forked from kscience/kmath
Merge pull request #461 from ivandev0/kylchik/jacobi
Jacobi eigenvalue algorithm
This commit is contained in:
commit
c80f70fe0f
@ -124,6 +124,11 @@ benchmark {
|
|||||||
include("JafamaBenchmark")
|
include("JafamaBenchmark")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
configurations.register("tensorAlgebra") {
|
||||||
|
commonConfiguration()
|
||||||
|
include("TensorAlgebraBenchmark")
|
||||||
|
}
|
||||||
|
|
||||||
configurations.register("viktor") {
|
configurations.register("viktor") {
|
||||||
commonConfiguration()
|
commonConfiguration()
|
||||||
include("ViktorBenchmark")
|
include("ViktorBenchmark")
|
||||||
|
@ -15,10 +15,8 @@ import space.kscience.kmath.linear.invoke
|
|||||||
import space.kscience.kmath.linear.linearSpace
|
import space.kscience.kmath.linear.linearSpace
|
||||||
import space.kscience.kmath.multik.multikAlgebra
|
import space.kscience.kmath.multik.multikAlgebra
|
||||||
import space.kscience.kmath.operations.DoubleField
|
import space.kscience.kmath.operations.DoubleField
|
||||||
import space.kscience.kmath.operations.invoke
|
|
||||||
import space.kscience.kmath.structures.Buffer
|
import space.kscience.kmath.structures.Buffer
|
||||||
import space.kscience.kmath.tensorflow.produceWithTF
|
import space.kscience.kmath.tensorflow.produceWithTF
|
||||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
|
||||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
import space.kscience.kmath.tensors.core.tensorAlgebra
|
||||||
import kotlin.random.Random
|
import kotlin.random.Random
|
||||||
|
|
||||||
@ -36,9 +34,6 @@ internal class DotBenchmark {
|
|||||||
random.nextDouble()
|
random.nextDouble()
|
||||||
}
|
}
|
||||||
|
|
||||||
val tensor1 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12224)
|
|
||||||
val tensor2 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12225)
|
|
||||||
|
|
||||||
val cmMatrix1 = CMLinearSpace { matrix1.toCM() }
|
val cmMatrix1 = CMLinearSpace { matrix1.toCM() }
|
||||||
val cmMatrix2 = CMLinearSpace { matrix2.toCM() }
|
val cmMatrix2 = CMLinearSpace { matrix2.toCM() }
|
||||||
|
|
||||||
@ -51,7 +46,7 @@ internal class DotBenchmark {
|
|||||||
fun tfDot(blackhole: Blackhole) {
|
fun tfDot(blackhole: Blackhole) {
|
||||||
blackhole.consume(
|
blackhole.consume(
|
||||||
DoubleField.produceWithTF {
|
DoubleField.produceWithTF {
|
||||||
tensor1 dot tensor2
|
matrix1 dot matrix1
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
@ -95,9 +90,4 @@ internal class DotBenchmark {
|
|||||||
fun doubleDot(blackhole: Blackhole) = with(DoubleField.linearSpace) {
|
fun doubleDot(blackhole: Blackhole) = with(DoubleField.linearSpace) {
|
||||||
blackhole.consume(matrix1 dot matrix2)
|
blackhole.consume(matrix1 dot matrix2)
|
||||||
}
|
}
|
||||||
|
|
||||||
@Benchmark
|
|
||||||
fun doubleTensorDot(blackhole: Blackhole) = DoubleTensorAlgebra.invoke {
|
|
||||||
blackhole.consume(tensor1 dot tensor2)
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -0,0 +1,37 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2018-2021 KMath contributors.
|
||||||
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package space.kscience.kmath.benchmarks
|
||||||
|
|
||||||
|
import kotlinx.benchmark.Benchmark
|
||||||
|
import kotlinx.benchmark.Blackhole
|
||||||
|
import kotlinx.benchmark.Scope
|
||||||
|
import kotlinx.benchmark.State
|
||||||
|
import space.kscience.kmath.linear.linearSpace
|
||||||
|
import space.kscience.kmath.linear.matrix
|
||||||
|
import space.kscience.kmath.linear.symmetric
|
||||||
|
import space.kscience.kmath.operations.DoubleField
|
||||||
|
import space.kscience.kmath.tensors.core.tensorAlgebra
|
||||||
|
import kotlin.random.Random
|
||||||
|
|
||||||
|
@State(Scope.Benchmark)
|
||||||
|
internal class TensorAlgebraBenchmark {
|
||||||
|
companion object {
|
||||||
|
private val random = Random(12224)
|
||||||
|
private const val dim = 30
|
||||||
|
|
||||||
|
private val matrix = DoubleField.linearSpace.matrix(dim, dim).symmetric { _, _ -> random.nextDouble() }
|
||||||
|
}
|
||||||
|
|
||||||
|
@Benchmark
|
||||||
|
fun tensorSymEigSvd(blackhole: Blackhole) = with(Double.tensorAlgebra) {
|
||||||
|
blackhole.consume(matrix.symEigSvd(1e-10))
|
||||||
|
}
|
||||||
|
|
||||||
|
@Benchmark
|
||||||
|
fun tensorSymEigJacobi(blackhole: Blackhole) = with(Double.tensorAlgebra) {
|
||||||
|
blackhole.consume(matrix.symEigJacobi(50, 1e-10))
|
||||||
|
}
|
||||||
|
}
|
@ -9,10 +9,7 @@
|
|||||||
package space.kscience.kmath.tensors.core
|
package space.kscience.kmath.tensors.core
|
||||||
|
|
||||||
import space.kscience.kmath.misc.PerformancePitfall
|
import space.kscience.kmath.misc.PerformancePitfall
|
||||||
import space.kscience.kmath.nd.MutableStructure2D
|
import space.kscience.kmath.nd.*
|
||||||
import space.kscience.kmath.nd.StructureND
|
|
||||||
import space.kscience.kmath.nd.as1D
|
|
||||||
import space.kscience.kmath.nd.as2D
|
|
||||||
import space.kscience.kmath.operations.DoubleField
|
import space.kscience.kmath.operations.DoubleField
|
||||||
import space.kscience.kmath.structures.MutableBuffer
|
import space.kscience.kmath.structures.MutableBuffer
|
||||||
import space.kscience.kmath.structures.indices
|
import space.kscience.kmath.structures.indices
|
||||||
@ -885,7 +882,7 @@ public open class DoubleTensorAlgebra :
|
|||||||
return Triple(uTensor.transpose(), sTensor, vTensor.transpose())
|
return Triple(uTensor.transpose(), sTensor, vTensor.transpose())
|
||||||
}
|
}
|
||||||
|
|
||||||
override fun StructureND<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> = symEig(epsilon = 1e-15)
|
override fun StructureND<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> = symEigJacobi(maxIteration = 50, epsilon = 1e-15)
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
|
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
|
||||||
@ -895,7 +892,7 @@ public open class DoubleTensorAlgebra :
|
|||||||
* and when the cosine approaches 1 in the SVD algorithm.
|
* and when the cosine approaches 1 in the SVD algorithm.
|
||||||
* @return a pair `eigenvalues to eigenvectors`.
|
* @return a pair `eigenvalues to eigenvectors`.
|
||||||
*/
|
*/
|
||||||
public fun StructureND<Double>.symEig(epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
|
public fun StructureND<Double>.symEigSvd(epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
|
||||||
checkSymmetric(tensor, epsilon)
|
checkSymmetric(tensor, epsilon)
|
||||||
|
|
||||||
fun MutableStructure2D<Double>.cleanSym(n: Int) {
|
fun MutableStructure2D<Double>.cleanSym(n: Int) {
|
||||||
@ -922,6 +919,151 @@ public open class DoubleTensorAlgebra :
|
|||||||
return eig to v
|
return eig to v
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public fun StructureND<Double>.symEigJacobi(maxIteration: Int, epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
|
||||||
|
checkSymmetric(tensor, epsilon)
|
||||||
|
|
||||||
|
val size = this.dimension
|
||||||
|
val eigenvectors = zeros(this.shape)
|
||||||
|
val eigenvalues = zeros(this.shape.sliceArray(0 until size - 1))
|
||||||
|
|
||||||
|
var eigenvalueStart = 0
|
||||||
|
var eigenvectorStart = 0
|
||||||
|
for (matrix in tensor.matrixSequence()) {
|
||||||
|
val matrix2D = matrix.as2D()
|
||||||
|
val (d, v) = matrix2D.jacobiHelper(maxIteration, epsilon)
|
||||||
|
|
||||||
|
for (i in 0 until matrix2D.rowNum) {
|
||||||
|
for (j in 0 until matrix2D.colNum) {
|
||||||
|
eigenvectors.mutableBuffer.array()[eigenvectorStart + i * matrix2D.rowNum + j] = v[i, j]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i in 0 until matrix2D.rowNum) {
|
||||||
|
eigenvalues.mutableBuffer.array()[eigenvalueStart + i] = d[i]
|
||||||
|
}
|
||||||
|
|
||||||
|
eigenvalueStart += this.shape.last()
|
||||||
|
eigenvectorStart += this.shape.last() * this.shape.last()
|
||||||
|
}
|
||||||
|
|
||||||
|
return eigenvalues to eigenvectors
|
||||||
|
}
|
||||||
|
|
||||||
|
private fun MutableStructure2D<Double>.jacobiHelper(
|
||||||
|
maxIteration: Int,
|
||||||
|
epsilon: Double
|
||||||
|
): Pair<Structure1D<Double>, Structure2D<Double>> {
|
||||||
|
val n = this.shape[0]
|
||||||
|
val A_ = this.copy()
|
||||||
|
val V = eye(n)
|
||||||
|
val D = DoubleTensor(intArrayOf(n), (0 until this.rowNum).map { this[it, it] }.toDoubleArray()).as1D()
|
||||||
|
val B = DoubleTensor(intArrayOf(n), (0 until this.rowNum).map { this[it, it] }.toDoubleArray()).as1D()
|
||||||
|
val Z = zeros(intArrayOf(n)).as1D()
|
||||||
|
|
||||||
|
// assume that buffered tensor is square matrix
|
||||||
|
operator fun BufferedTensor<Double>.get(i: Int, j: Int): Double {
|
||||||
|
return this.mutableBuffer.array()[bufferStart + i * this.shape[0] + j]
|
||||||
|
}
|
||||||
|
|
||||||
|
operator fun BufferedTensor<Double>.set(i: Int, j: Int, value: Double) {
|
||||||
|
this.mutableBuffer.array()[bufferStart + i * this.shape[0] + j] = value
|
||||||
|
}
|
||||||
|
|
||||||
|
fun maxOffDiagonal(matrix: BufferedTensor<Double>): Double {
|
||||||
|
var maxOffDiagonalElement = 0.0
|
||||||
|
for (i in 0 until n - 1) {
|
||||||
|
for (j in i + 1 until n) {
|
||||||
|
maxOffDiagonalElement = max(maxOffDiagonalElement, abs(matrix[i, j]))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return maxOffDiagonalElement
|
||||||
|
}
|
||||||
|
|
||||||
|
fun rotate(a: BufferedTensor<Double>, s: Double, tau: Double, i: Int, j: Int, k: Int, l: Int) {
|
||||||
|
val g = a[i, j]
|
||||||
|
val h = a[k, l]
|
||||||
|
a[i, j] = g - s * (h + g * tau)
|
||||||
|
a[k, l] = h + s * (g - h * tau)
|
||||||
|
}
|
||||||
|
|
||||||
|
fun jacobiIteration(
|
||||||
|
a: BufferedTensor<Double>,
|
||||||
|
v: BufferedTensor<Double>,
|
||||||
|
d: MutableStructure1D<Double>,
|
||||||
|
z: MutableStructure1D<Double>,
|
||||||
|
) {
|
||||||
|
for (ip in 0 until n - 1) {
|
||||||
|
for (iq in ip + 1 until n) {
|
||||||
|
val g = 100.0 * abs(a[ip, iq])
|
||||||
|
|
||||||
|
if (g <= epsilon * abs(d[ip]) && g <= epsilon * abs(d[iq])) {
|
||||||
|
a[ip, iq] = 0.0
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
var h = d[iq] - d[ip]
|
||||||
|
val t = when {
|
||||||
|
g <= epsilon * abs(h) -> (a[ip, iq]) / h
|
||||||
|
else -> {
|
||||||
|
val theta = 0.5 * h / (a[ip, iq])
|
||||||
|
val denominator = abs(theta) + sqrt(1.0 + theta * theta)
|
||||||
|
if (theta < 0.0) -1.0 / denominator else 1.0 / denominator
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
val c = 1.0 / sqrt(1 + t * t)
|
||||||
|
val s = t * c
|
||||||
|
val tau = s / (1.0 + c)
|
||||||
|
h = t * a[ip, iq]
|
||||||
|
z[ip] -= h
|
||||||
|
z[iq] += h
|
||||||
|
d[ip] -= h
|
||||||
|
d[iq] += h
|
||||||
|
a[ip, iq] = 0.0
|
||||||
|
|
||||||
|
for (j in 0 until ip) {
|
||||||
|
rotate(a, s, tau, j, ip, j, iq)
|
||||||
|
}
|
||||||
|
for (j in (ip + 1) until iq) {
|
||||||
|
rotate(a, s, tau, ip, j, j, iq)
|
||||||
|
}
|
||||||
|
for (j in (iq + 1) until n) {
|
||||||
|
rotate(a, s, tau, ip, j, iq, j)
|
||||||
|
}
|
||||||
|
for (j in 0 until n) {
|
||||||
|
rotate(v, s, tau, j, ip, j, iq)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fun updateDiagonal(
|
||||||
|
d: MutableStructure1D<Double>,
|
||||||
|
z: MutableStructure1D<Double>,
|
||||||
|
b: MutableStructure1D<Double>,
|
||||||
|
) {
|
||||||
|
for (ip in 0 until d.size) {
|
||||||
|
b[ip] += z[ip]
|
||||||
|
d[ip] = b[ip]
|
||||||
|
z[ip] = 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
var sm = maxOffDiagonal(A_)
|
||||||
|
for (iteration in 0 until maxIteration) {
|
||||||
|
if (sm < epsilon) {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
jacobiIteration(A_, V, D, Z)
|
||||||
|
updateDiagonal(D, Z, B)
|
||||||
|
sm = maxOffDiagonal(A_)
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO sort eigenvalues
|
||||||
|
return D to V.as2D()
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Computes the determinant of a square matrix input, or of each square matrix in a batched input
|
* Computes the determinant of a square matrix input, or of each square matrix in a batched input
|
||||||
* using LU factorization algorithm.
|
* using LU factorization algorithm.
|
||||||
|
Loading…
Reference in New Issue
Block a user