Generalized linear interpolation

This commit is contained in:
Alexander Nozik 2020-01-12 20:51:16 +03:00
parent 9d1ba1b78b
commit d56b4148be
4 changed files with 71 additions and 35 deletions

View File

@ -0,0 +1,55 @@
package scientifik.kmath.functions
import scientifik.kmath.operations.Ring
interface Piecewise<T, R> {
fun findPiece(arg: T): R?
}
interface PiecewisePolynomial<T : Any> : Piecewise<T, Polynomial<T>>
/**
* Ordered list of pieces in piecewise function
*/
class OrderedPiecewisePolynomial<T : Comparable<T>>(left: T) : PiecewisePolynomial<T> {
private val delimiters: ArrayList<T> = arrayListOf(left)
private val pieces: ArrayList<Polynomial<T>> = ArrayList()
/**
* Dynamically add a piece to the "right" side (beyond maximum argument value of previous piece)
* @param right new rightmost position. If is less then current rightmost position, a error is thrown.
*/
fun putRight(right: T, piece: Polynomial<T>) {
require(right > delimiters.last()) { "New delimiter should be to the right of old one" }
delimiters.add(right)
pieces.add(piece)
}
fun putLeft(left: T, piece: Polynomial<T>) {
require(left < delimiters.first()) { "New delimiter should be to the left of old one" }
delimiters.add(0, left)
pieces.add(0, piece)
}
override fun findPiece(arg: T): Polynomial<T>? {
if (arg < delimiters.first() || arg >= delimiters.last()) {
return null
} else {
for (index in 1 until delimiters.size) {
if (arg < delimiters[index]) {
return pieces[index - 1]
}
}
error("Piece not found")
}
}
}
/**
* Return a value of polynomial function with given [ring] an given [arg] or null if argument is outside of piecewise definition.
*/
fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.value(ring: C, arg: T): T? =
findPiece(arg)?.value(ring, arg)
fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.asFunction(ring: C): (T) -> T? = { value(ring, it) }

View File

@ -1,9 +1,7 @@
package scientifik.kmath.functions package scientifik.kmath.functions
import scientifik.kmath.operations.RealField
import scientifik.kmath.operations.Ring import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.Space import scientifik.kmath.operations.Space
import kotlin.jvm.JvmName
import kotlin.math.max import kotlin.math.max
import kotlin.math.pow import kotlin.math.pow
@ -20,11 +18,11 @@ fun Polynomial<Double>.value() =
fun <T : Any, C : Ring<T>> Polynomial<T>.value(ring: C, arg: T): T = ring.run { fun <T : Any, C : Ring<T>> Polynomial<T>.value(ring: C, arg: T): T = ring.run {
if( coefficients.isEmpty()) return@run zero if (coefficients.isEmpty()) return@run zero
var res = coefficients.first() var res = coefficients.first()
var powerArg = arg var powerArg = arg
for( index in 1 until coefficients.size){ for (index in 1 until coefficients.size) {
res += coefficients[index]*powerArg res += coefficients[index] * powerArg
//recalculating power on each step to avoid power costs on long polynomials //recalculating power on each step to avoid power costs on long polynomials
powerArg *= arg powerArg *= arg
} }
@ -43,9 +41,6 @@ fun <T : Any, C : Ring<T>> Polynomial<T>.asMathFunction(): MathFunction<T, out C
*/ */
fun <T : Any, C : Ring<T>> Polynomial<T>.asFunction(ring: C): (T) -> T = { value(ring, it) } fun <T : Any, C : Ring<T>> Polynomial<T>.asFunction(ring: C): (T) -> T = { value(ring, it) }
@JvmName("asRealUFunction")
fun Polynomial<Double>.asFunction(): (Double) -> Double = asFunction(RealField)
/** /**
* An algebra for polynomials * An algebra for polynomials
*/ */
@ -74,21 +69,3 @@ class PolynomialSpace<T : Any, C : Ring<T>>(val ring: C) : Space<Polynomial<T>>
fun <T : Any, C : Ring<T>, R> C.polynomial(block: PolynomialSpace<T, C>.() -> R): R { fun <T : Any, C : Ring<T>, R> C.polynomial(block: PolynomialSpace<T, C>.() -> R): R {
return PolynomialSpace(this).run(block) return PolynomialSpace(this).run(block)
} }
class PiecewisePolynomial<T : Comparable<T>> internal constructor(
val lowerBoundary: T,
val pieces: List<Pair<T, Polynomial<T>>>
)
private fun <T : Comparable<T>> PiecewisePolynomial<T>.findPiece(arg: T): Polynomial<T>? {
if (arg < lowerBoundary || arg > pieces.last().first) return null
return pieces.first { arg < it.first }.second
}
/**
* Return a value of polynomial function with given [ring] an given [arg] or null if argument is outside of piecewise definition.
*/
fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.value(ring: C, arg: T): T? =
findPiece(arg)?.value(ring, arg)
fun <T : Comparable<T>, C : Ring<T>> PiecewisePolynomial<T>.asFunction(ring: C): (T) -> T? = { value(ring, it) }

View File

@ -1,5 +1,6 @@
package scientifik.kmath.interpolation package scientifik.kmath.interpolation
import scientifik.kmath.functions.OrderedPiecewisePolynomial
import scientifik.kmath.functions.PiecewisePolynomial import scientifik.kmath.functions.PiecewisePolynomial
import scientifik.kmath.functions.Polynomial import scientifik.kmath.functions.Polynomial
import scientifik.kmath.operations.Field import scientifik.kmath.operations.Field
@ -10,15 +11,18 @@ import scientifik.kmath.operations.Field
class LinearInterpolator<T : Comparable<T>>(override val algebra: Field<T>) : PolynomialInterpolator<T> { class LinearInterpolator<T : Comparable<T>>(override val algebra: Field<T>) : PolynomialInterpolator<T> {
override fun interpolatePolynomials(points: Collection<Pair<T, T>>): PiecewisePolynomial<T> = algebra.run { override fun interpolatePolynomials(points: Collection<Pair<T, T>>): PiecewisePolynomial<T> = algebra.run {
require(points.isNotEmpty()) { "Point array should not be empty" }
//sorting points //sorting points
val sorted = points.sortedBy { it.first } val sorted = points.sortedBy { it.first }
val pairs: List<Pair<T, Polynomial<T>>> = (0 until points.size - 1).map { i -> return@run OrderedPiecewisePolynomial(points.first().first).apply {
val slope = (sorted[i + 1].second - sorted[i].second) / (sorted[i + 1].first - sorted[i].first) for (i in 0 until points.size - 1) {
val const = sorted[i].second - slope * sorted[i].first val slope = (sorted[i + 1].second - sorted[i].second) / (sorted[i + 1].first - sorted[i].first)
sorted[i + 1].first to Polynomial(const, slope) val const = sorted[i].second - slope * sorted[i].first
val polynomial = Polynomial(const, slope)
putRight(sorted[i + 1].first, polynomial)
}
} }
return PiecewisePolynomial(sorted.first().first, pairs)
} }
} }

View File

@ -18,8 +18,8 @@ class LinearInterpolatorTest {
val polynomial = LinearInterpolator(RealField).interpolatePolynomials(data) val polynomial = LinearInterpolator(RealField).interpolatePolynomials(data)
val function = polynomial.asFunction(RealField) val function = polynomial.asFunction(RealField)
// assertEquals(null, function(-1.0)) assertEquals(null, function(-1.0))
// assertEquals(0.5, function(0.5)) assertEquals(0.5, function(0.5))
assertEquals(2.0, function(1.5)) assertEquals(2.0, function(1.5))
assertEquals(3.0, function(2.0)) assertEquals(3.0, function(2.0))
} }