forked from kscience/kmath
Add multik tensor factories and benchmarks
This commit is contained in:
parent
827f115a92
commit
a81ab474f7
@ -9,7 +9,12 @@ import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import org.jetbrains.kotlinx.multik.api.Multik
|
||||
import org.jetbrains.kotlinx.multik.api.ones
|
||||
import org.jetbrains.kotlinx.multik.ndarray.data.DN
|
||||
import org.jetbrains.kotlinx.multik.ndarray.data.DataType
|
||||
import space.kscience.kmath.multik.multikND
|
||||
import space.kscience.kmath.multik.multikTensorAlgebra
|
||||
import space.kscience.kmath.nd.BufferedFieldOpsND
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.ndAlgebra
|
||||
@ -73,6 +78,13 @@ internal class NDFieldBenchmark {
|
||||
blackhole.consume(res)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun multikInPlaceAdd(blackhole: Blackhole) = with(DoubleField.multikTensorAlgebra) {
|
||||
val res = Multik.ones<Double, DN>(shape, DataType.DoubleDataType).wrap()
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
|
||||
// @Benchmark
|
||||
// fun nd4jAdd(blackhole: Blackhole) = with(nd4jField) {
|
||||
// var res: StructureND<Double> = one(dim, dim)
|
||||
|
@ -23,7 +23,7 @@ internal class ViktorLogBenchmark {
|
||||
@Benchmark
|
||||
fun realFieldLog(blackhole: Blackhole) {
|
||||
with(realField) {
|
||||
val fortyTwo = produce(shape) { 42.0 }
|
||||
val fortyTwo = structureND(shape) { 42.0 }
|
||||
var res = one(shape)
|
||||
repeat(n) { res = ln(fortyTwo) }
|
||||
blackhole.consume(res)
|
||||
@ -33,7 +33,7 @@ internal class ViktorLogBenchmark {
|
||||
@Benchmark
|
||||
fun viktorFieldLog(blackhole: Blackhole) {
|
||||
with(viktorField) {
|
||||
val fortyTwo = produce(shape) { 42.0 }
|
||||
val fortyTwo = structureND(shape) { 42.0 }
|
||||
var res = one
|
||||
repeat(n) { res = ln(fortyTwo) }
|
||||
blackhole.consume(res)
|
||||
|
@ -9,7 +9,7 @@ import space.kscience.kmath.integration.gaussIntegrator
|
||||
import space.kscience.kmath.integration.integrate
|
||||
import space.kscience.kmath.integration.value
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.produce
|
||||
import space.kscience.kmath.nd.structureND
|
||||
import space.kscience.kmath.nd.withNdAlgebra
|
||||
import space.kscience.kmath.operations.algebra
|
||||
import space.kscience.kmath.operations.invoke
|
||||
@ -18,7 +18,7 @@ fun main(): Unit = Double.algebra {
|
||||
withNdAlgebra(2, 2) {
|
||||
|
||||
//Produce a diagonal StructureND
|
||||
fun diagonal(v: Double) = produce { (i, j) ->
|
||||
fun diagonal(v: Double) = structureND { (i, j) ->
|
||||
if (i == j) v else 0.0
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@ import space.kscience.kmath.complex.bufferAlgebra
|
||||
import space.kscience.kmath.complex.ndAlgebra
|
||||
import space.kscience.kmath.nd.BufferND
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.produce
|
||||
import space.kscience.kmath.nd.structureND
|
||||
|
||||
fun main() = Complex.algebra {
|
||||
val complex = 2 + 2 * i
|
||||
@ -24,14 +24,14 @@ fun main() = Complex.algebra {
|
||||
println(buffer)
|
||||
|
||||
// 2d element
|
||||
val element: BufferND<Complex> = ndAlgebra.produce(2, 2) { (i, j) ->
|
||||
val element: BufferND<Complex> = ndAlgebra.structureND(2, 2) { (i, j) ->
|
||||
Complex(i - j, i + j)
|
||||
}
|
||||
println(element)
|
||||
|
||||
// 1d element operation
|
||||
val result: StructureND<Complex> = ndAlgebra{
|
||||
val a = produce(8) { (it) -> i * it - it.toDouble() }
|
||||
val a = structureND(8) { (it) -> i * it - it.toDouble() }
|
||||
val b = 3
|
||||
val c = Complex(1.0, 1.0)
|
||||
|
||||
|
@ -10,7 +10,7 @@ import space.kscience.kmath.viktor.ViktorStructureND
|
||||
import space.kscience.kmath.viktor.viktorAlgebra
|
||||
|
||||
fun main() {
|
||||
val viktorStructure: ViktorStructureND = DoubleField.viktorAlgebra.produce(Shape(2, 2)) { (i, j) ->
|
||||
val viktorStructure: ViktorStructureND = DoubleField.viktorAlgebra.structureND(Shape(2, 2)) { (i, j) ->
|
||||
if (i == j) 2.0 else 0.0
|
||||
}
|
||||
|
||||
|
@ -12,7 +12,7 @@ import space.kscience.kmath.linear.transpose
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.nd.ndAlgebra
|
||||
import space.kscience.kmath.nd.produce
|
||||
import space.kscience.kmath.nd.structureND
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import kotlin.system.measureTimeMillis
|
||||
@ -55,7 +55,7 @@ fun complexExample() {
|
||||
val x = one * 2.5
|
||||
operator fun Number.plus(other: Complex) = Complex(this.toDouble() + other.re, other.im)
|
||||
//a structure generator specific to this context
|
||||
val matrix = produce { (k, l) -> k + l * i }
|
||||
val matrix = structureND { (k, l) -> k + l * i }
|
||||
//Perform sum
|
||||
val sum = matrix + x + 1.0
|
||||
|
||||
|
@ -22,12 +22,12 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
|
||||
|
||||
private val strides = DefaultStrides(shape)
|
||||
override val elementAlgebra: DoubleField get() = DoubleField
|
||||
override val zero: BufferND<Double> by lazy { produce(shape) { zero } }
|
||||
override val one: BufferND<Double> by lazy { produce(shape) { one } }
|
||||
override val zero: BufferND<Double> by lazy { structureND(shape) { zero } }
|
||||
override val one: BufferND<Double> by lazy { structureND(shape) { one } }
|
||||
|
||||
override fun number(value: Number): BufferND<Double> {
|
||||
val d = value.toDouble() // minimize conversions
|
||||
return produce(shape) { d }
|
||||
return structureND(shape) { d }
|
||||
}
|
||||
|
||||
private val StructureND<Double>.buffer: DoubleBuffer
|
||||
@ -40,7 +40,7 @@ class StreamDoubleFieldND(override val shape: IntArray) : FieldND<Double, Double
|
||||
else -> DoubleBuffer(strides.linearSize) { offset -> get(strides.index(offset)) }
|
||||
}
|
||||
|
||||
override fun produce(shape: Shape, initializer: DoubleField.(IntArray) -> Double): BufferND<Double> {
|
||||
override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): BufferND<Double> {
|
||||
val array = IntStream.range(0, strides.linearSize).parallel().mapToDouble { offset ->
|
||||
val index = strides.index(offset)
|
||||
DoubleField.initializer(index)
|
||||
|
@ -67,7 +67,7 @@ public class ComplexFieldND(override val shape: Shape) :
|
||||
|
||||
override fun number(value: Number): BufferND<Complex> {
|
||||
val d = value.toDouble() // minimize conversions
|
||||
return produce(shape) { d.toComplex() }
|
||||
return structureND(shape) { d.toComplex() }
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -24,7 +24,7 @@ public class BufferedLinearSpace<T, out A : Ring<T>>(
|
||||
private val ndAlgebra = BufferedRingOpsND(bufferAlgebra)
|
||||
|
||||
override fun buildMatrix(rows: Int, columns: Int, initializer: A.(i: Int, j: Int) -> T): Matrix<T> =
|
||||
ndAlgebra.produce(intArrayOf(rows, columns)) { (i, j) -> elementAlgebra.initializer(i, j) }.as2D()
|
||||
ndAlgebra.structureND(intArrayOf(rows, columns)) { (i, j) -> elementAlgebra.initializer(i, j) }.as2D()
|
||||
|
||||
override fun buildVector(size: Int, initializer: A.(Int) -> T): Point<T> =
|
||||
bufferAlgebra.buffer(size) { elementAlgebra.initializer(it) }
|
||||
|
@ -23,7 +23,7 @@ public object DoubleLinearSpace : LinearSpace<Double, DoubleField> {
|
||||
rows: Int,
|
||||
columns: Int,
|
||||
initializer: DoubleField.(i: Int, j: Int) -> Double
|
||||
): Matrix<Double> = DoubleFieldOpsND.produce(intArrayOf(rows, columns)) { (i, j) ->
|
||||
): Matrix<Double> = DoubleFieldOpsND.structureND(intArrayOf(rows, columns)) { (i, j) ->
|
||||
DoubleField.initializer(i, j)
|
||||
}.as2D()
|
||||
|
||||
|
@ -39,9 +39,9 @@ public interface AlgebraND<T, out C : Algebra<T>> {
|
||||
public val elementAlgebra: C
|
||||
|
||||
/**
|
||||
* Produces a new NDStructure using given initializer function.
|
||||
* Produces a new [StructureND] using given initializer function.
|
||||
*/
|
||||
public fun produce(shape: Shape, initializer: C.(IntArray) -> T): StructureND<T>
|
||||
public fun structureND(shape: Shape, initializer: C.(IntArray) -> T): StructureND<T>
|
||||
|
||||
/**
|
||||
* Maps elements from one structure to another one by applying [transform] to them.
|
||||
@ -149,7 +149,7 @@ public interface GroupOpsND<T, out A : GroupOps<T>> : GroupOps<StructureND<T>>,
|
||||
}
|
||||
|
||||
public interface GroupND<T, out A : Group<T>> : Group<StructureND<T>>, GroupOpsND<T, A>, WithShape {
|
||||
override val zero: StructureND<T> get() = produce(shape) { elementAlgebra.zero }
|
||||
override val zero: StructureND<T> get() = structureND(shape) { elementAlgebra.zero }
|
||||
}
|
||||
|
||||
/**
|
||||
@ -193,7 +193,7 @@ public interface RingOpsND<T, out A : RingOps<T>> : RingOps<StructureND<T>>, Gro
|
||||
}
|
||||
|
||||
public interface RingND<T, out A : Ring<T>> : Ring<StructureND<T>>, RingOpsND<T, A>, GroupND<T, A>, WithShape {
|
||||
override val one: StructureND<T> get() = produce(shape) { elementAlgebra.one }
|
||||
override val one: StructureND<T> get() = structureND(shape) { elementAlgebra.one }
|
||||
}
|
||||
|
||||
|
||||
@ -240,5 +240,5 @@ public interface FieldOpsND<T, out A : Field<T>> :
|
||||
}
|
||||
|
||||
public interface FieldND<T, out A : Field<T>> : Field<StructureND<T>>, FieldOpsND<T, A>, RingND<T, A>, WithShape {
|
||||
override val one: StructureND<T> get() = produce(shape) { elementAlgebra.one }
|
||||
override val one: StructureND<T> get() = structureND(shape) { elementAlgebra.one }
|
||||
}
|
@ -16,7 +16,7 @@ public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> {
|
||||
public val bufferAlgebra: BufferAlgebra<T, A>
|
||||
override val elementAlgebra: A get() = bufferAlgebra.elementAlgebra
|
||||
|
||||
override fun produce(shape: Shape, initializer: A.(IntArray) -> T): BufferND<T> {
|
||||
override fun structureND(shape: Shape, initializer: A.(IntArray) -> T): BufferND<T> {
|
||||
val indexer = indexerBuilder(shape)
|
||||
return BufferND(
|
||||
indexer,
|
||||
@ -109,14 +109,14 @@ public val <T, A : Ring<T>> BufferAlgebra<T, A>.nd: BufferedRingOpsND<T, A> get(
|
||||
public val <T, A : Field<T>> BufferAlgebra<T, A>.nd: BufferedFieldOpsND<T, A> get() = BufferedFieldOpsND(this)
|
||||
|
||||
|
||||
public fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.produce(
|
||||
public fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.structureND(
|
||||
vararg shape: Int,
|
||||
initializer: A.(IntArray) -> T
|
||||
): BufferND<T> = produce(shape, initializer)
|
||||
): BufferND<T> = structureND(shape, initializer)
|
||||
|
||||
public fun <T, EA : Algebra<T>, A> A.produce(
|
||||
public fun <T, EA : Algebra<T>, A> A.structureND(
|
||||
initializer: EA.(IntArray) -> T
|
||||
): BufferND<T> where A : BufferAlgebraND<T, EA>, A : WithShape = produce(shape, initializer)
|
||||
): BufferND<T> where A : BufferAlgebraND<T, EA>, A : WithShape = structureND(shape, initializer)
|
||||
|
||||
//// group factories
|
||||
//public fun <T, A : Group<T>> A.ndAlgebra(
|
||||
|
@ -60,7 +60,7 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
|
||||
transform: DoubleField.(Double, Double) -> Double
|
||||
): BufferND<Double> = zipInline(left.toBufferND(), right.toBufferND()) { l, r -> DoubleField.transform(l, r) }
|
||||
|
||||
override fun produce(shape: Shape, initializer: DoubleField.(IntArray) -> Double): DoubleBufferND {
|
||||
override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): DoubleBufferND {
|
||||
val indexer = indexerBuilder(shape)
|
||||
return DoubleBufferND(
|
||||
indexer,
|
||||
@ -174,7 +174,7 @@ public class DoubleFieldND(override val shape: Shape) :
|
||||
|
||||
override fun number(value: Number): DoubleBufferND {
|
||||
val d = value.toDouble() // minimize conversions
|
||||
return produce(shape) { d }
|
||||
return structureND(shape) { d }
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -23,7 +23,7 @@ public class ShortRingND(
|
||||
|
||||
override fun number(value: Number): BufferND<Short> {
|
||||
val d = value.toShort() // minimize conversions
|
||||
return produce(shape) { d }
|
||||
return structureND(shape) { d }
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -11,24 +11,24 @@ import space.kscience.kmath.operations.Ring
|
||||
import kotlin.jvm.JvmName
|
||||
|
||||
|
||||
public fun <T, A : Algebra<T>> AlgebraND<T, A>.produce(
|
||||
public fun <T, A : Algebra<T>> AlgebraND<T, A>.structureND(
|
||||
shapeFirst: Int,
|
||||
vararg shapeRest: Int,
|
||||
initializer: A.(IntArray) -> T
|
||||
): StructureND<T> = produce(Shape(shapeFirst, *shapeRest), initializer)
|
||||
): StructureND<T> = structureND(Shape(shapeFirst, *shapeRest), initializer)
|
||||
|
||||
public fun <T, A : Group<T>> AlgebraND<T, A>.zero(shape: Shape): StructureND<T> = produce(shape) { zero }
|
||||
public fun <T, A : Group<T>> AlgebraND<T, A>.zero(shape: Shape): StructureND<T> = structureND(shape) { zero }
|
||||
|
||||
@JvmName("zeroVarArg")
|
||||
public fun <T, A : Group<T>> AlgebraND<T, A>.zero(
|
||||
shapeFirst: Int,
|
||||
vararg shapeRest: Int,
|
||||
): StructureND<T> = produce(shapeFirst, *shapeRest) { zero }
|
||||
): StructureND<T> = structureND(shapeFirst, *shapeRest) { zero }
|
||||
|
||||
public fun <T, A : Ring<T>> AlgebraND<T, A>.one(shape: Shape): StructureND<T> = produce(shape) { one }
|
||||
public fun <T, A : Ring<T>> AlgebraND<T, A>.one(shape: Shape): StructureND<T> = structureND(shape) { one }
|
||||
|
||||
@JvmName("oneVarArg")
|
||||
public fun <T, A : Ring<T>> AlgebraND<T, A>.one(
|
||||
shapeFirst: Int,
|
||||
vararg shapeRest: Int,
|
||||
): StructureND<T> = produce(shapeFirst, *shapeRest) { one }
|
||||
): StructureND<T> = structureND(shapeFirst, *shapeRest) { one }
|
@ -7,7 +7,7 @@ package space.kscience.kmath.structures
|
||||
|
||||
import space.kscience.kmath.nd.get
|
||||
import space.kscience.kmath.nd.ndAlgebra
|
||||
import space.kscience.kmath.nd.produce
|
||||
import space.kscience.kmath.nd.structureND
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.testutils.FieldVerifier
|
||||
@ -22,7 +22,7 @@ internal class NDFieldTest {
|
||||
|
||||
@Test
|
||||
fun testStrides() {
|
||||
val ndArray = DoubleField.ndAlgebra.produce(10, 10) { (it[0] + it[1]).toDouble() }
|
||||
val ndArray = DoubleField.ndAlgebra.structureND(10, 10) { (it[0] + it[1]).toDouble() }
|
||||
assertEquals(ndArray[5, 5], 10.0)
|
||||
}
|
||||
}
|
||||
|
@ -20,8 +20,8 @@ import kotlin.test.assertEquals
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
class NumberNDFieldTest {
|
||||
val algebra = DoubleField.ndAlgebra
|
||||
val array1 = algebra.produce(3, 3) { (i, j) -> (i + j).toDouble() }
|
||||
val array2 = algebra.produce(3, 3) { (i, j) -> (i - j).toDouble() }
|
||||
val array1 = algebra.structureND(3, 3) { (i, j) -> (i + j).toDouble() }
|
||||
val array2 = algebra.structureND(3, 3) { (i, j) -> (i - j).toDouble() }
|
||||
|
||||
@Test
|
||||
fun testSum() {
|
||||
|
@ -18,9 +18,9 @@ public open class MultikRingOpsND<T, A : Ring<T>> internal constructor(
|
||||
override val elementAlgebra: A
|
||||
) : RingOpsND<T, A> {
|
||||
|
||||
protected fun MutableMultiArray<T, DN>.wrap(): MultikTensor<T> = MultikTensor(this)
|
||||
public fun MutableMultiArray<T, DN>.wrap(): MultikTensor<T> = MultikTensor(this)
|
||||
|
||||
override fun produce(shape: Shape, initializer: A.(IntArray) -> T): MultikTensor<T> {
|
||||
override fun structureND(shape: Shape, initializer: A.(IntArray) -> T): MultikTensor<T> {
|
||||
val res = mk.zeros<T, DN>(shape, type).asDNArray()
|
||||
for (index in res.multiIndices) {
|
||||
res[index] = elementAlgebra.initializer(index)
|
||||
@ -28,10 +28,10 @@ public open class MultikRingOpsND<T, A : Ring<T>> internal constructor(
|
||||
return res.wrap()
|
||||
}
|
||||
|
||||
protected fun StructureND<T>.asMultik(): MultikTensor<T> = if (this is MultikTensor) {
|
||||
public fun StructureND<T>.asMultik(): MultikTensor<T> = if (this is MultikTensor) {
|
||||
this
|
||||
} else {
|
||||
produce(shape) { get(it) }
|
||||
structureND(shape) { get(it) }
|
||||
}
|
||||
|
||||
override fun StructureND<T>.map(transform: A.(T) -> T): MultikTensor<T> {
|
||||
|
@ -11,7 +11,7 @@ import org.jetbrains.kotlinx.multik.ndarray.data.*
|
||||
import org.jetbrains.kotlinx.multik.ndarray.operations.*
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.nd.mapInPlace
|
||||
import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.operations.*
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.api.TensorAlgebra
|
||||
|
||||
@ -31,7 +31,7 @@ public value class MultikTensor<T>(public val array: MutableMultiArray<T, DN>) :
|
||||
}
|
||||
|
||||
|
||||
public abstract class MultikTensorAlgebra<T>(
|
||||
public class MultikTensorAlgebra<T> internal constructor(
|
||||
public val type: DataType,
|
||||
public val elementAlgebra: Ring<T>,
|
||||
public val comparator: Comparator<T>
|
||||
@ -41,7 +41,7 @@ public abstract class MultikTensorAlgebra<T>(
|
||||
* Convert a tensor to [MultikTensor] if necessary. If tensor is converted, changes on the resulting tensor
|
||||
* are not reflected back onto the source
|
||||
*/
|
||||
private fun Tensor<T>.asMultik(): MultikTensor<T> {
|
||||
public fun Tensor<T>.asMultik(): MultikTensor<T> {
|
||||
return if (this is MultikTensor) {
|
||||
this
|
||||
} else {
|
||||
@ -53,7 +53,7 @@ public abstract class MultikTensorAlgebra<T>(
|
||||
}
|
||||
}
|
||||
|
||||
private fun MutableMultiArray<T, DN>.wrap(): MultikTensor<T> = MultikTensor(this)
|
||||
public fun MutableMultiArray<T, DN>.wrap(): MultikTensor<T> = MultikTensor(this)
|
||||
|
||||
override fun Tensor<T>.valueOrNull(): T? = if (shape contentEquals intArrayOf(1)) {
|
||||
get(intArrayOf(0))
|
||||
@ -196,4 +196,19 @@ public abstract class MultikTensorAlgebra<T>(
|
||||
override fun Tensor<T>.argMax(dim: Int, keepDim: Boolean): MultikTensor<T> {
|
||||
TODO("Not yet implemented")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public val DoubleField.multikTensorAlgebra: MultikTensorAlgebra<Double>
|
||||
get() = MultikTensorAlgebra(DataType.DoubleDataType, DoubleField) { o1, o2 -> o1.compareTo(o2) }
|
||||
|
||||
public val FloatField.multikTensorAlgebra: MultikTensorAlgebra<Float>
|
||||
get() = MultikTensorAlgebra(DataType.FloatDataType, FloatField) { o1, o2 -> o1.compareTo(o2) }
|
||||
|
||||
public val ShortRing.multikTensorAlgebra: MultikTensorAlgebra<Short>
|
||||
get() = MultikTensorAlgebra(DataType.ShortDataType, ShortRing) { o1, o2 -> o1.compareTo(o2) }
|
||||
|
||||
public val IntRing.multikTensorAlgebra: MultikTensorAlgebra<Int>
|
||||
get() = MultikTensorAlgebra(DataType.IntDataType, IntRing) { o1, o2 -> o1.compareTo(o2) }
|
||||
|
||||
public val LongRing.multikTensorAlgebra: MultikTensorAlgebra<Long>
|
||||
get() = MultikTensorAlgebra(DataType.LongDataType, LongRing) { o1, o2 -> o1.compareTo(o2) }
|
@ -32,7 +32,7 @@ public sealed interface Nd4jArrayAlgebra<T, out C : Algebra<T>> : AlgebraND<T, C
|
||||
*/
|
||||
public val StructureND<T>.ndArray: INDArray
|
||||
|
||||
override fun produce(shape: Shape, initializer: C.(IntArray) -> T): Nd4jArrayStructure<T> {
|
||||
override fun structureND(shape: Shape, initializer: C.(IntArray) -> T): Nd4jArrayStructure<T> {
|
||||
val struct = Nd4j.create(*shape)!!.wrap()
|
||||
struct.indicesIterator().forEach { struct[it] = elementAlgebra.initializer(it) }
|
||||
return struct
|
||||
|
@ -9,7 +9,7 @@ import org.nd4j.linalg.factory.Nd4j
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.nd.one
|
||||
import space.kscience.kmath.nd.produce
|
||||
import space.kscience.kmath.nd.structureND
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.IntRing
|
||||
import space.kscience.kmath.operations.invoke
|
||||
@ -23,7 +23,7 @@ import kotlin.test.fail
|
||||
internal class Nd4jArrayAlgebraTest {
|
||||
@Test
|
||||
fun testProduce() {
|
||||
val res = DoubleField.nd4j.produce(2, 2) { it.sum().toDouble() }
|
||||
val res = DoubleField.nd4j.structureND(2, 2) { it.sum().toDouble() }
|
||||
val expected = (Nd4j.create(2, 2) ?: fail()).asDoubleStructure()
|
||||
expected[intArrayOf(0, 0)] = 0.0
|
||||
expected[intArrayOf(0, 1)] = 1.0
|
||||
@ -58,9 +58,9 @@ internal class Nd4jArrayAlgebraTest {
|
||||
|
||||
@Test
|
||||
fun testSin() = DoubleField.nd4j{
|
||||
val initial = produce(2, 2) { (i, j) -> if (i == j) PI / 2 else 0.0 }
|
||||
val initial = structureND(2, 2) { (i, j) -> if (i == j) PI / 2 else 0.0 }
|
||||
val transformed = sin(initial)
|
||||
val expected = produce(2, 2) { (i, j) -> if (i == j) 1.0 else 0.0 }
|
||||
val expected = structureND(2, 2) { (i, j) -> if (i == j) 1.0 else 0.0 }
|
||||
|
||||
println(transformed)
|
||||
assertTrue { StructureND.contentEquals(transformed, expected) }
|
||||
|
@ -22,7 +22,7 @@ import kotlin.math.*
|
||||
public open class DoubleTensorAlgebra :
|
||||
TensorPartialDivisionAlgebra<Double>,
|
||||
AnalyticTensorAlgebra<Double>,
|
||||
LinearOpsTensorAlgebra<Double> {
|
||||
LinearOpsTensorAlgebra<Double>{
|
||||
|
||||
public companion object : DoubleTensorAlgebra()
|
||||
|
||||
|
@ -21,12 +21,12 @@ public open class ViktorFieldOpsND :
|
||||
public val StructureND<Double>.f64Buffer: F64Array
|
||||
get() = when (this) {
|
||||
is ViktorStructureND -> this.f64Buffer
|
||||
else -> produce(shape) { this@f64Buffer[it] }.f64Buffer
|
||||
else -> structureND(shape) { this@f64Buffer[it] }.f64Buffer
|
||||
}
|
||||
|
||||
override val elementAlgebra: DoubleField get() = DoubleField
|
||||
|
||||
override fun produce(shape: IntArray, initializer: DoubleField.(IntArray) -> Double): ViktorStructureND =
|
||||
override fun structureND(shape: IntArray, initializer: DoubleField.(IntArray) -> Double): ViktorStructureND =
|
||||
F64Array(*shape).apply {
|
||||
DefaultStrides(shape).indices().forEach { index ->
|
||||
set(value = DoubleField.initializer(index), indices = index)
|
||||
|
Loading…
Reference in New Issue
Block a user