forked from kscience/kmath
Reformat
This commit is contained in:
parent
5ff76209aa
commit
d4226b7e7d
@ -15,8 +15,9 @@ class GaussianSampler private constructor(
|
|||||||
private val standardDeviation: Double,
|
private val standardDeviation: Double,
|
||||||
private val normalized: NormalizedGaussianSampler
|
private val normalized: NormalizedGaussianSampler
|
||||||
) : Sampler<Double> {
|
) : Sampler<Double> {
|
||||||
override fun sample(generator: RandomGenerator): Chain<Double> =
|
override fun sample(generator: RandomGenerator): Chain<Double> = normalized
|
||||||
normalized.sample(generator).map { standardDeviation * it + mean }
|
.sample(generator)
|
||||||
|
.map { standardDeviation * it + mean }
|
||||||
|
|
||||||
override fun toString(): String = "Gaussian deviate [$normalized]"
|
override fun toString(): String = "Gaussian deviate [$normalized]"
|
||||||
|
|
||||||
|
@ -30,10 +30,8 @@ class MarsagliaNormalizedGaussianSampler private constructor(): NormalizedGaussi
|
|||||||
if (r2 < 1 && r2 > 0) {
|
if (r2 < 1 && r2 > 0) {
|
||||||
// Pair (x, y) is within unit circle.
|
// Pair (x, y) is within unit circle.
|
||||||
alpha = sqrt(-2 * ln(r2) / r2)
|
alpha = sqrt(-2 * ln(r2) / r2)
|
||||||
|
|
||||||
// Keep second element of the pair for next invocation.
|
// Keep second element of the pair for next invocation.
|
||||||
nextGaussian = alpha * y
|
nextGaussian = alpha * y
|
||||||
|
|
||||||
// Return the first element of the generated pair.
|
// Return the first element of the generated pair.
|
||||||
break
|
break
|
||||||
}
|
}
|
||||||
@ -46,7 +44,6 @@ class MarsagliaNormalizedGaussianSampler private constructor(): NormalizedGaussi
|
|||||||
// Use the second element of the pair (generated at the
|
// Use the second element of the pair (generated at the
|
||||||
// previous invocation).
|
// previous invocation).
|
||||||
val r = nextGaussian
|
val r = nextGaussian
|
||||||
|
|
||||||
// Both elements of the pair have been used.
|
// Both elements of the pair have been used.
|
||||||
nextGaussian = Double.NaN
|
nextGaussian = Double.NaN
|
||||||
r
|
r
|
||||||
|
@ -73,8 +73,7 @@ class ZigguratNormalizedGaussianSampler private constructor() :
|
|||||||
// Filling the tables.
|
// Filling the tables.
|
||||||
var d = R
|
var d = R
|
||||||
var t = d
|
var t = d
|
||||||
var fd =
|
var fd = gauss(d)
|
||||||
gauss(d)
|
|
||||||
val q = V / fd
|
val q = V / fd
|
||||||
K[0] = (d / q * MAX).toLong()
|
K[0] = (d / q * MAX).toLong()
|
||||||
K[1] = 0
|
K[1] = 0
|
||||||
@ -85,10 +84,7 @@ class ZigguratNormalizedGaussianSampler private constructor() :
|
|||||||
|
|
||||||
(LAST - 1 downTo 1).forEach { i ->
|
(LAST - 1 downTo 1).forEach { i ->
|
||||||
d = sqrt(-2 * ln(V / d + fd))
|
d = sqrt(-2 * ln(V / d + fd))
|
||||||
fd =
|
fd = gauss(d)
|
||||||
gauss(
|
|
||||||
d
|
|
||||||
)
|
|
||||||
K[i + 1] = (d / t * MAX).toLong()
|
K[i + 1] = (d / t * MAX).toLong()
|
||||||
t = d
|
t = d
|
||||||
F[i] = fd
|
F[i] = fd
|
||||||
|
Loading…
Reference in New Issue
Block a user