forked from kscience/kmath
Final fixes for FastHistogram and NDStructure performance
This commit is contained in:
parent
d799668083
commit
bdd9dccd4f
@ -8,23 +8,6 @@ private operator fun RealPoint.minus(other: RealPoint) = ListBuffer((0 until siz
|
|||||||
|
|
||||||
private inline fun <T> Buffer<out Double>.mapIndexed(crossinline mapper: (Int, Double) -> T): Sequence<T> = (0 until size).asSequence().map { mapper(it, get(it)) }
|
private inline fun <T> Buffer<out Double>.mapIndexed(crossinline mapper: (Int, Double) -> T): Sequence<T> = (0 until size).asSequence().map { mapper(it, get(it)) }
|
||||||
|
|
||||||
|
|
||||||
//class MultivariateBin(override val center: RealPoint, val sizes: RealPoint, var counter: Long = 0) : Bin<Double> {
|
|
||||||
// init {
|
|
||||||
// if (center.size != sizes.size) error("Dimension mismatch in bin creation. Expected ${center.size}, but found ${sizes.size}")
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// override fun contains(vector: Buffer<out Double>): Boolean {
|
|
||||||
// if (vector.size != center.size) error("Dimension mismatch for input vector. Expected ${center.size}, but found ${vector.size}")
|
|
||||||
// return vector.mapIndexed { i, value -> value in (center[i] - sizes[i] / 2)..(center[i] + sizes[i] / 2) }.all { it }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// override val value get() = counter
|
|
||||||
// internal operator fun inc() = this.also { counter++ }
|
|
||||||
//
|
|
||||||
// override val dimension: Int get() = center.size
|
|
||||||
//}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Uniform multivariate histogram with fixed borders. Based on NDStructure implementation with complexity of m for bin search, where m is the number of dimensions.
|
* Uniform multivariate histogram with fixed borders. Based on NDStructure implementation with complexity of m for bin search, where m is the number of dimensions.
|
||||||
*/
|
*/
|
||||||
@ -109,18 +92,17 @@ class FastHistogram(
|
|||||||
/**
|
/**
|
||||||
* Convert this histogram into NDStructure containing bin values but not bin descriptions
|
* Convert this histogram into NDStructure containing bin values but not bin descriptions
|
||||||
*/
|
*/
|
||||||
fun asND(): NDStructure<Number> {
|
fun asNDStructure(): NDStructure<Number> {
|
||||||
return ndStructure(this.values.shape) { values[it].sum() }
|
return ndStructure(this.values.shape) { values[it].sum() }
|
||||||
}
|
}
|
||||||
|
|
||||||
// /**
|
/**
|
||||||
// * Create a phantom lightweight immutable copy of this histogram
|
* Create a phantom lightweight immutable copy of this histogram
|
||||||
// */
|
*/
|
||||||
// fun asPhantom(): PhantomHistogram<Double> {
|
fun asPhantomHistogram(): PhantomHistogram<Double> {
|
||||||
// val center =
|
val binTemplates = values.associate { (index, _) -> getTemplate(index) to index }
|
||||||
// val binTemplates = bins.associate { (index, bin) -> BinTemplate<Double>(bin.center, bin.sizes) to index }
|
return PhantomHistogram(binTemplates, asNDStructure())
|
||||||
// return PhantomHistogram(binTemplates, asND())
|
}
|
||||||
// }
|
|
||||||
|
|
||||||
companion object {
|
companion object {
|
||||||
|
|
||||||
@ -148,8 +130,8 @@ class FastHistogram(
|
|||||||
*/
|
*/
|
||||||
fun fromRanges(vararg ranges: Pair<ClosedFloatingPointRange<Double>, Int>): FastHistogram {
|
fun fromRanges(vararg ranges: Pair<ClosedFloatingPointRange<Double>, Int>): FastHistogram {
|
||||||
return FastHistogram(
|
return FastHistogram(
|
||||||
ranges.map { it.first.start }.toVector(),
|
ListBuffer(ranges.map { it.first.start }),
|
||||||
ranges.map { it.first.endInclusive }.toVector(),
|
ListBuffer(ranges.map { it.first.endInclusive }),
|
||||||
ranges.map { it.second }.toIntArray()
|
ranges.map { it.second }.toIntArray()
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
@ -53,6 +53,7 @@ interface MutableHistogram<T: Any, out B : Bin<T>>: Histogram<T,B>{
|
|||||||
fun <T: Any> MutableHistogram<T,*>.put(vararg point: T) = put(ArrayBuffer(point))
|
fun <T: Any> MutableHistogram<T,*>.put(vararg point: T) = put(ArrayBuffer(point))
|
||||||
|
|
||||||
fun MutableHistogram<Double,*>.put(vararg point: Number) = put(DoubleBuffer(point.map { it.toDouble() }.toDoubleArray()))
|
fun MutableHistogram<Double,*>.put(vararg point: Number) = put(DoubleBuffer(point.map { it.toDouble() }.toDoubleArray()))
|
||||||
|
fun MutableHistogram<Double,*>.put(vararg point: Double) = put(DoubleBuffer(point))
|
||||||
|
|
||||||
fun <T: Any> MutableHistogram<T,*>.fill(sequence: Iterable<Point<T>>) = sequence.forEach { put(it) }
|
fun <T: Any> MutableHistogram<T,*>.fill(sequence: Iterable<Point<T>>) = sequence.forEach { put(it) }
|
||||||
|
|
||||||
|
@ -83,15 +83,15 @@ class DefaultStrides(override val shape: IntArray) : Strides {
|
|||||||
}
|
}
|
||||||
|
|
||||||
override fun index(offset: Int): IntArray {
|
override fun index(offset: Int): IntArray {
|
||||||
return sequence {
|
val res = IntArray(shape.size)
|
||||||
var current = offset
|
var current = offset
|
||||||
var strideIndex = strides.size - 2
|
var strideIndex = strides.size - 2
|
||||||
while (strideIndex >= 0) {
|
while (strideIndex >= 0) {
|
||||||
yield(current / strides[strideIndex])
|
res[ strideIndex] = (current / strides[strideIndex])
|
||||||
current %= strides[strideIndex]
|
current %= strides[strideIndex]
|
||||||
strideIndex--
|
strideIndex--
|
||||||
}
|
}
|
||||||
}.toList().reversed().toIntArray()
|
return res
|
||||||
}
|
}
|
||||||
|
|
||||||
override val linearSize: Int
|
override val linearSize: Int
|
||||||
|
Loading…
Reference in New Issue
Block a user