forked from kscience/kmath
valueOrNull added
This commit is contained in:
parent
e80eefa90f
commit
d73d03c055
@ -69,7 +69,7 @@ fun main () {
|
||||
val n = l.shape[0]
|
||||
val x = zeros(intArrayOf(n))
|
||||
for (i in 0 until n){
|
||||
x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).value()) / l[intArrayOf(i, i)]
|
||||
x[intArrayOf(i)] = (b[intArrayOf(i)] - l[i].dot(x).valueOrNull()!!) / l[intArrayOf(i, i)]
|
||||
}
|
||||
return x
|
||||
}
|
||||
|
@ -60,7 +60,7 @@ fun main() {
|
||||
require(yTrue.shape contentEquals yPred.shape)
|
||||
|
||||
val diff = yTrue - yPred
|
||||
return diff.dot(diff).sqrt().value()
|
||||
return diff.dot(diff).sqrt().valueOrNull()!!
|
||||
}
|
||||
|
||||
println("MSE: ${mse(alpha, alphaOLS)}")
|
||||
|
@ -16,11 +16,12 @@ import space.kscience.kmath.operations.Algebra
|
||||
public interface TensorAlgebra<T>: Algebra<Tensor<T>> {
|
||||
|
||||
/**
|
||||
*
|
||||
* Returns a single tensor value of unit dimension. The tensor shape must be equal to [1].
|
||||
*
|
||||
* @return the value of a scalar tensor.
|
||||
*/
|
||||
public fun Tensor<T>.value(): T
|
||||
public fun Tensor<T>.valueOrNull(): T?
|
||||
|
||||
/**
|
||||
* Each element of the tensor [other] is added to this value.
|
||||
|
@ -35,12 +35,10 @@ public open class DoubleTensorAlgebra :
|
||||
|
||||
public companion object : DoubleTensorAlgebra()
|
||||
|
||||
override fun Tensor<Double>.value(): Double {
|
||||
check(tensor.shape contentEquals intArrayOf(1)) {
|
||||
"Inconsistent value for tensor of shape ${shape.toList()}"
|
||||
}
|
||||
return tensor.mutableBuffer.array()[tensor.bufferStart]
|
||||
}
|
||||
override fun Tensor<Double>.valueOrNull(): Double? = if(tensor.shape contentEquals intArrayOf(1)) {
|
||||
// Inconsistent value for tensor of with this shape
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart]
|
||||
} else null
|
||||
|
||||
/**
|
||||
* Constructs a tensor with the specified shape and data.
|
||||
|
@ -58,7 +58,7 @@ internal fun DoubleTensorAlgebra.checkSymmetric(
|
||||
internal fun DoubleTensorAlgebra.checkPositiveDefinite(tensor: DoubleTensor, epsilon: Double = 1e-6) {
|
||||
checkSymmetric(tensor, epsilon)
|
||||
for (mat in tensor.matrixSequence())
|
||||
check(mat.asTensor().detLU().value() > 0.0) {
|
||||
"Tensor contains matrices which are not positive definite ${mat.asTensor().detLU().value()}"
|
||||
check(mat.asTensor().detLU().valueOrNull()!! > 0.0) {
|
||||
"Tensor contains matrices which are not positive definite ${mat.asTensor().detLU().valueOrNull()!!}"
|
||||
}
|
||||
}
|
@ -12,6 +12,7 @@ import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.*
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra.Companion.valueOrNull
|
||||
import kotlin.math.abs
|
||||
import kotlin.math.min
|
||||
import kotlin.math.sign
|
||||
@ -239,14 +240,14 @@ internal fun DoubleTensorAlgebra.qrHelper(
|
||||
val vv = v.as1D()
|
||||
if (j > 0) {
|
||||
for (i in 0 until j) {
|
||||
r[i, j] = (qT[i] dot matrixT[j]).value()
|
||||
r[i, j] = (qT[i] dot matrixT[j]).valueOrNull()!!
|
||||
for (k in 0 until n) {
|
||||
val qTi = qT[i].as1D()
|
||||
vv[k] = vv[k] - r[i, j] * qTi[k]
|
||||
}
|
||||
}
|
||||
}
|
||||
r[j, j] = DoubleTensorAlgebra { (v dot v).sqrt().value() }
|
||||
r[j, j] = DoubleTensorAlgebra { (v dot v).sqrt().valueOrNull()!! }
|
||||
for (i in 0 until n) {
|
||||
qM[i, j] = vv[i] / r[j, j]
|
||||
}
|
||||
@ -269,9 +270,9 @@ internal fun DoubleTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10)
|
||||
while (true) {
|
||||
lastV = v
|
||||
v = b.dot(lastV)
|
||||
val norm = DoubleTensorAlgebra { (v dot v).sqrt().value() }
|
||||
val norm = DoubleTensorAlgebra { (v dot v).sqrt().valueOrNull()!! }
|
||||
v = v.times(1.0 / norm)
|
||||
if (abs(v.dot(lastV).value()) > 1 - epsilon) {
|
||||
if (abs(v.dot(lastV).valueOrNull()!!) > 1 - epsilon) {
|
||||
return v
|
||||
}
|
||||
}
|
||||
@ -292,7 +293,7 @@ internal fun DoubleTensorAlgebra.svdHelper(
|
||||
val outerProduct = DoubleArray(u.shape[0] * v.shape[0])
|
||||
for (i in 0 until u.shape[0]) {
|
||||
for (j in 0 until v.shape[0]) {
|
||||
outerProduct[i * v.shape[0] + j] = u[i].value() * v[j].value()
|
||||
outerProduct[i * v.shape[0] + j] = u[i].valueOrNull()!! * v[j].valueOrNull()!!
|
||||
}
|
||||
}
|
||||
a = a - singularValue.times(DoubleTensor(intArrayOf(u.shape[0], v.shape[0]), outerProduct))
|
||||
@ -303,12 +304,12 @@ internal fun DoubleTensorAlgebra.svdHelper(
|
||||
if (n > m) {
|
||||
v = svd1d(a, epsilon)
|
||||
u = matrix.dot(v)
|
||||
norm = DoubleTensorAlgebra { (u dot u).sqrt().value() }
|
||||
norm = DoubleTensorAlgebra { (u dot u).sqrt().valueOrNull()!! }
|
||||
u = u.times(1.0 / norm)
|
||||
} else {
|
||||
u = svd1d(a, epsilon)
|
||||
v = matrix.transpose(0, 1).dot(u)
|
||||
norm = DoubleTensorAlgebra { (v dot v).sqrt().value() }
|
||||
norm = DoubleTensorAlgebra { (v dot v).sqrt().valueOrNull()!! }
|
||||
v = v.times(1.0 / norm)
|
||||
}
|
||||
|
||||
|
@ -46,7 +46,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
|
||||
)
|
||||
)
|
||||
|
||||
assertTrue { abs(m.det().value() - expectedValue) < 1e-5 }
|
||||
assertTrue { abs(m.det().valueOrNull()!! - expectedValue) < 1e-5 }
|
||||
}
|
||||
|
||||
@Test
|
||||
@ -58,7 +58,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
|
||||
)
|
||||
)
|
||||
|
||||
assertTrue { abs(m.det().value() - expectedValue) < 1e-5 }
|
||||
assertTrue { abs(m.det().valueOrNull()!! - expectedValue) < 1e-5 }
|
||||
}
|
||||
|
||||
@Test
|
||||
@ -90,7 +90,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
|
||||
fun testScalarProduct() = DoubleTensorAlgebra {
|
||||
val a = fromArray(intArrayOf(3), doubleArrayOf(1.8, 2.5, 6.8))
|
||||
val b = fromArray(intArrayOf(3), doubleArrayOf(5.5, 2.6, 6.4))
|
||||
assertEquals(a.dot(b).value(), 59.92)
|
||||
assertEquals(a.dot(b).valueOrNull()!!, 59.92)
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -21,7 +21,7 @@ internal class TestDoubleTensor {
|
||||
fun testValue() = DoubleTensorAlgebra {
|
||||
val value = 12.5
|
||||
val tensor = fromArray(intArrayOf(1), doubleArrayOf(value))
|
||||
assertEquals(tensor.value(), value)
|
||||
assertEquals(tensor.valueOrNull()!!, value)
|
||||
}
|
||||
|
||||
@Test
|
||||
|
Loading…
Reference in New Issue
Block a user