D = vector(0.0, 0.0, 1.0)
|
||||
|
||||
override val defaultPrecision: Float32 = 1e-3f
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<Float32Vector3D> = MutableBufferFactory()
|
||||
}
|
||||
|
||||
public fun Float32Vector3D(x: Number, y: Number, z: Number): Float32Vector3D = Float32Space3D.vector(x, y, z)
|
||||
|
@ -11,10 +11,13 @@ import kotlinx.serialization.Serializable
|
||||
import kotlinx.serialization.descriptors.SerialDescriptor
|
||||
import kotlinx.serialization.encoding.Decoder
|
||||
import kotlinx.serialization.encoding.Encoder
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.geometry.GeometrySpace
|
||||
import space.kscience.kmath.geometry.Vector3D
|
||||
import space.kscience.kmath.linear.Float64LinearSpace
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.structures.Float64
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
import kotlin.math.pow
|
||||
import kotlin.math.sqrt
|
||||
|
||||
@ -31,12 +34,16 @@ internal fun leviCivita(i: Int, j: Int, k: Int): Int = when {
|
||||
else -> 0
|
||||
}
|
||||
|
||||
public typealias DoubleVector3D = Vector3D<Double>
|
||||
public typealias Float64Vector3D = Vector3D<Double>
|
||||
@Serializable(Float64Space3D.VectorSerializer::class)
|
||||
public interface Float64Vector3D : Vector3D<Float64> {
|
||||
override val type: SafeType<Float64> get() = Float64Field.type
|
||||
}
|
||||
|
||||
public val DoubleVector3D.r: Double get() = Float64Space3D.norm(this)
|
||||
@Deprecated("Use Float64Vector3D", ReplaceWith("Float64Vector3D"))
|
||||
public typealias DoubleVector3D = Float64Vector3D
|
||||
|
||||
public object Float64Space3D : GeometrySpace<DoubleVector3D, Double>{
|
||||
|
||||
public object Float64Space3D : GeometrySpace<Vector3D<Float64>, Double> {
|
||||
|
||||
public val linearSpace: Float64LinearSpace = Float64LinearSpace
|
||||
|
||||
@ -46,52 +53,52 @@ public object Float64Space3D : GeometrySpace<DoubleVector3D, Double>{
|
||||
override val x: Double,
|
||||
override val y: Double,
|
||||
override val z: Double,
|
||||
) : DoubleVector3D
|
||||
) : Float64Vector3D
|
||||
|
||||
public object VectorSerializer : KSerializer<DoubleVector3D> {
|
||||
public object VectorSerializer : KSerializer<Float64Vector3D> {
|
||||
private val proxySerializer = Vector3DImpl.serializer()
|
||||
override val descriptor: SerialDescriptor get() = proxySerializer.descriptor
|
||||
|
||||
override fun deserialize(decoder: Decoder): DoubleVector3D = decoder.decodeSerializableValue(proxySerializer)
|
||||
override fun deserialize(decoder: Decoder): Float64Vector3D = decoder.decodeSerializableValue(proxySerializer)
|
||||
|
||||
override fun serialize(encoder: Encoder, value: DoubleVector3D) {
|
||||
override fun serialize(encoder: Encoder, value: Float64Vector3D) {
|
||||
val vector = value as? Vector3DImpl ?: Vector3DImpl(value.x, value.y, value.z)
|
||||
encoder.encodeSerializableValue(proxySerializer, vector)
|
||||
}
|
||||
}
|
||||
|
||||
public fun vector(x: Double, y: Double, z: Double): DoubleVector3D =
|
||||
public fun vector(x: Double, y: Double, z: Double): Float64Vector3D =
|
||||
Vector3DImpl(x, y, z)
|
||||
|
||||
public fun vector(x: Number, y: Number, z: Number): DoubleVector3D =
|
||||
public fun vector(x: Number, y: Number, z: Number): Float64Vector3D =
|
||||
vector(x.toDouble(), y.toDouble(), z.toDouble())
|
||||
|
||||
override val zero: DoubleVector3D by lazy { vector(0.0, 0.0, 0.0) }
|
||||
override val zero: Float64Vector3D by lazy { vector(0.0, 0.0, 0.0) }
|
||||
|
||||
override fun norm(arg: DoubleVector3D): Double = sqrt(arg.x.pow(2) + arg.y.pow(2) + arg.z.pow(2))
|
||||
override fun norm(arg: Vector3D<Float64>): Double = sqrt(arg.x.pow(2) + arg.y.pow(2) + arg.z.pow(2))
|
||||
|
||||
public fun DoubleVector3D.norm(): Double = norm(this)
|
||||
public fun Vector3D<Float64>.norm(): Double = norm(this)
|
||||
|
||||
override fun DoubleVector3D.unaryMinus(): DoubleVector3D = vector(-x, -y, -z)
|
||||
override fun Vector3D<Float64>.unaryMinus(): Float64Vector3D = vector(-x, -y, -z)
|
||||
|
||||
override fun DoubleVector3D.distanceTo(other: DoubleVector3D): Double = (this - other).norm()
|
||||
override fun Vector3D<Float64>.distanceTo(other: Vector3D<Float64>): Double = (this - other).norm()
|
||||
|
||||
override fun add(left: DoubleVector3D, right: DoubleVector3D): DoubleVector3D =
|
||||
override fun add(left: Vector3D<Float64>, right: Vector3D<Float64>): Float64Vector3D =
|
||||
vector(left.x + right.x, left.y + right.y, left.z + right.z)
|
||||
|
||||
override fun scale(a: DoubleVector3D, value: Double): DoubleVector3D =
|
||||
override fun scale(a: Vector3D<Float64>, value: Double): Float64Vector3D =
|
||||
vector(a.x * value, a.y * value, a.z * value)
|
||||
|
||||
override fun DoubleVector3D.dot(other: DoubleVector3D): Double =
|
||||
override fun Vector3D<Float64>.dot(other: Vector3D<Float64>): Double =
|
||||
x * other.x + y * other.y + z * other.z
|
||||
|
||||
/**
|
||||
* Compute vector product of [first] and [second]. The basis is assumed to be right-handed.
|
||||
*/
|
||||
public fun vectorProduct(
|
||||
first: DoubleVector3D,
|
||||
second: DoubleVector3D,
|
||||
): DoubleVector3D {
|
||||
first: Vector3D<Float64>,
|
||||
second: Vector3D<Float64>,
|
||||
): Float64Vector3D {
|
||||
var x = 0.0
|
||||
var y = 0.0
|
||||
var z = 0.0
|
||||
@ -110,13 +117,18 @@ public object Float64Space3D : GeometrySpace<DoubleVector3D, Double>{
|
||||
/**
|
||||
* Vector product with the right basis
|
||||
*/
|
||||
public infix fun DoubleVector3D.cross(other: DoubleVector3D): Vector3D<Double> = vectorProduct(this, other)
|
||||
public infix fun Vector3D<Float64>.cross(other: Vector3D<Float64>): Vector3D<Double> = vectorProduct(this, other)
|
||||
|
||||
public val xAxis: DoubleVector3D = vector(1.0, 0.0, 0.0)
|
||||
public val yAxis: DoubleVector3D = vector(0.0, 1.0, 0.0)
|
||||
public val zAxis: DoubleVector3D = vector(0.0, 0.0, 1.0)
|
||||
public val xAxis: Float64Vector3D = vector(1.0, 0.0, 0.0)
|
||||
public val yAxis: Float64Vector3D = vector(0.0, 1.0, 0.0)
|
||||
public val zAxis: Float64Vector3D = vector(0.0, 0.0, 1.0)
|
||||
|
||||
override val defaultPrecision: Double = 1e-6
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<Vector3D<Float64>> = MutableBufferFactory()
|
||||
}
|
||||
|
||||
public val Float64Field.euclidean3D: Float64Space3D get() = Float64Space3D
|
||||
|
||||
|
||||
public val Float64Vector3D.r: Double get() = Float64Space3D.norm(this)
|
||||
|
@ -5,6 +5,7 @@
|
||||
|
||||
package space.kscience.kmath.geometry.euclidean3d
|
||||
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.complex.*
|
||||
import space.kscience.kmath.geometry.*
|
||||
@ -13,6 +14,7 @@ import space.kscience.kmath.linear.Matrix
|
||||
import space.kscience.kmath.linear.linearSpace
|
||||
import space.kscience.kmath.linear.matrix
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.structures.Float64
|
||||
import kotlin.math.*
|
||||
|
||||
public operator fun Quaternion.times(other: Quaternion): Quaternion = QuaternionAlgebra.multiply(this, other)
|
||||
@ -35,7 +37,7 @@ public infix fun Quaternion.dot(other: Quaternion): Double = w * other.w + x * o
|
||||
/**
|
||||
* Represent a vector as quaternion with zero a rotation angle.
|
||||
*/
|
||||
internal fun DoubleVector3D.asQuaternion(): Quaternion = Quaternion(0.0, x, y, z)
|
||||
internal fun Float64Vector3D.asQuaternion(): Quaternion = Quaternion(0.0, x, y, z)
|
||||
|
||||
/**
|
||||
* Angle in radians denoted by this quaternion rotation
|
||||
@ -45,7 +47,7 @@ public val Quaternion.theta: Radians get() = (kotlin.math.acos(normalized().w) *
|
||||
/**
|
||||
* Create a normalized Quaternion from rotation angle and rotation vector
|
||||
*/
|
||||
public fun Quaternion.Companion.fromRotation(theta: Angle, vector: DoubleVector3D): Quaternion {
|
||||
public fun Quaternion.Companion.fromRotation(theta: Angle, vector: Float64Vector3D): Quaternion {
|
||||
val s = sin(theta / 2)
|
||||
val c = cos(theta / 2)
|
||||
val norm = with(Float64Space3D) { vector.norm() }
|
||||
@ -55,9 +57,9 @@ public fun Quaternion.Companion.fromRotation(theta: Angle, vector: DoubleVector3
|
||||
/**
|
||||
* An axis of quaternion rotation
|
||||
*/
|
||||
public val Quaternion.vector: DoubleVector3D
|
||||
public val Quaternion.vector: Float64Vector3D
|
||||
get() {
|
||||
return object : DoubleVector3D {
|
||||
return object : Float64Vector3D {
|
||||
private val sint2 = sqrt(1 - w * w)
|
||||
override val x: Double get() = this@vector.x / sint2
|
||||
override val y: Double get() = this@vector.y / sint2
|
||||
@ -69,7 +71,7 @@ public val Quaternion.vector: DoubleVector3D
|
||||
/**
|
||||
* Rotate a vector in a [Float64Space3D] with [quaternion]
|
||||
*/
|
||||
public fun Float64Space3D.rotate(vector: DoubleVector3D, quaternion: Quaternion): DoubleVector3D =
|
||||
public fun Float64Space3D.rotate(vector: Float64Vector3D, quaternion: Quaternion): Float64Vector3D =
|
||||
with(QuaternionAlgebra) {
|
||||
val p = vector.asQuaternion()
|
||||
(quaternion * p * quaternion.reciprocal).vector
|
||||
@ -80,15 +82,15 @@ public fun Float64Space3D.rotate(vector: DoubleVector3D, quaternion: Quaternion)
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public fun Float64Space3D.rotate(
|
||||
vector: DoubleVector3D,
|
||||
vector: Float64Vector3D,
|
||||
composition: QuaternionAlgebra.() -> Quaternion,
|
||||
): DoubleVector3D =
|
||||
): Float64Vector3D =
|
||||
rotate(vector, QuaternionAlgebra.composition())
|
||||
|
||||
/**
|
||||
* Rotate a [Float64] vector in 3D space with a rotation matrix
|
||||
*/
|
||||
public fun Float64Space3D.rotate(vector: DoubleVector3D, matrix: Matrix<Double>): DoubleVector3D {
|
||||
public fun Float64Space3D.rotate(vector: Float64Vector3D, matrix: Matrix<Double>): Vector3D<Float64> {
|
||||
require(matrix.colNum == 3 && matrix.rowNum == 3) { "Square 3x3 rotation matrix is required" }
|
||||
return with(linearSpace) { (matrix dot vector).asVector3D() }
|
||||
}
|
||||
@ -242,6 +244,8 @@ public fun Quaternion.Companion.fromEuler(
|
||||
* A vector consisting of angles
|
||||
*/
|
||||
public data class AngleVector(override val x: Angle, override val y: Angle, override val z: Angle) : Vector3D<Angle> {
|
||||
override val type: SafeType<Angle> get() = Angle.type
|
||||
|
||||
public companion object
|
||||
}
|
||||
|
||||
|
@ -5,8 +5,7 @@
|
||||
|
||||
package space.kscience.kmath.geometry
|
||||
|
||||
import space.kscience.kmath.geometry.euclidean2d.DoubleVector2D
|
||||
import space.kscience.kmath.geometry.euclidean3d.DoubleVector3D
|
||||
import space.kscience.kmath.structures.Float64
|
||||
import kotlin.math.abs
|
||||
import kotlin.test.assertEquals
|
||||
|
||||
@ -27,12 +26,12 @@ fun grid(
|
||||
return xs.flatMap { x -> ys.map { y -> x to y } }
|
||||
}
|
||||
|
||||
fun assertVectorEquals(expected: DoubleVector2D, actual: DoubleVector2D, absoluteTolerance: Double = 1e-3) {
|
||||
fun assertVectorEquals(expected: Vector2D<Float64>, actual: Vector2D<Float64>, absoluteTolerance: Double = 1e-3) {
|
||||
assertEquals(expected.x, actual.x, absoluteTolerance)
|
||||
assertEquals(expected.y, actual.y, absoluteTolerance)
|
||||
}
|
||||
|
||||
fun assertVectorEquals(expected: DoubleVector3D, actual: DoubleVector3D, absoluteTolerance: Double = 1e-6) {
|
||||
fun assertVectorEquals(expected: Vector3D<Float64>, actual: Vector3D<Float64>, absoluteTolerance: Double = 1e-6) {
|
||||
assertEquals(expected.x, actual.x, absoluteTolerance)
|
||||
assertEquals(expected.y, actual.y, absoluteTolerance)
|
||||
assertEquals(expected.z, actual.z, absoluteTolerance)
|
||||
|
@ -6,6 +6,8 @@ kscience{
|
||||
jvm()
|
||||
js()
|
||||
native()
|
||||
wasm()
|
||||
useCoroutines()
|
||||
}
|
||||
|
||||
//apply(plugin = "kotlinx-atomicfu")
|
||||
@ -21,7 +23,6 @@ kotlin.sourceSets {
|
||||
dependencies {
|
||||
implementation(project(":kmath-for-real"))
|
||||
implementation(projects.kmath.kmathStat)
|
||||
implementation("org.jetbrains.kotlinx:kotlinx-coroutines-test:1.6.0")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -47,7 +47,7 @@ public interface Histogram<in T : Any, out V, out B : Bin<T, V>> {
|
||||
}
|
||||
}
|
||||
|
||||
public interface HistogramBuilder<in T : Any, V : Any> {
|
||||
public interface HistogramBuilder<in T, V> {
|
||||
|
||||
/**
|
||||
* The default value increment for a bin
|
||||
@ -61,9 +61,9 @@ public interface HistogramBuilder<in T : Any, V : Any> {
|
||||
|
||||
}
|
||||
|
||||
public fun <T : Any> HistogramBuilder<T, *>.put(point: Point<out T>): Unit = putValue(point)
|
||||
public fun <T> HistogramBuilder<T, *>.put(point: Point<T>): Unit = putValue(point)
|
||||
|
||||
public fun <T : Any> HistogramBuilder<T, *>.put(vararg point: T): Unit = put(point.asBuffer())
|
||||
public inline fun <reified T> HistogramBuilder<T, *>.put(vararg point: T): Unit = put(point.asList().asBuffer())
|
||||
|
||||
public fun HistogramBuilder<Double, *>.put(vararg point: Number): Unit =
|
||||
put(Float64Buffer(point.map { it.toDouble() }.toDoubleArray()))
|
||||
|
@ -12,6 +12,7 @@ import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.operations.ScaleOperations
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
import kotlin.math.floor
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
@ -46,6 +47,8 @@ public class UniformHistogram1DGroup<V : Any, A>(
|
||||
public val startPoint: Double = 0.0,
|
||||
) : Group<Histogram1D<Double, V>>, ScaleOperations<Histogram1D<Double, V>> where A : Ring<V>, A : ScaleOperations<V> {
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<Histogram1D<Double, V>> = MutableBufferFactory()
|
||||
|
||||
override val zero: UniformHistogram1D<V> = UniformHistogram1D(this, emptyMap())
|
||||
|
||||
/**
|
||||
|
@ -37,6 +37,8 @@ public class UniformHistogramGroupND<V : Any, A : Field<V>>(
|
||||
require(!lower.indices.any { upper[it] - lower[it] < 0 }) { "Range for one of axis is not strictly positive" }
|
||||
}
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<HistogramND<Double, HyperSquareDomain, V>> = MutableBufferFactory()
|
||||
|
||||
public val dimension: Int get() = lower.size
|
||||
|
||||
override val shape: ShapeND = ShapeND(IntArray(binNums.size) { binNums[it] + 2 })
|
||||
@ -87,7 +89,7 @@ public class UniformHistogramGroupND<V : Any, A : Field<V>>(
|
||||
builder: HistogramBuilder<Double, V>.() -> Unit,
|
||||
): HistogramND<Double, HyperSquareDomain, V> {
|
||||
val ndCounter: BufferND<ObjectCounter<V>> =
|
||||
StructureND.buffered(shape) { Counter.of(valueAlgebraND.elementAlgebra) }
|
||||
BufferND(shape) { Counter.of(valueAlgebraND.elementAlgebra) }
|
||||
val hBuilder = object : HistogramBuilder<Double, V> {
|
||||
override val defaultValue: V get() = valueAlgebraND.elementAlgebra.one
|
||||
|
||||
@ -97,7 +99,8 @@ public class UniformHistogramGroupND<V : Any, A : Field<V>>(
|
||||
}
|
||||
}
|
||||
hBuilder.apply(builder)
|
||||
val values: BufferND<V> = BufferND(ndCounter.indices, ndCounter.buffer.mapToBuffer(valueBufferFactory) { it.value })
|
||||
val values: BufferND<V> =
|
||||
BufferND(ndCounter.indices, ndCounter.buffer.mapToBuffer(valueBufferFactory) { it.value })
|
||||
|
||||
return HistogramND(this, values)
|
||||
}
|
||||
@ -128,8 +131,7 @@ public fun <V : Any, A : Field<V>> Histogram.Companion.uniformNDFromRanges(
|
||||
|
||||
public fun Histogram.Companion.uniformDoubleNDFromRanges(
|
||||
vararg ranges: ClosedFloatingPointRange<Double>,
|
||||
): UniformHistogramGroupND<Double, Float64Field> =
|
||||
uniformNDFromRanges(Floa64FieldOpsND, *ranges, bufferFactory = ::Float64Buffer)
|
||||
): UniformHistogramGroupND<Double, Float64Field> = uniformNDFromRanges(Floa64FieldOpsND, *ranges)
|
||||
|
||||
|
||||
/**
|
||||
@ -147,21 +149,18 @@ public fun <V : Any, A : Field<V>> Histogram.Companion.uniformNDFromRanges(
|
||||
bufferFactory: BufferFactory<V> = valueAlgebraND.elementAlgebra.bufferFactory,
|
||||
): UniformHistogramGroupND<V, A> = UniformHistogramGroupND(
|
||||
valueAlgebraND,
|
||||
DoubleBuffer(
|
||||
ranges
|
||||
.map(Pair<ClosedFloatingPointRange<Double>, Int>::first)
|
||||
.map(ClosedFloatingPointRange<Double>::start)
|
||||
),
|
||||
DoubleBuffer(
|
||||
ranges
|
||||
.map(Pair<ClosedFloatingPointRange<Double>, Int>::first)
|
||||
.map(ClosedFloatingPointRange<Double>::endInclusive)
|
||||
),
|
||||
ranges
|
||||
.map(Pair<ClosedFloatingPointRange<Double>, Int>::first)
|
||||
.map(ClosedFloatingPointRange<Double>::start)
|
||||
.asBuffer(),
|
||||
ranges
|
||||
.map(Pair<ClosedFloatingPointRange<Double>, Int>::first)
|
||||
.map(ClosedFloatingPointRange<Double>::endInclusive)
|
||||
.asBuffer(),
|
||||
ranges.map(Pair<ClosedFloatingPointRange<Double>, Int>::second).toIntArray(),
|
||||
valueBufferFactory = bufferFactory
|
||||
)
|
||||
|
||||
public fun Histogram.Companion.uniformDoubleNDFromRanges(
|
||||
vararg ranges: Pair<ClosedFloatingPointRange<Double>, Int>,
|
||||
): UniformHistogramGroupND<Double, Float64Field> =
|
||||
uniformNDFromRanges(Floa64FieldOpsND, *ranges, bufferFactory = ::Float64Buffer)
|
||||
): UniformHistogramGroupND<Double, Float64Field> = uniformNDFromRanges(Floa64FieldOpsND, *ranges)
|
@ -14,10 +14,7 @@ import space.kscience.kmath.misc.sorted
|
||||
import space.kscience.kmath.operations.Group
|
||||
import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.operations.ScaleOperations
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.first
|
||||
import space.kscience.kmath.structures.indices
|
||||
import space.kscience.kmath.structures.last
|
||||
import space.kscience.kmath.structures.*
|
||||
import java.util.*
|
||||
|
||||
private fun <B : ClosedRange<Double>> TreeMap<Double, B>.getBin(value: Double): B? {
|
||||
@ -53,6 +50,8 @@ public class TreeHistogramGroup<V : Any, A>(
|
||||
@PublishedApi internal val binFactory: (Double) -> DoubleDomain1D,
|
||||
) : Group<TreeHistogram<V>>, ScaleOperations<TreeHistogram<V>> where A : Ring<V>, A : ScaleOperations<V> {
|
||||
|
||||
override val bufferFactory: MutableBufferFactory<TreeHistogram<V>> = MutableBufferFactory()
|
||||
|
||||
internal inner class DomainCounter(val domain: DoubleDomain1D, val counter: Counter<V> = Counter.of(valueAlgebra)) :
|
||||
ClosedRange<Double> by domain.range
|
||||
|
||||
|
@ -7,6 +7,7 @@ package space.kscience.kmath.kotlingrad
|
||||
|
||||
import ai.hypergraph.kotlingrad.api.SFun
|
||||
import ai.hypergraph.kotlingrad.api.SVar
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.expressions.*
|
||||
import space.kscience.kmath.operations.NumericAlgebra
|
||||
|
||||
@ -25,6 +26,8 @@ public class KotlingradExpression<T : Number, A : NumericAlgebra<T>>(
|
||||
public val algebra: A,
|
||||
public val mst: MST,
|
||||
) : SpecialDifferentiableExpression<T, KotlingradExpression<T, A>> {
|
||||
override val type: SafeType<T> = algebra.type
|
||||
|
||||
override fun invoke(arguments: Map<Symbol, T>): T = mst.interpret(algebra, arguments)
|
||||
|
||||
override fun derivativeOrNull(
|
||||
|
@ -12,7 +12,7 @@ dependencies {
|
||||
}
|
||||
|
||||
readme {
|
||||
maturity = space.kscience.gradle.Maturity.EXPERIMENTAL
|
||||
maturity = space.kscience.gradle.Maturity.DEPRECATED
|
||||
propertyByTemplate("artifact", rootProject.file("docs/templates/ARTIFACT-TEMPLATE.md"))
|
||||
feature(id = "nd4jarraystructure") { "NDStructure wrapper for INDArray" }
|
||||
feature(id = "nd4jarrayrings") { "Rings over Nd4jArrayStructure of Int and Long" }
|
||||
|
@ -6,8 +6,10 @@
|
||||
package space.kscience.kmath.nd4j
|
||||
|
||||
import org.nd4j.linalg.api.ndarray.INDArray
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.PerformancePitfall
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.operations.Float32Field
|
||||
|
||||
/**
|
||||
* Represents a [StructureND] wrapping an [INDArray] object.
|
||||
@ -31,6 +33,7 @@ public sealed class Nd4jArrayStructure<T> : MutableStructureND<T> {
|
||||
}
|
||||
|
||||
public data class Nd4jArrayIntStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Int>(), StructureNDOfInt {
|
||||
|
||||
override fun elementsIterator(): Iterator<Pair<IntArray, Int>> = ndArray.intIterator()
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
@ -47,8 +50,10 @@ public data class Nd4jArrayIntStructure(override val ndArray: INDArray) : Nd4jAr
|
||||
*/
|
||||
public fun INDArray.asIntStructure(): Nd4jArrayIntStructure = Nd4jArrayIntStructure(this)
|
||||
|
||||
public data class Nd4jArrayDoubleStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Double>(), StructureNDOfDouble {
|
||||
public data class Nd4jArrayDoubleStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Double>(),
|
||||
StructureNDOfDouble {
|
||||
override fun elementsIterator(): Iterator<Pair<IntArray, Double>> = ndArray.realIterator()
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
override fun get(index: IntArray): Double = ndArray.getDouble(*index)
|
||||
|
||||
@ -64,7 +69,11 @@ public data class Nd4jArrayDoubleStructure(override val ndArray: INDArray) : Nd4
|
||||
public fun INDArray.asDoubleStructure(): Nd4jArrayStructure<Double> = Nd4jArrayDoubleStructure(this)
|
||||
|
||||
public data class Nd4jArrayFloatStructure(override val ndArray: INDArray) : Nd4jArrayStructure<Float>() {
|
||||
|
||||
override val type: SafeType<Float> get() = Float32Field.type
|
||||
|
||||
override fun elementsIterator(): Iterator<Pair<IntArray, Float>> = ndArray.floatIterator()
|
||||
|
||||
@PerformancePitfall
|
||||
override fun get(index: IntArray): Float = ndArray.getFloat(*index)
|
||||
|
||||
|
@ -6,6 +6,7 @@ kscience{
|
||||
jvm()
|
||||
js()
|
||||
native()
|
||||
wasm()
|
||||
}
|
||||
|
||||
kotlin.sourceSets {
|
||||
|
@ -11,6 +11,10 @@ import space.kscience.kmath.expressions.Symbol
|
||||
|
||||
public class OptimizationValue<V>(type: SafeType<V>) : PolymorphicAttribute<V>(type)
|
||||
|
||||
public inline fun <reified T> AttributesBuilder<FunctionOptimization<T>>.value(value: T) {
|
||||
set(OptimizationValue(safeTypeOf<T>()), value)
|
||||
}
|
||||
|
||||
public enum class OptimizationDirection {
|
||||
MAXIMIZE,
|
||||
MINIMIZE
|
||||
|
@ -34,10 +34,18 @@ public fun <T> AttributesBuilder<OptimizationProblem<T>>.startAt(startingPoint:
|
||||
public class OptimizationCovariance<T> : OptimizationAttribute<NamedMatrix<T>>,
|
||||
PolymorphicAttribute<NamedMatrix<T>>(safeTypeOf())
|
||||
|
||||
public fun <T> AttributesBuilder<OptimizationProblem<T>>.covariance(covariance: NamedMatrix<T>) {
|
||||
set(OptimizationCovariance(),covariance)
|
||||
}
|
||||
|
||||
|
||||
public class OptimizationResult<T>() : OptimizationAttribute<Map<Symbol, T>>,
|
||||
PolymorphicAttribute<Map<Symbol, T>>(safeTypeOf())
|
||||
|
||||
public fun <T> AttributesBuilder<OptimizationProblem<T>>.result(result: Map<Symbol, T>) {
|
||||
set(OptimizationResult(), result)
|
||||
}
|
||||
|
||||
public val <T> OptimizationProblem<T>.resultOrNull: Map<Symbol, T>? get() = attributes[OptimizationResult()]
|
||||
|
||||
public val <T> OptimizationProblem<T>.result: Map<Symbol, T>
|
||||
|
@ -264,10 +264,10 @@ public object QowOptimizer : Optimizer<Double, XYFit> {
|
||||
qow = QoWeight(problem, res.freeParameters)
|
||||
res = qow.newtonianRun(maxSteps = iterations)
|
||||
}
|
||||
val covariance = res.covariance()
|
||||
|
||||
return res.problem.withAttributes {
|
||||
set(OptimizationResult(), res.freeParameters)
|
||||
set(OptimizationCovariance(), covariance)
|
||||
result(res.freeParameters)
|
||||
covariance(res.covariance())
|
||||
}
|
||||
}
|
||||
}
|
@ -6,6 +6,7 @@ kscience{
|
||||
jvm()
|
||||
js()
|
||||
native()
|
||||
wasm()
|
||||
}
|
||||
|
||||
kotlin.sourceSets {
|
||||
|
@ -68,7 +68,7 @@ internal class MCScopeTest {
|
||||
}
|
||||
|
||||
|
||||
@OptIn(DelicateCoroutinesApi::class)
|
||||
@OptIn(DelicateCoroutinesApi::class, ExperimentalCoroutinesApi::class)
|
||||
fun compareResult(test: ATest) {
|
||||
val res1 = runBlocking(Dispatchers.Default) { test() }
|
||||
val res2 = runBlocking(newSingleThreadContext("test")) { test() }
|
||||
|
@ -7,8 +7,9 @@ package space.kscience.kmath.symja
|
||||
|
||||
import org.matheclipse.core.eval.ExprEvaluator
|
||||
import org.matheclipse.core.expression.F
|
||||
import space.kscience.kmath.expressions.SpecialDifferentiableExpression
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.expressions.MST
|
||||
import space.kscience.kmath.expressions.SpecialDifferentiableExpression
|
||||
import space.kscience.kmath.expressions.Symbol
|
||||
import space.kscience.kmath.expressions.interpret
|
||||
import space.kscience.kmath.operations.NumericAlgebra
|
||||
@ -30,6 +31,8 @@ public class SymjaExpression<T : Number, A : NumericAlgebra<T>>(
|
||||
public val mst: MST,
|
||||
public val evaluator: ExprEvaluator = DEFAULT_EVALUATOR,
|
||||
) : SpecialDifferentiableExpression<T, SymjaExpression<T, A>> {
|
||||
override val type: SafeType<T> get() = algebra.type
|
||||
|
||||
override fun invoke(arguments: Map<Symbol, T>): T = mst.interpret(algebra, arguments)
|
||||
|
||||
override fun derivativeOrNull(symbols: List<Symbol>): SymjaExpression<T, A> = SymjaExpression(
|
||||
|
@ -10,6 +10,7 @@ import org.tensorflow.Output
|
||||
import org.tensorflow.ndarray.NdArray
|
||||
import org.tensorflow.op.core.Constant
|
||||
import org.tensorflow.types.TFloat64
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.PerformancePitfall
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.expressions.Symbol
|
||||
@ -25,9 +26,9 @@ public class DoubleTensorFlowOutput(
|
||||
graph: Graph,
|
||||
output: Output<TFloat64>,
|
||||
) : TensorFlowOutput<Double, TFloat64>(graph, output) {
|
||||
override val type: SafeType<Double> get() = Float64Field.type
|
||||
|
||||
override fun org.tensorflow.Tensor.actualizeTensor(): NdArray<Double> = this as TFloat64
|
||||
|
||||
}
|
||||
|
||||
internal fun ShapeND.toLongArray(): LongArray = LongArray(size) { get(it).toLong() }
|
||||
|
@ -10,11 +10,19 @@ import org.tensorflow.Output
|
||||
import org.tensorflow.ndarray.NdArray
|
||||
import org.tensorflow.types.TInt32
|
||||
import org.tensorflow.types.TInt64
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.operations.Int32Ring
|
||||
import space.kscience.kmath.operations.Int64Ring
|
||||
import space.kscience.kmath.structures.Int32
|
||||
import space.kscience.kmath.structures.Int64
|
||||
|
||||
public class IntTensorFlowOutput(
|
||||
graph: Graph,
|
||||
output: Output<TInt32>,
|
||||
) : TensorFlowOutput<Int, TInt32>(graph, output) {
|
||||
|
||||
override val type: SafeType<Int32> get() = Int32Ring.type
|
||||
|
||||
override fun org.tensorflow.Tensor.actualizeTensor(): NdArray<Int> = this as TInt32
|
||||
}
|
||||
|
||||
@ -22,5 +30,7 @@ public class LongTensorFlowOutput(
|
||||
graph: Graph,
|
||||
output: Output<TInt64>,
|
||||
) : TensorFlowOutput<Long, TInt64>(graph, output) {
|
||||
|
||||
override val type: SafeType<Int64> get() = Int64Ring.type
|
||||
override fun org.tensorflow.Tensor.actualizeTensor(): NdArray<Long> = this as TInt64
|
||||
}
|
@ -17,6 +17,7 @@ import org.tensorflow.op.core.*
|
||||
import org.tensorflow.types.TInt32
|
||||
import org.tensorflow.types.family.TNumber
|
||||
import org.tensorflow.types.family.TType
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.PerformancePitfall
|
||||
import space.kscience.kmath.UnsafeKMathAPI
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
@ -39,8 +40,8 @@ public sealed interface TensorFlowTensor<T> : Tensor<T>
|
||||
/**
|
||||
* Static (eager) in-memory TensorFlow tensor
|
||||
*/
|
||||
@JvmInline
|
||||
public value class TensorFlowArray<T>(public val tensor: NdArray<T>) : Tensor<T> {
|
||||
public class TensorFlowArray<T>(override val type: SafeType<T>, public val tensor: NdArray<T>) : Tensor<T> {
|
||||
|
||||
override val shape: ShapeND get() = ShapeND(tensor.shape().asArray().toIntArray())
|
||||
|
||||
@PerformancePitfall
|
||||
@ -73,7 +74,7 @@ public abstract class TensorFlowOutput<T, TT : TType>(
|
||||
|
||||
internal val actualTensor by lazy {
|
||||
Session(graph).use { session ->
|
||||
TensorFlowArray(session.runner().fetch(output).run().first().actualizeTensor())
|
||||
TensorFlowArray(type, session.runner().fetch(output).run().first().actualizeTensor())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -12,6 +12,7 @@ kscience{
|
||||
}
|
||||
}
|
||||
native()
|
||||
wasm()
|
||||
|
||||
dependencies {
|
||||
api(projects.kmathCore)
|
||||
|
@ -1,10 +0,0 @@
|
||||
/*
|
||||
* Copyright 2018-2024 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
import space.kscience.kmath.nd.MutableStructureND
|
||||
|
||||
public typealias Tensor<T> = MutableStructureND<T>
|
@ -5,11 +5,14 @@
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
import space.kscience.kmath.nd.MutableStructureND
|
||||
import space.kscience.kmath.nd.RingOpsND
|
||||
import space.kscience.kmath.nd.ShapeND
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.operations.Ring
|
||||
|
||||
public typealias Tensor<T> = MutableStructureND<T>
|
||||
|
||||
/**
|
||||
* Algebra over a ring on [Tensor].
|
||||
* For more information: https://proofwiki.org/wiki/Definition:Algebra_over_Ring
|
||||
|
@ -6,7 +6,6 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.PerformancePitfall
|
||||
import space.kscience.kmath.linear.transposed
|
||||
import space.kscience.kmath.nd.*
|
||||
import kotlin.math.abs
|
||||
import kotlin.math.max
|
||||
@ -139,7 +138,7 @@ public fun DoubleTensorAlgebra.levenbergMarquardt(inputData: LMInput): LMResultI
|
||||
if (inputData.nargin < 5) {
|
||||
weight = fromArray(
|
||||
ShapeND(intArrayOf(1, 1)),
|
||||
doubleArrayOf((inputData.realValues.transposed dot inputData.realValues).as1D()[0])
|
||||
doubleArrayOf((inputData.realValues.transposed() dot inputData.realValues).as1D()[0])
|
||||
).as2D()
|
||||
}
|
||||
|
||||
@ -266,12 +265,12 @@ public fun DoubleTensorAlgebra.levenbergMarquardt(inputData: LMInput): LMResultI
|
||||
settings.funcCalls += 1
|
||||
|
||||
// val tmp = deltaY.times(weight)
|
||||
var X2Try = deltaY.as2D().transposed dot deltaY.times(weight) // Chi-squared error criteria
|
||||
var X2Try = deltaY.as2D().transposed() dot deltaY.times(weight) // Chi-squared error criteria
|
||||
|
||||
val alpha = 1.0
|
||||
if (updateType == 2) { // Quadratic
|
||||
// One step of quadratic line update in the h direction for minimum X2
|
||||
val alphaTensor = (jtWdy.transposed dot h) / ((X2Try - x2) / 2.0 + 2 * (jtWdy.transposed dot h))
|
||||
val alphaTensor = (jtWdy.transposed() dot h) / ((X2Try - x2) / 2.0 + 2 * (jtWdy.transposed() dot h))
|
||||
h = h dot alphaTensor
|
||||
pTry = (p + h).as2D() // update only [idx] elements
|
||||
pTry = smallestElementComparison(
|
||||
@ -289,7 +288,7 @@ public fun DoubleTensorAlgebra.levenbergMarquardt(inputData: LMInput): LMResultI
|
||||
) // residual error using p_try
|
||||
settings.funcCalls += 1
|
||||
|
||||
X2Try = deltaY.as2D().transposed dot deltaY * weight // Chi-squared error criteria
|
||||
X2Try = deltaY.as2D().transposed() dot deltaY * weight // Chi-squared error criteria
|
||||
}
|
||||
|
||||
val rho = when (updateType) { // Nielsen
|
||||
|
@ -6,12 +6,16 @@
|
||||
package space.kscience.kmath.viktor
|
||||
|
||||
import org.jetbrains.bio.viktor.F64FlatArray
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.MutableBuffer
|
||||
|
||||
@Suppress("NOTHING_TO_INLINE", "OVERRIDE_BY_INLINE")
|
||||
@JvmInline
|
||||
public value class ViktorBuffer(public val flatArray: F64FlatArray) : MutableBuffer<Double> {
|
||||
override val type: SafeType<Double> get() = Float64Field.type
|
||||
|
||||
override val size: Int
|
||||
get() = flatArray.length
|
||||
|
||||
|
@ -6,13 +6,17 @@
|
||||
package space.kscience.kmath.viktor
|
||||
|
||||
import org.jetbrains.bio.viktor.F64Array
|
||||
import space.kscience.attributes.SafeType
|
||||
import space.kscience.kmath.PerformancePitfall
|
||||
import space.kscience.kmath.nd.ColumnStrides
|
||||
import space.kscience.kmath.nd.MutableStructureND
|
||||
import space.kscience.kmath.nd.ShapeND
|
||||
import space.kscience.kmath.operations.Float64Field
|
||||
|
||||
@Suppress("OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
|
||||
public class ViktorStructureND(public val f64Buffer: F64Array) : MutableStructureND<Double> {
|
||||
override val type: SafeType<Double> get() = Float64Field.type
|
||||
|
||||
override val shape: ShapeND get() = ShapeND(f64Buffer.shape)
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
|
Loading…
Reference in New Issue
Block a user