forked from kscience/kmath
Update implementation of Complex Division and Exponentiation
This commit is contained in:
parent
73005f715a
commit
badb7b1365
@ -41,8 +41,8 @@ private val PI_DIV_2 = Complex(PI / 2, 0)
|
||||
* A field for complex numbers.
|
||||
*/
|
||||
object ComplexField : ExtendedField<Complex> {
|
||||
override val zero: Complex = Complex(0, 0)
|
||||
override val one: Complex = Complex(1, 0)
|
||||
override val zero: Complex = 0.0.toComplex()
|
||||
override val one: Complex = 1.0.toComplex()
|
||||
|
||||
/**
|
||||
* The imaginary unit constant.
|
||||
@ -90,24 +90,21 @@ object ComplexField : ExtendedField<Complex> {
|
||||
return i * (e1 - e2) / (e1 + e2)
|
||||
}
|
||||
|
||||
override fun asin(arg: Complex): Complex = -i * ln(sqrt(one - arg pow 2) + i * arg)
|
||||
override fun acos(arg: Complex): Complex = PI_DIV_2 + i * ln(sqrt(one - arg pow 2) + i * arg)
|
||||
override fun asin(arg: Complex): Complex = -i * ln(sqrt(1 - (arg pow 2)) + i * arg)
|
||||
override fun acos(arg: Complex): Complex = PI_DIV_2 + i * ln(sqrt(1 - (arg pow 2)) + i * arg)
|
||||
|
||||
override fun atan(arg: Complex): Complex {
|
||||
val iArg = i * arg
|
||||
return i * (ln(one - iArg) - ln(one + iArg)) / 2
|
||||
return i * (ln(1 - iArg) - ln(1 + iArg)) / 2
|
||||
}
|
||||
|
||||
override fun sinh(arg: Complex): Complex = (exp(arg) - exp(-arg)) / 2
|
||||
override fun cosh(arg: Complex): Complex = (exp(arg) + exp(-arg)) / 2
|
||||
override fun tanh(arg: Complex): Complex = (exp(arg) - exp(-arg)) / (exp(-arg) + exp(arg))
|
||||
override fun asinh(arg: Complex): Complex = ln(sqrt(arg pow 2) + arg)
|
||||
override fun asinh(arg: Complex): Complex = ln(sqrt((arg pow 2) + 1) + arg)
|
||||
override fun acosh(arg: Complex): Complex = ln(arg + sqrt((arg - 1) * (arg + 1)))
|
||||
override fun atanh(arg: Complex): Complex = (ln(arg + 1) - ln(1 - arg)) / 2
|
||||
|
||||
override fun power(arg: Complex, pow: Number): Complex =
|
||||
arg.r.pow(pow.toDouble()) * (cos(pow.toDouble() * arg.theta) + i * sin(pow.toDouble() * arg.theta))
|
||||
|
||||
override fun power(arg: Complex, pow: Number): Complex = exp(ln(arg) * pow)
|
||||
override fun exp(arg: Complex): Complex = exp(arg.re) * (cos(arg.im) + i * sin(arg.im))
|
||||
override fun ln(arg: Complex): Complex = ln(arg.r) + i * atan2(arg.im, arg.re)
|
||||
|
||||
|
@ -37,13 +37,32 @@ internal class ComplexFieldTest {
|
||||
|
||||
@Test
|
||||
fun testSine() {
|
||||
assertEquals(Complex(1.2246467991473532E-16, 0), ComplexField { sin(PI.toComplex()) })
|
||||
assertEquals(Complex(0, 11.548739357257748), ComplexField { sin(i * PI.toComplex()) })
|
||||
assertEquals(Complex(0, 1.1752011936438014), ComplexField { sin(i) })
|
||||
assertEquals(ComplexField { i * sinh(one) }, ComplexField { sin(i) })
|
||||
assertEquals(ComplexField { i * sinh(PI.toComplex()) }, ComplexField { sin(i * PI.toComplex()) })
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testArcsine() {
|
||||
fun testInverseSine() {
|
||||
assertEquals(Complex(0, -0.0), ComplexField { asin(zero) })
|
||||
|
||||
assertEquals(ComplexField { i * asinh(one) }.let { it.im.toInt() to it.re.toInt() },
|
||||
ComplexField { asin(i) }.let { it.im.toInt() to it.re.toInt() })
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testInverseHyperbolicSine() {
|
||||
assertEquals(
|
||||
ComplexField { i * PI.toComplex() / 2 }.let { it.im.toInt() to it.re.toInt() },
|
||||
ComplexField { asinh(i) }.let { it.im.toInt() to it.re.toInt() })
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testPower() {
|
||||
assertEquals(ComplexField.zero, ComplexField { zero pow 2 })
|
||||
assertEquals(ComplexField.zero, ComplexField { zero pow 2 })
|
||||
|
||||
assertEquals(
|
||||
ComplexField { i * 8 }.let { it.im.toInt() to it.re.toInt() },
|
||||
ComplexField { Complex(2, 2) pow 2 }.let { it.im.toInt() to it.re.toInt() })
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user