forked from kscience/kmath
Implement much faster Jacobi algorithm
This commit is contained in:
parent
7aff774bc1
commit
b13765ec19
@ -124,6 +124,11 @@ benchmark {
|
||||
include("JafamaBenchmark")
|
||||
}
|
||||
|
||||
configurations.register("tensorAlgebra") {
|
||||
commonConfiguration()
|
||||
include("TensorAlgebraBenchmark")
|
||||
}
|
||||
|
||||
configurations.register("viktor") {
|
||||
commonConfiguration()
|
||||
include("ViktorBenchmark")
|
||||
|
@ -0,0 +1,37 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.linear.linearSpace
|
||||
import space.kscience.kmath.linear.matrix
|
||||
import space.kscience.kmath.linear.symmetric
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
||||
import kotlin.random.Random
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class TensorAlgebraBenchmark {
|
||||
companion object {
|
||||
private val random = Random(12224)
|
||||
private const val dim = 30
|
||||
|
||||
private val matrix = DoubleField.linearSpace.matrix(dim, dim).symmetric { _, _ -> random.nextDouble() }
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun tensorSymEigSvd(blackhole: Blackhole) = with(Double.tensorAlgebra) {
|
||||
blackhole.consume(matrix.symEigSvd(1e-10))
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun tensorSymEigJacobi(blackhole: Blackhole) = with(Double.tensorAlgebra) {
|
||||
blackhole.consume(matrix.symEigJacobi(50, 1e-10))
|
||||
}
|
||||
}
|
@ -9,11 +9,7 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.nd.MutableStructure2D
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.structures.MutableBuffer
|
||||
import space.kscience.kmath.structures.indices
|
||||
@ -886,7 +882,7 @@ public open class DoubleTensorAlgebra :
|
||||
return Triple(uTensor.transpose(), sTensor, vTensor.transpose())
|
||||
}
|
||||
|
||||
override fun StructureND<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> = symEigJacobi(epsilon = 1e-10)
|
||||
override fun StructureND<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> = symEigJacobi(maxIteration = 50, epsilon = 1e-15)
|
||||
|
||||
/**
|
||||
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
|
||||
@ -923,103 +919,139 @@ public open class DoubleTensorAlgebra :
|
||||
return eig to v
|
||||
}
|
||||
|
||||
public fun StructureND<Double>.symEigJacobi(epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
|
||||
public fun StructureND<Double>.symEigJacobi(maxIteration: Int, epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
|
||||
checkSymmetric(tensor, epsilon)
|
||||
|
||||
val size = this.dimension
|
||||
val s = zeros(this.shape)
|
||||
val eigenvectors = zeros(this.shape)
|
||||
val eigenvalues = zeros(this.shape.sliceArray(0 until size - 1))
|
||||
|
||||
var eigenvalueStart = 0
|
||||
var eigenvectorStart = 0
|
||||
for (matrix in tensor.matrixSequence()) {
|
||||
matrix.as2D().jacobiHelper(eigenvalues, s, eigenvalueStart, eigenvectorStart, epsilon)
|
||||
val matrix2D = matrix.as2D()
|
||||
val (d, v) = matrix2D.jacobiHelper(maxIteration, epsilon)
|
||||
|
||||
for (i in 0 until matrix2D.rowNum) {
|
||||
for (j in 0 until matrix2D.colNum) {
|
||||
eigenvectors.mutableBuffer.array()[eigenvectorStart + i * matrix2D.rowNum + j] = v[i, j]
|
||||
}
|
||||
}
|
||||
|
||||
for (i in 0 until matrix2D.rowNum) {
|
||||
eigenvalues.mutableBuffer.array()[eigenvalueStart + i] = d[i]
|
||||
}
|
||||
|
||||
eigenvalueStart += this.shape.last()
|
||||
eigenvectorStart += this.shape.last() * this.shape.last()
|
||||
}
|
||||
|
||||
// TODO sort eigenvalues
|
||||
return eigenvalues to s
|
||||
return eigenvalues to eigenvectors
|
||||
}
|
||||
|
||||
private fun MutableStructure2D<Double>.jacobiHelper(
|
||||
eigenvalues: DoubleTensor,
|
||||
eigenvectors: DoubleTensor,
|
||||
eigenvalueStart: Int,
|
||||
eigenvectorStart: Int,
|
||||
maxIteration: Int,
|
||||
epsilon: Double
|
||||
) {
|
||||
var d = this
|
||||
var s = eye(this.shape[0])
|
||||
): Pair<Structure1D<Double>, Structure2D<Double>> {
|
||||
val A_ = this.copy().as2D()
|
||||
val V = eye(this.shape[0]).as2D()
|
||||
val D = DoubleTensor(intArrayOf(this.shape[0]), (0 until this.rowNum).map { this[it, it] }.toDoubleArray()).as1D()
|
||||
val B = DoubleTensor(intArrayOf(this.shape[0]), (0 until this.rowNum).map { this[it, it] }.toDoubleArray()).as1D()
|
||||
val Z = zeros(intArrayOf(this.shape[0])).as1D()
|
||||
|
||||
// TODO implement cyclic method
|
||||
do {
|
||||
// 1. Find max element by abs value that is not on diagonal
|
||||
fun maxOffDiagonal(matrix: MutableStructure2D<Double>): Double {
|
||||
var maxOffDiagonalElement = 0.0
|
||||
var maxElementIndex = Pair(0, 0)
|
||||
for (i in 0 until this.rowNum) {
|
||||
for (j in 0 until this.colNum) {
|
||||
if (i == j) continue
|
||||
if (abs(d[i, j]) > maxOffDiagonalElement) {
|
||||
maxOffDiagonalElement = abs(d[i, j])
|
||||
maxElementIndex = i to j
|
||||
for (i in 0 until matrix.rowNum - 1) {
|
||||
for (j in i + 1 until matrix.colNum) {
|
||||
maxOffDiagonalElement = max(maxOffDiagonalElement, abs(matrix[i, j]))
|
||||
}
|
||||
}
|
||||
return maxOffDiagonalElement
|
||||
}
|
||||
|
||||
fun rotate(a: MutableStructure2D<Double>, s: Double, tau: Double, i: Int, j: Int, k: Int, l: Int) {
|
||||
val g = a[i, j]
|
||||
val h = a[k, l]
|
||||
a[i, j] = g - s * (h + g * tau)
|
||||
a[k, l] = h + s * (g - h * tau)
|
||||
}
|
||||
|
||||
fun jacobiIteration(
|
||||
a: MutableStructure2D<Double>,
|
||||
v: MutableStructure2D<Double>,
|
||||
d: MutableStructure1D<Double>,
|
||||
z: MutableStructure1D<Double>,
|
||||
) {
|
||||
for (ip in 0 until a.rowNum - 1) {
|
||||
for (iq in ip + 1 until a.colNum) {
|
||||
val g = 100.0 * abs(a[ip, iq])
|
||||
|
||||
if (g <= epsilon * abs(d[ip]) && g <= epsilon * abs(d[iq])) {
|
||||
a[ip, iq] = 0.0
|
||||
continue
|
||||
}
|
||||
|
||||
var h = d[iq] - d[ip]
|
||||
val t = when {
|
||||
g <= epsilon * abs(h) -> (a[ip, iq]) / h
|
||||
else -> {
|
||||
val theta = 0.5 * h / (a[ip, iq])
|
||||
val denominator = abs(theta) + sqrt(1.0 + theta * theta)
|
||||
if (theta < 0.0) -1.0 / denominator else 1.0 / denominator
|
||||
}
|
||||
}
|
||||
|
||||
val c = 1.0 / sqrt(1 + t * t)
|
||||
val s = t * c
|
||||
val tau = s / (1.0 + c)
|
||||
h = t * a[ip, iq]
|
||||
z[ip] -= h
|
||||
z[iq] += h
|
||||
d[ip] -= h
|
||||
d[iq] += h
|
||||
a[ip, iq] = 0.0
|
||||
|
||||
for (j in 0 until ip) {
|
||||
rotate(a, s, tau, j, ip, j, iq)
|
||||
}
|
||||
for (j in (ip + 1) until iq) {
|
||||
rotate(a, s, tau, ip, j, j, iq)
|
||||
}
|
||||
for (j in (iq + 1) until a.rowNum) {
|
||||
rotate(a, s, tau, ip, j, iq, j)
|
||||
}
|
||||
for (j in 0 until a.rowNum) {
|
||||
rotate(v, s, tau, j, ip, j, iq)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 2. Evaluate "rotation" angle
|
||||
val dIJ = d[maxElementIndex.first, maxElementIndex.second]
|
||||
val dII = d[maxElementIndex.first, maxElementIndex.first]
|
||||
val dJJ = d[maxElementIndex.second, maxElementIndex.second]
|
||||
|
||||
val angle = if (dII == dJJ) {
|
||||
if (dIJ > 0) PI / 4 else -PI / 4
|
||||
} else {
|
||||
0.5 * atan(2 * dIJ / (dJJ - dII))
|
||||
}
|
||||
|
||||
// 3. Build rotation tensor `s1`
|
||||
val s1 = eye(this.rowNum)
|
||||
for (i in 0 until this.rowNum) {
|
||||
for (j in 0 until this.colNum) {
|
||||
s1.mutableBuffer.array()[i * this.rowNum + j] = when {
|
||||
maxElementIndex.first == i && maxElementIndex.first == j -> cos(angle)
|
||||
maxElementIndex.second == i && maxElementIndex.second == j -> cos(angle)
|
||||
maxElementIndex.first == i && maxElementIndex.second == j -> sin(angle)
|
||||
maxElementIndex.first == j && maxElementIndex.second == i -> -sin(angle)
|
||||
else -> s1.mutableBuffer.array()[i * this.rowNum + j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 4. Evaluate new tensor
|
||||
d = ((s1.transpose() dot d) dot s1).as2D()
|
||||
s = s dot s1
|
||||
if (d.isDiagonal(epsilon)) break
|
||||
} while(true)
|
||||
|
||||
// 5. Copy result
|
||||
for (i in 0 until this.rowNum) {
|
||||
for (j in 0 until this.colNum) {
|
||||
eigenvectors.mutableBuffer.array()[eigenvectorStart + i * this.rowNum + j] = s.mutableBuffer.array()[i * this.rowNum + j]
|
||||
fun updateDiagonal(
|
||||
d: MutableStructure1D<Double>,
|
||||
z: MutableStructure1D<Double>,
|
||||
b: MutableStructure1D<Double>,
|
||||
) {
|
||||
for (ip in 0 until d.size) {
|
||||
b[ip] += z[ip]
|
||||
d[ip] = b[ip]
|
||||
z[ip] = 0.0
|
||||
}
|
||||
}
|
||||
|
||||
for (i in 0 until this.rowNum) {
|
||||
eigenvalues.mutableBuffer.array()[eigenvalueStart + i] = d[i, i]
|
||||
}
|
||||
}
|
||||
|
||||
public fun Structure2D<Double>.isDiagonal(epsilon: Double = 1e-9): Boolean {
|
||||
for (i in 0 until this.rowNum) {
|
||||
for (j in 0 until this.colNum) {
|
||||
if (i != j && abs(this[i, j]) > epsilon) {
|
||||
return false
|
||||
}
|
||||
var sm = maxOffDiagonal(A_)
|
||||
for (iteration in 0 until maxIteration) {
|
||||
if (sm < epsilon) {
|
||||
break
|
||||
}
|
||||
|
||||
jacobiIteration(A_, V, D, Z)
|
||||
updateDiagonal(D, Z, B)
|
||||
sm = maxOffDiagonal(A_)
|
||||
}
|
||||
|
||||
return true
|
||||
// TODO sort eigenvalues
|
||||
return D to V
|
||||
}
|
||||
|
||||
/**
|
||||
|
Loading…
Reference in New Issue
Block a user