This commit is contained in:
Igor Dunaev 2024-05-04 21:55:37 +03:00
parent 2a2c5e8765
commit d2c8423b6f

View File

@ -9,8 +9,7 @@ import space.kscience.kmath.interpolation.SplineInterpolator
import space.kscience.kmath.interpolation.interpolate import space.kscience.kmath.interpolation.interpolate
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.asBuffer import space.kscience.kmath.structures.last
import kotlin.math.sign
/** /**
* Empirical mode decomposition of a signal represented as a [Series]. * Empirical mode decomposition of a signal represented as a [Series].
@ -45,35 +44,36 @@ public class EmpiricalModeDecomposition<A: Field<Double>, BA, L: Number> (
*/ */
private fun findMean(signal: Series<Double>): Series<Double>? = (seriesAlgebra) { private fun findMean(signal: Series<Double>): Series<Double>? = (seriesAlgebra) {
val interpolator = SplineInterpolator(elementAlgebra) val interpolator = SplineInterpolator(elementAlgebra)
fun generateEnvelope(extrema: List<Int>, paddedExtremeValues: Array<Double>): Series<Double> { val makeBuffer = elementAlgebra.bufferFactory
fun generateEnvelope(extrema: List<Int>, paddedExtremeValues: Buffer<Double>): Series<Double> {
val envelopeFunction = interpolator.interpolate( val envelopeFunction = interpolator.interpolate(
Buffer(extrema.size) { signal.labels[extrema[it]] as Double }, Buffer(extrema.size) { signal.labels[extrema[it]].toDouble() },
paddedExtremeValues.asBuffer() paddedExtremeValues
) )
return signal.mapWithLabel { _, label -> return signal.mapWithLabel { _, label ->
// For some reason PolynomialInterpolator is exclusive and the right boundary // For some reason PolynomialInterpolator is exclusive and the right boundary
// TODO Notify interpolator authors // TODO Notify interpolator authors
envelopeFunction(label as Double) ?: paddedExtremeValues.last() envelopeFunction(label.toDouble()) ?: paddedExtremeValues.last()
// need to make the interpolator yield values outside boundaries? // need to make the interpolator yield values outside boundaries?
} }
} }
// Extrema padding (experimental) TODO padding needs a dedicated function // Extrema padding (experimental) TODO padding needs a dedicated function
val maxima = listOf(0) + signal.peaks() + (signal.size - 1) val maxima = listOf(0) + signal.peaks() + (signal.size - 1)
val maxValues = Array(maxima.size) { signal[maxima[it]] } val maxValues = makeBuffer(maxima.size) { signal[maxima[it]] }
if (maxValues[0] < maxValues[1]) { if (maxValues[0] < maxValues[1]) {
maxValues[0] = maxValues[1] maxValues[0] = maxValues[1]
} }
if (maxValues.last() < maxValues[maxValues.lastIndex - 1]) { if (maxValues.last() < maxValues[maxValues.size - 2]) {
maxValues[maxValues.lastIndex] = maxValues[maxValues.lastIndex - 1] maxValues[maxValues.size - 1] = maxValues[maxValues.size - 2]
} }
val minima = listOf(0) + signal.troughs() + (signal.size - 1) val minima = listOf(0) + signal.troughs() + (signal.size - 1)
val minValues = Array(minima.size) { signal[minima[it]] } val minValues = makeBuffer(minima.size) { signal[minima[it]] }
if (minValues[0] > minValues[1]) { if (minValues[0] > minValues[1]) {
minValues[0] = minValues[1] minValues[0] = minValues[1]
} }
if (minValues.last() > minValues[minValues.lastIndex - 1]) { if (minValues.last() > minValues[minValues.size - 2]) {
minValues[minValues.lastIndex] = minValues[minValues.lastIndex - 1] minValues[minValues.size - 1] = minValues[minValues.size - 2]
} }
return if (maxima.size < 3 || minima.size < 3) null else { // maybe make an early return? return if (maxima.size < 3 || minima.size < 3) null else { // maybe make an early return?
val upperEnvelope = generateEnvelope(maxima, maxValues) val upperEnvelope = generateEnvelope(maxima, maxValues)
@ -104,7 +104,7 @@ public class EmpiricalModeDecomposition<A: Field<Double>, BA, L: Number> (
return if (iterationNumber == 1) SiftingResult.NotEnoughExtrema return if (iterationNumber == 1) SiftingResult.NotEnoughExtrema
else SiftingResult.SignalFlattened(prevMode) else SiftingResult.SignalFlattened(prevMode)
val mode = prevMode.zip(mean) { p, m -> p - m } val mode = prevMode.zip(mean) { p, m -> p - m }
val newSNumber = if (mode.sCondition()) sNumber + 1 else sNumber val newSNumber = if (sCondition(mode)) sNumber + 1 else sNumber
return when { return when {
iterationNumber >= maxSiftIterations -> SiftingResult.MaxIterationsReached(mode) iterationNumber >= maxSiftIterations -> SiftingResult.MaxIterationsReached(mode)
sNumber >= sConditionThreshold -> SiftingResult.SNumberReached(mode) sNumber >= sConditionThreshold -> SiftingResult.SNumberReached(mode)
@ -121,7 +121,7 @@ public class EmpiricalModeDecomposition<A: Field<Double>, BA, L: Number> (
* Modes returned in a list which contains as many modes as it was possible * Modes returned in a list which contains as many modes as it was possible
* to extract before triggering one of the termination conditions. * to extract before triggering one of the termination conditions.
*/ */
public fun decompose(signal: Series<Double>): EMDecompositionResult = (seriesAlgebra) { public fun decompose(signal: Series<Double>): EMDecompositionResult<Double> = (seriesAlgebra) {
val modes = mutableListOf<Series<Double>>() val modes = mutableListOf<Series<Double>>()
var residual = signal var residual = signal
repeat(nModes) { repeat(nModes) {
@ -132,9 +132,9 @@ public class EmpiricalModeDecomposition<A: Field<Double>, BA, L: Number> (
else EMDTerminationReason.ALL_POSSIBLE_MODES_EXTRACTED, else EMDTerminationReason.ALL_POSSIBLE_MODES_EXTRACTED,
modes modes
) )
is SiftingResult.Success -> r.result is SiftingResult.Success<*> -> r.result
} }
modes.add(nextMode) modes.add(nextMode as Series<Double>) // TODO remove unchecked cast
residual = residual.zip(nextMode) { l, r -> l - r } residual = residual.zip(nextMode) { l, r -> l - r }
} }
return EMDecompositionResult(EMDTerminationReason.MAX_MODES_REACHED, modes) return EMDecompositionResult(EMDTerminationReason.MAX_MODES_REACHED, modes)
@ -172,12 +172,15 @@ where BA: BufferAlgebra<Double, A>, BA: FieldOps<Buffer<Double>> = EmpiricalMode
/** /**
* Brute force count all zeros in the series. * Brute force count all zeros in the series.
*/ */
private fun Series<Double>.countZeros(): Int { private fun <T: Comparable<T>, A: Ring<T>, BA> SeriesAlgebra<T, A, BA, *>.countZeros(
require(size >= 2) { "Expected series with at least 2 elements, but got $size elements" } signal: Series<T>
data class SignCounter(val prevSign: Double, val zeroCount: Int) ): Int where BA: BufferAlgebra<T, A>, BA: FieldOps<Buffer<T>> {
require(signal.size >= 2) { "Expected series with at least 2 elements, but got ${signal.size} elements" }
data class SignCounter(val prevSign: Int, val zeroCount: Int)
fun strictSign(arg: T): Int = if (arg > elementAlgebra.zero) 1 else -1
return fold(SignCounter(sign(get(0)), 0)) { acc: SignCounter, it: Double -> return signal.fold(SignCounter(strictSign(signal[0]), 0)) { acc, it ->
val currentSign = sign(it) val currentSign = strictSign(it)
if (acc.prevSign != currentSign) SignCounter(currentSign, acc.zeroCount + 1) if (acc.prevSign != currentSign) SignCounter(currentSign, acc.zeroCount + 1)
else SignCounter(currentSign, acc.zeroCount) else SignCounter(currentSign, acc.zeroCount)
}.zeroCount }.zeroCount
@ -198,7 +201,7 @@ private fun <T, A: Ring<T>, BA> SeriesAlgebra<T, A, BA, *>.relativeDifference(
/** /**
* Brute force count all extrema of a series. * Brute force count all extrema of a series.
*/ */
private fun Series<Double>.countExtrema(): Int { private fun <T: Comparable<T>> Series<T>.countExtrema(): Int {
require(size >= 3) { "Expected series with at least 3 elements, but got $size elements" } require(size >= 3) { "Expected series with at least 3 elements, but got $size elements" }
return peaks().size + troughs().size return peaks().size + troughs().size
} }
@ -207,7 +210,10 @@ private fun Series<Double>.countExtrema(): Int {
* Check whether the numbers of zeroes and extrema of a series differ by no more than 1. * Check whether the numbers of zeroes and extrema of a series differ by no more than 1.
* This is a necessary condition of an empirical mode. * This is a necessary condition of an empirical mode.
*/ */
private fun Series<Double>.sCondition(): Boolean = (countExtrema() - countZeros()) in -1..1 private fun <T: Comparable<T>, A: Ring<T>, BA> SeriesAlgebra<T, A, BA, *>.sCondition(
signal: Series<T>
): Boolean where BA: BufferAlgebra<T, A>, BA: FieldOps<Buffer<T>> =
(signal.countExtrema() - countZeros(signal)) in -1..1
internal sealed interface SiftingResult { internal sealed interface SiftingResult {
@ -215,33 +221,33 @@ internal sealed interface SiftingResult {
* Represents a condition when a mode has been successfully * Represents a condition when a mode has been successfully
* extracted in a sifting process. * extracted in a sifting process.
*/ */
open class Success(val result: Series<Double>): SiftingResult open class Success<T>(val result: Series<T>): SiftingResult
/** /**
* Returned when no termination condition was reached and the proto-mode * Returned when no termination condition was reached and the proto-mode
* has become too flat (with not enough extrema to build envelopes) * has become too flat (with not enough extrema to build envelopes)
* after several sifting iterations. * after several sifting iterations.
*/ */
class SignalFlattened(result: Series<Double>) : Success(result) class SignalFlattened<T>(result: Series<T>) : Success<T>(result)
/** /**
* Returned when sifting process has been terminated due to the * Returned when sifting process has been terminated due to the
* S-number condition being reached. * S-number condition being reached.
*/ */
class SNumberReached(result: Series<Double>) : Success(result) class SNumberReached<T>(result: Series<T>) : Success<T>(result)
/** /**
* Returned when sifting process has been terminated due to the * Returned when sifting process has been terminated due to the
* delta condition (Cauchy criterion) being reached. * delta condition (Cauchy criterion) being reached.
*/ */
class DeltaReached(result: Series<Double>) : Success(result) class DeltaReached<T>(result: Series<T>) : Success<T>(result)
/** /**
* Returned when sifting process has been terminated after * Returned when sifting process has been terminated after
* executing the maximum number of iterations (specified when creating an instance * executing the maximum number of iterations (specified when creating an instance
* of [EmpiricalModeDecomposition]). * of [EmpiricalModeDecomposition]).
*/ */
class MaxIterationsReached(result: Series<Double>): Success(result) class MaxIterationsReached<T>(result: Series<T>): Success<T>(result)
/** /**
* Returned when the submitted signal has not enough extrema to build envelopes, * Returned when the submitted signal has not enough extrema to build envelopes,
@ -273,7 +279,7 @@ public enum class EMDTerminationReason {
ALL_POSSIBLE_MODES_EXTRACTED ALL_POSSIBLE_MODES_EXTRACTED
} }
public data class EMDecompositionResult( public data class EMDecompositionResult<T>(
val terminatedBecause: EMDTerminationReason, val terminatedBecause: EMDTerminationReason,
val modes: List<Series<Double>> val modes: List<Series<T>>
) )