forked from kscience/kmath
Optimize RealMatrix dot operation
This commit is contained in:
parent
b72b6fb34f
commit
b288704528
@ -2,19 +2,22 @@ package kscience.kmath.benchmarks
|
||||
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import kscience.kmath.commons.linear.CMMatrixContext
|
||||
import kscience.kmath.commons.linear.CMMatrixContext.dot
|
||||
import kscience.kmath.commons.linear.toCM
|
||||
import kscience.kmath.ejml.EjmlMatrixContext
|
||||
import kscience.kmath.ejml.toEjml
|
||||
import kscience.kmath.linear.BufferMatrixContext
|
||||
import kscience.kmath.linear.RealMatrixContext
|
||||
import kscience.kmath.linear.real
|
||||
import kscience.kmath.operations.RealField
|
||||
import kscience.kmath.operations.invoke
|
||||
import kscience.kmath.structures.Buffer
|
||||
import kscience.kmath.structures.Matrix
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import kotlin.random.Random
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
class MultiplicationBenchmark {
|
||||
class DotBenchmark {
|
||||
companion object {
|
||||
val random = Random(12224)
|
||||
val dim = 1000
|
||||
@ -32,14 +35,14 @@ class MultiplicationBenchmark {
|
||||
|
||||
@Benchmark
|
||||
fun commonsMathMultiplication() {
|
||||
CMMatrixContext.invoke {
|
||||
CMMatrixContext {
|
||||
cmMatrix1 dot cmMatrix2
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlMultiplication() {
|
||||
EjmlMatrixContext.invoke {
|
||||
EjmlMatrixContext {
|
||||
ejmlMatrix1 dot ejmlMatrix2
|
||||
}
|
||||
}
|
||||
@ -48,13 +51,22 @@ class MultiplicationBenchmark {
|
||||
fun ejmlMultiplicationwithConversion() {
|
||||
val ejmlMatrix1 = matrix1.toEjml()
|
||||
val ejmlMatrix2 = matrix2.toEjml()
|
||||
EjmlMatrixContext.invoke {
|
||||
EjmlMatrixContext {
|
||||
ejmlMatrix1 dot ejmlMatrix2
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun bufferedMultiplication() {
|
||||
matrix1 dot matrix2
|
||||
BufferMatrixContext(RealField, Buffer.Companion::real).invoke{
|
||||
matrix1 dot matrix2
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun realMultiplication(){
|
||||
RealMatrixContext {
|
||||
matrix1 dot matrix2
|
||||
}
|
||||
}
|
||||
}
|
@ -4,9 +4,8 @@ import kscience.kmath.dimensions.D2
|
||||
import kscience.kmath.dimensions.D3
|
||||
import kscience.kmath.dimensions.DMatrixContext
|
||||
import kscience.kmath.dimensions.Dimension
|
||||
import kscience.kmath.operations.RealField
|
||||
|
||||
private fun DMatrixContext<Double, RealField>.simple() {
|
||||
private fun DMatrixContext<Double>.simple() {
|
||||
val m1 = produce<D2, D3> { i, j -> (i + j).toDouble() }
|
||||
val m2 = produce<D3, D2> { i, j -> (i + j).toDouble() }
|
||||
|
||||
@ -18,7 +17,7 @@ private object D5 : Dimension {
|
||||
override val dim: UInt = 5u
|
||||
}
|
||||
|
||||
private fun DMatrixContext<Double, RealField>.custom() {
|
||||
private fun DMatrixContext<Double>.custom() {
|
||||
val m1 = produce<D2, D5> { i, j -> (i + j).toDouble() }
|
||||
val m2 = produce<D5, D2> { i, j -> (i - j).toDouble() }
|
||||
val m3 = produce<D2, D2> { i, j -> (i - j).toDouble() }
|
||||
|
@ -29,6 +29,7 @@ public class CMMatrix(public val origin: RealMatrix, features: Set<MatrixFeature
|
||||
}
|
||||
}
|
||||
|
||||
//TODO move inside context
|
||||
public fun Matrix<Double>.toCM(): CMMatrix = if (this is CMMatrix) {
|
||||
this
|
||||
} else {
|
||||
|
@ -1,8 +1,10 @@
|
||||
package kscience.kmath.linear
|
||||
|
||||
import kscience.kmath.operations.RealField
|
||||
import kscience.kmath.operations.Ring
|
||||
import kscience.kmath.structures.*
|
||||
import kscience.kmath.structures.Buffer
|
||||
import kscience.kmath.structures.BufferFactory
|
||||
import kscience.kmath.structures.NDStructure
|
||||
import kscience.kmath.structures.asSequence
|
||||
|
||||
/**
|
||||
* Basic implementation of Matrix space based on [NDStructure]
|
||||
@ -21,24 +23,6 @@ public class BufferMatrixContext<T : Any, R : Ring<T>>(
|
||||
public companion object
|
||||
}
|
||||
|
||||
@Suppress("OVERRIDE_BY_INLINE")
|
||||
public object RealMatrixContext : GenericMatrixContext<Double, RealField, BufferMatrix<Double>> {
|
||||
public override val elementContext: RealField
|
||||
get() = RealField
|
||||
|
||||
public override inline fun produce(
|
||||
rows: Int,
|
||||
columns: Int,
|
||||
initializer: (i: Int, j: Int) -> Double,
|
||||
): BufferMatrix<Double> {
|
||||
val buffer = RealBuffer(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
|
||||
return BufferMatrix(rows, columns, buffer)
|
||||
}
|
||||
|
||||
public override inline fun point(size: Int, initializer: (Int) -> Double): Point<Double> =
|
||||
RealBuffer(size, initializer)
|
||||
}
|
||||
|
||||
public class BufferMatrix<T : Any>(
|
||||
public override val rowNum: Int,
|
||||
public override val colNum: Int,
|
||||
|
@ -213,17 +213,8 @@ public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext
|
||||
return decomposition.solveWithLUP(bufferFactory, b)
|
||||
}
|
||||
|
||||
public fun RealMatrixContext.solveWithLUP(a: Matrix<Double>, b: Matrix<Double>): FeaturedMatrix<Double> =
|
||||
solveWithLUP(a, b) { it < 1e-11 }
|
||||
|
||||
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, FeaturedMatrix<T>>.inverseWithLUP(
|
||||
matrix: Matrix<T>,
|
||||
noinline bufferFactory: MutableBufferFactory<T> = MutableBuffer.Companion::auto,
|
||||
noinline checkSingular: (T) -> Boolean,
|
||||
): FeaturedMatrix<T> = solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), bufferFactory, checkSingular)
|
||||
|
||||
/**
|
||||
* Inverses a square matrix using LUP decomposition. Non square matrix will throw a error.
|
||||
*/
|
||||
public fun RealMatrixContext.inverseWithLUP(matrix: Matrix<Double>): FeaturedMatrix<Double> =
|
||||
solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), Buffer.Companion::real) { it < 1e-11 }
|
||||
): FeaturedMatrix<T> = solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), bufferFactory, checkSingular)
|
@ -18,6 +18,11 @@ public interface MatrixContext<T : Any, out M : Matrix<T>> : SpaceOperations<Mat
|
||||
*/
|
||||
public fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): M
|
||||
|
||||
/**
|
||||
* Produce a point compatible with matrix space (and possibly optimized for it)
|
||||
*/
|
||||
public fun point(size: Int, initializer: (Int) -> T): Point<T> = Buffer.boxing(size, initializer)
|
||||
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
public override fun binaryOperation(operation: String, left: Matrix<T>, right: Matrix<T>): M = when (operation) {
|
||||
"dot" -> left dot right
|
||||
@ -61,10 +66,6 @@ public interface MatrixContext<T : Any, out M : Matrix<T>> : SpaceOperations<Mat
|
||||
public operator fun T.times(m: Matrix<T>): M = m * this
|
||||
|
||||
public companion object {
|
||||
/**
|
||||
* Non-boxing double matrix
|
||||
*/
|
||||
public val real: RealMatrixContext = RealMatrixContext
|
||||
|
||||
/**
|
||||
* A structured matrix with custom buffer
|
||||
@ -88,11 +89,6 @@ public interface GenericMatrixContext<T : Any, R : Ring<T>, out M : Matrix<T>> :
|
||||
*/
|
||||
public val elementContext: R
|
||||
|
||||
/**
|
||||
* Produce a point compatible with matrix space
|
||||
*/
|
||||
public fun point(size: Int, initializer: (Int) -> T): Point<T>
|
||||
|
||||
public override infix fun Matrix<T>.dot(other: Matrix<T>): M {
|
||||
//TODO add typed error
|
||||
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
|
||||
|
@ -0,0 +1,84 @@
|
||||
package kscience.kmath.linear
|
||||
|
||||
import kscience.kmath.operations.RealField
|
||||
import kscience.kmath.structures.Matrix
|
||||
import kscience.kmath.structures.MutableBuffer
|
||||
import kscience.kmath.structures.MutableBufferFactory
|
||||
import kscience.kmath.structures.RealBuffer
|
||||
|
||||
@Suppress("OVERRIDE_BY_INLINE")
|
||||
public object RealMatrixContext : MatrixContext<Double, BufferMatrix<Double>> {
|
||||
|
||||
public override inline fun produce(
|
||||
rows: Int,
|
||||
columns: Int,
|
||||
initializer: (i: Int, j: Int) -> Double,
|
||||
): BufferMatrix<Double> {
|
||||
val buffer = RealBuffer(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
|
||||
return BufferMatrix(rows, columns, buffer)
|
||||
}
|
||||
|
||||
private fun Matrix<Double>.wrap(): BufferMatrix<Double> = if (this is BufferMatrix) this else {
|
||||
produce(rowNum, colNum) { i, j -> get(i, j) }
|
||||
}
|
||||
|
||||
public fun one(rows: Int, columns: Int): FeaturedMatrix<Double> = VirtualMatrix(rows, columns, DiagonalFeature) { i, j ->
|
||||
if (i == j) 1.0 else 0.0
|
||||
}
|
||||
|
||||
public override infix fun Matrix<Double>.dot(other: Matrix<Double>): BufferMatrix<Double> {
|
||||
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
|
||||
return produce(rowNum, other.colNum) { i, j ->
|
||||
var res = 0.0
|
||||
for (l in 0 until colNum) {
|
||||
res += get(i, l) * other.get(l, j)
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
public override infix fun Matrix<Double>.dot(vector: Point<Double>): Point<Double> {
|
||||
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
|
||||
return RealBuffer(rowNum) { i ->
|
||||
var res = 0.0
|
||||
for (j in 0 until colNum) {
|
||||
res += get(i, j) * vector[j]
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
override fun add(a: Matrix<Double>, b: Matrix<Double>): BufferMatrix<Double> {
|
||||
require(a.rowNum == b.rowNum) { "Row number mismatch in matrix addition. Left side: ${a.rowNum}, right side: ${b.rowNum}" }
|
||||
require(a.colNum == b.colNum) { "Column number mismatch in matrix addition. Left side: ${a.colNum}, right side: ${b.colNum}" }
|
||||
return produce(a.rowNum, a.colNum) { i, j ->
|
||||
a[i, j] + b[i, j]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Matrix<Double>.times(value: Double): BufferMatrix<Double> =
|
||||
produce(rowNum, colNum) { i, j -> get(i, j) * value }
|
||||
|
||||
|
||||
override fun multiply(a: Matrix<Double>, k: Number): BufferMatrix<Double> =
|
||||
produce(a.rowNum, a.colNum) { i, j -> a.get(i, j) * k.toDouble() }
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Partially optimized real-valued matrix
|
||||
*/
|
||||
public val MatrixContext.Companion.real: RealMatrixContext get() = RealMatrixContext
|
||||
|
||||
public fun RealMatrixContext.solveWithLUP(a: Matrix<Double>, b: Matrix<Double>): FeaturedMatrix<Double> {
|
||||
// Use existing decomposition if it is provided by matrix
|
||||
val bufferFactory: MutableBufferFactory<Double> = MutableBuffer.Companion::real
|
||||
val decomposition = a.getFeature() ?: lup(bufferFactory, RealField, a) { it < 1e-11 }
|
||||
return decomposition.solveWithLUP(bufferFactory, b)
|
||||
}
|
||||
|
||||
/**
|
||||
* Inverses a square matrix using LUP decomposition. Non square matrix will throw a error.
|
||||
*/
|
||||
public fun RealMatrixContext.inverseWithLUP(matrix: Matrix<Double>): FeaturedMatrix<Double> =
|
||||
solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum))
|
@ -1,11 +1,6 @@
|
||||
package kscience.kmath.dimensions
|
||||
|
||||
import kscience.kmath.linear.GenericMatrixContext
|
||||
import kscience.kmath.linear.MatrixContext
|
||||
import kscience.kmath.linear.Point
|
||||
import kscience.kmath.linear.transpose
|
||||
import kscience.kmath.operations.RealField
|
||||
import kscience.kmath.operations.Ring
|
||||
import kscience.kmath.linear.*
|
||||
import kscience.kmath.operations.invoke
|
||||
import kscience.kmath.structures.Matrix
|
||||
import kscience.kmath.structures.Structure2D
|
||||
@ -42,7 +37,7 @@ public interface DMatrix<T, R : Dimension, C : Dimension> : Structure2D<T> {
|
||||
* An inline wrapper for a Matrix
|
||||
*/
|
||||
public inline class DMatrixWrapper<T, R : Dimension, C : Dimension>(
|
||||
private val structure: Structure2D<T>
|
||||
private val structure: Structure2D<T>,
|
||||
) : DMatrix<T, R, C> {
|
||||
override val shape: IntArray get() = structure.shape
|
||||
override operator fun get(i: Int, j: Int): T = structure[i, j]
|
||||
@ -81,7 +76,7 @@ public inline class DPointWrapper<T, D : Dimension>(public val point: Point<T>)
|
||||
/**
|
||||
* Basic operations on dimension-safe matrices. Operates on [Matrix]
|
||||
*/
|
||||
public inline class DMatrixContext<T : Any, Ri : Ring<T>>(public val context: GenericMatrixContext<T, Ri, Matrix<T>>) {
|
||||
public inline class DMatrixContext<T : Any>(public val context: MatrixContext<T, Matrix<T>>) {
|
||||
public inline fun <reified R : Dimension, reified C : Dimension> Matrix<T>.coerce(): DMatrix<T, R, C> {
|
||||
require(rowNum == Dimension.dim<R>().toInt()) {
|
||||
"Row number mismatch: expected ${Dimension.dim<R>()} but found $rowNum"
|
||||
@ -115,7 +110,7 @@ public inline class DMatrixContext<T : Any, Ri : Ring<T>>(public val context: Ge
|
||||
}
|
||||
|
||||
public inline infix fun <reified R1 : Dimension, reified C1 : Dimension, reified C2 : Dimension> DMatrix<T, R1, C1>.dot(
|
||||
other: DMatrix<T, C1, C2>
|
||||
other: DMatrix<T, C1, C2>,
|
||||
): DMatrix<T, R1, C2> = context { this@dot dot other }.coerce()
|
||||
|
||||
public inline infix fun <reified R : Dimension, reified C : Dimension> DMatrix<T, R, C>.dot(vector: DPoint<T, C>): DPoint<T, R> =
|
||||
@ -139,18 +134,19 @@ public inline class DMatrixContext<T : Any, Ri : Ring<T>>(public val context: Ge
|
||||
public inline fun <reified R : Dimension, reified C : Dimension> DMatrix<T, C, R>.transpose(): DMatrix<T, R, C> =
|
||||
context { (this@transpose as Matrix<T>).transpose() }.coerce()
|
||||
|
||||
/**
|
||||
* A square unit matrix
|
||||
*/
|
||||
public inline fun <reified D : Dimension> one(): DMatrix<T, D, D> = produce { i, j ->
|
||||
if (i == j) context.elementContext.one else context.elementContext.zero
|
||||
}
|
||||
|
||||
public inline fun <reified R : Dimension, reified C : Dimension> zero(): DMatrix<T, R, C> = produce { _, _ ->
|
||||
context.elementContext.zero
|
||||
}
|
||||
|
||||
public companion object {
|
||||
public val real: DMatrixContext<Double, RealField> = DMatrixContext(MatrixContext.real)
|
||||
public val real: DMatrixContext<Double> = DMatrixContext(MatrixContext.real)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* A square unit matrix
|
||||
*/
|
||||
public inline fun <reified D : Dimension> DMatrixContext<Double>.one(): DMatrix<Double, D, D> = produce { i, j ->
|
||||
if (i == j) 1.0 else 0.0
|
||||
}
|
||||
|
||||
public inline fun <reified R : Dimension, reified C : Dimension> DMatrixContext<Double>.zero(): DMatrix<Double, R, C> = produce { _, _ ->
|
||||
0.0
|
||||
}
|
@ -3,6 +3,7 @@ package kscience.dimensions
|
||||
import kscience.kmath.dimensions.D2
|
||||
import kscience.kmath.dimensions.D3
|
||||
import kscience.kmath.dimensions.DMatrixContext
|
||||
import kscience.kmath.dimensions.one
|
||||
import kotlin.test.Test
|
||||
|
||||
internal class DMatrixContextTest {
|
||||
|
@ -1,13 +1,7 @@
|
||||
package kscience.kmath.real
|
||||
|
||||
import kscience.kmath.linear.FeaturedMatrix
|
||||
import kscience.kmath.linear.MatrixContext
|
||||
import kscience.kmath.linear.RealMatrixContext.elementContext
|
||||
import kscience.kmath.linear.VirtualMatrix
|
||||
import kscience.kmath.linear.inverseWithLUP
|
||||
import kscience.kmath.linear.*
|
||||
import kscience.kmath.misc.UnstableKMathAPI
|
||||
import kscience.kmath.operations.invoke
|
||||
import kscience.kmath.operations.sum
|
||||
import kscience.kmath.structures.Buffer
|
||||
import kscience.kmath.structures.RealBuffer
|
||||
import kscience.kmath.structures.asIterable
|
||||
@ -122,8 +116,7 @@ public fun RealMatrix.extractColumn(columnIndex: Int): RealMatrix =
|
||||
extractColumns(columnIndex..columnIndex)
|
||||
|
||||
public fun RealMatrix.sumByColumn(): RealBuffer = RealBuffer(colNum) { j ->
|
||||
val column = columns[j]
|
||||
elementContext { sum(column.asIterable()) }
|
||||
columns[j].asIterable().sum()
|
||||
}
|
||||
|
||||
public fun RealMatrix.minByColumn(): RealBuffer = RealBuffer(colNum) { j ->
|
||||
|
Loading…
Reference in New Issue
Block a user