forked from kscience/kmath
Faster implementation for FastHistogram
This commit is contained in:
parent
15cc4a22e2
commit
d799668083
@ -1,44 +1,48 @@
|
||||
package scientifik.kmath.histogram
|
||||
|
||||
import scientifik.kmath.linear.toVector
|
||||
import scientifik.kmath.structures.Buffer
|
||||
import scientifik.kmath.structures.ListBuffer
|
||||
import scientifik.kmath.structures.NDStructure
|
||||
import scientifik.kmath.structures.ndStructure
|
||||
import scientifik.kmath.structures.*
|
||||
import kotlin.math.floor
|
||||
|
||||
typealias RealPoint = Point<Double>
|
||||
|
||||
private operator fun RealPoint.minus(other: RealPoint) = ListBuffer((0 until size).map { get(it) - other[it] })
|
||||
|
||||
private inline fun <T> Buffer<out Double>.mapIndexed(crossinline mapper: (Int, Double) -> T): Sequence<T> = (0 until size).asSequence().map { mapper(it, get(it)) }
|
||||
|
||||
|
||||
class MultivariateBin(override val center: RealPoint, val sizes: RealPoint, var counter: Long = 0) : Bin<Double> {
|
||||
init {
|
||||
if (center.size != sizes.size) error("Dimension mismatch in bin creation. Expected ${center.size}, but found ${sizes.size}")
|
||||
}
|
||||
|
||||
override fun contains(vector: Buffer<out Double>): Boolean {
|
||||
if (vector.size != center.size) error("Dimension mismatch for input vector. Expected ${center.size}, but found ${vector.size}")
|
||||
return vector.mapIndexed { i, value -> value in (center[i] - sizes[i] / 2)..(center[i] + sizes[i] / 2) }.all { it }
|
||||
}
|
||||
|
||||
override val value get() = counter
|
||||
internal operator fun inc() = this.also { counter++ }
|
||||
|
||||
override val dimension: Int get() = center.size
|
||||
}
|
||||
//class MultivariateBin(override val center: RealPoint, val sizes: RealPoint, var counter: Long = 0) : Bin<Double> {
|
||||
// init {
|
||||
// if (center.size != sizes.size) error("Dimension mismatch in bin creation. Expected ${center.size}, but found ${sizes.size}")
|
||||
// }
|
||||
//
|
||||
// override fun contains(vector: Buffer<out Double>): Boolean {
|
||||
// if (vector.size != center.size) error("Dimension mismatch for input vector. Expected ${center.size}, but found ${vector.size}")
|
||||
// return vector.mapIndexed { i, value -> value in (center[i] - sizes[i] / 2)..(center[i] + sizes[i] / 2) }.all { it }
|
||||
// }
|
||||
//
|
||||
// override val value get() = counter
|
||||
// internal operator fun inc() = this.also { counter++ }
|
||||
//
|
||||
// override val dimension: Int get() = center.size
|
||||
//}
|
||||
|
||||
/**
|
||||
* Uniform multivariate histogram with fixed borders. Based on NDStructure implementation with complexity of m for bin search, where m is the number of dimensions.
|
||||
* The histogram is optimized for speed, but have large size in memory
|
||||
*/
|
||||
class FastHistogram(
|
||||
private val lower: RealPoint,
|
||||
private val upper: RealPoint,
|
||||
private val binNums: IntArray = IntArray(lower.size) { 20 }
|
||||
) : MutableHistogram<Double, MultivariateBin> {
|
||||
) : MutableHistogram<Double, PhantomBin<Double>> {
|
||||
|
||||
|
||||
private val strides = DefaultStrides(IntArray(binNums.size) { binNums[it] + 2 })
|
||||
|
||||
private val values: NDStructure<LongCounter> = ndStructure(strides) { LongCounter() }
|
||||
|
||||
//private val weight: NDStructure<DoubleCounter?> = ndStructure(strides){null}
|
||||
|
||||
//TODO optimize binSize performance if needed
|
||||
private val binSize: RealPoint = ListBuffer((upper - lower).mapIndexed { index, value -> value / binNums[index] }.toList())
|
||||
|
||||
init {
|
||||
// argument checks
|
||||
@ -50,24 +54,6 @@ class FastHistogram(
|
||||
|
||||
override val dimension: Int get() = lower.size
|
||||
|
||||
//TODO optimize binSize performance if needed
|
||||
private val binSize: RealPoint = ListBuffer((upper - lower).mapIndexed { index, value -> value / binNums[index] }.toList())
|
||||
|
||||
private val bins: NDStructure<MultivariateBin> by lazy {
|
||||
val actualSizes = IntArray(binNums.size) { binNums[it] + 2 }
|
||||
ndStructure(actualSizes) { indexArray ->
|
||||
val center = ListBuffer(
|
||||
indexArray.mapIndexed { axis, index ->
|
||||
when (index) {
|
||||
0 -> Double.NEGATIVE_INFINITY
|
||||
actualSizes[axis] - 1 -> Double.POSITIVE_INFINITY
|
||||
else -> lower[axis] + (index.toDouble() - 0.5) * binSize[axis]
|
||||
}
|
||||
}
|
||||
)
|
||||
MultivariateBin(center, binSize)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get internal [NDStructure] bin index for given axis
|
||||
@ -80,24 +66,51 @@ class FastHistogram(
|
||||
}
|
||||
}
|
||||
|
||||
private fun getIndex(point: Buffer<out Double>): IntArray = IntArray(dimension) { getIndex(it, point[it]) }
|
||||
|
||||
override fun get(point: Buffer<out Double>): MultivariateBin? {
|
||||
val index = IntArray(dimension) { getIndex(it, point[it]) }
|
||||
return bins[index]
|
||||
private fun getValue(index: IntArray): Long {
|
||||
return values[index].sum()
|
||||
}
|
||||
|
||||
fun getValue(point: Buffer<out Double>): Long {
|
||||
return getValue(getIndex(point))
|
||||
}
|
||||
|
||||
private fun getTemplate(index: IntArray): BinTemplate<Double> {
|
||||
val center = index.mapIndexed { axis, i ->
|
||||
when (i) {
|
||||
0 -> Double.NEGATIVE_INFINITY
|
||||
strides.shape[axis] - 1 -> Double.POSITIVE_INFINITY
|
||||
else -> lower[axis] + (i.toDouble() - 0.5) * binSize[axis]
|
||||
}
|
||||
}.toVector()
|
||||
return BinTemplate(center, binSize)
|
||||
}
|
||||
|
||||
fun getTemplate(point: Buffer<out Double>): BinTemplate<Double> {
|
||||
return getTemplate(getIndex(point))
|
||||
}
|
||||
|
||||
override fun get(point: Buffer<out Double>): PhantomBin<Double>? {
|
||||
val index = getIndex(point)
|
||||
return PhantomBin(getTemplate(index), getValue(index))
|
||||
}
|
||||
|
||||
override fun put(point: Buffer<out Double>, weight: Double) {
|
||||
if (weight != 1.0) TODO("Implement weighting")
|
||||
this[point]?.inc() ?: error("Could not find appropriate bin (should not be possible)")
|
||||
val index = getIndex(point)
|
||||
values[index].increment()
|
||||
}
|
||||
|
||||
override fun iterator(): Iterator<MultivariateBin> = bins.asSequence().map { it.second }.iterator()
|
||||
override fun iterator(): Iterator<PhantomBin<Double>> = values.asSequence().map { (index, value) ->
|
||||
PhantomBin(getTemplate(index), value.sum())
|
||||
}.iterator()
|
||||
|
||||
/**
|
||||
* Convert this histogram into NDStructure containing bin values but not bin descriptions
|
||||
*/
|
||||
fun asND(): NDStructure<Number> {
|
||||
return ndStructure(this.bins.shape) { bins[it].value }
|
||||
return ndStructure(this.values.shape) { values[it].sum() }
|
||||
}
|
||||
|
||||
// /**
|
||||
|
@ -6,6 +6,8 @@ import scientifik.kmath.structures.DoubleBuffer
|
||||
|
||||
typealias Point<T> = Buffer<T>
|
||||
|
||||
typealias RealPoint = Buffer<Double>
|
||||
|
||||
/**
|
||||
* A simple geometric domain
|
||||
* TODO move to geometry module
|
||||
|
@ -3,12 +3,13 @@ package scientifik.kmath.histogram
|
||||
import scientifik.kmath.linear.Vector
|
||||
import scientifik.kmath.operations.Space
|
||||
import scientifik.kmath.structures.NDStructure
|
||||
import scientifik.kmath.structures.asSequence
|
||||
|
||||
data class BinTemplate<T : Comparable<T>>(val center: Vector<T, *>, val sizes: Vector<T, *>) {
|
||||
data class BinTemplate<T : Comparable<T>>(val center: Vector<T, *>, val sizes: Point<T>) {
|
||||
fun contains(vector: Point<out T>): Boolean {
|
||||
if (vector.size != center.size) error("Dimension mismatch for input vector. Expected ${center.size}, but found ${vector.size}")
|
||||
val upper = center + sizes / 2.0
|
||||
val lower = center - sizes / 2.0
|
||||
val upper = center.context.run { center + sizes / 2.0}
|
||||
val lower = center.context.run {center - sizes / 2.0}
|
||||
return vector.asSequence().mapIndexed { i, value ->
|
||||
value in lower[i]..upper[i]
|
||||
}.all { it }
|
||||
|
@ -42,11 +42,17 @@ interface Vector<T : Any, S : Space<T>> : SpaceElement<Point<T>, VectorSpace<T,
|
||||
fun <T : Any, F : Field<T>> of(size: Int, field: F, initializer: (Int) -> T) =
|
||||
ArrayVector(ArrayVectorSpace(size, field), initializer)
|
||||
|
||||
private val realSpaceCache = HashMap<Int, ArrayVectorSpace<Double, DoubleField>>()
|
||||
|
||||
private fun getRealSpace(size: Int): ArrayVectorSpace<Double, DoubleField> {
|
||||
return realSpaceCache.getOrPut(size){ArrayVectorSpace(size, DoubleField, realNDFieldFactory)}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create vector of [Double]
|
||||
*/
|
||||
fun ofReal(size: Int, initializer: (Int) -> Double) =
|
||||
ArrayVector(ArrayVectorSpace(size, DoubleField, realNDFieldFactory), initializer)
|
||||
ArrayVector(getRealSpace(size), initializer)
|
||||
|
||||
fun ofReal(vararg point: Double) = point.toVector()
|
||||
|
||||
@ -74,8 +80,6 @@ class ArrayVectorSpace<T : Any, F : Field<T>>(
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
class ArrayVector<T : Any, F : Field<T>> internal constructor(override val context: VectorSpace<T, F>, val element: NDElement<T, F>) : Vector<T, F> {
|
||||
|
||||
constructor(context: ArrayVectorSpace<T, F>, initializer: (Int) -> T) : this(context, context.ndField.produce { list -> initializer(list[0]) })
|
||||
|
@ -12,14 +12,14 @@ interface Buffer<T> {
|
||||
|
||||
operator fun iterator(): Iterator<T>
|
||||
|
||||
fun asSequence(): Sequence<T> = iterator().asSequence()
|
||||
|
||||
/**
|
||||
* A shallow copy of the buffer
|
||||
*/
|
||||
fun copy(): Buffer<T>
|
||||
}
|
||||
|
||||
fun <T> Buffer<T>.asSequence(): Sequence<T> = iterator().asSequence()
|
||||
|
||||
interface MutableBuffer<T> : Buffer<T> {
|
||||
operator fun set(index: Int, value: T)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user