diff --git a/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/DotBenchmark.kt b/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/DotBenchmark.kt index 4a5cd4aa2..16fd544a8 100644 --- a/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/DotBenchmark.kt +++ b/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/DotBenchmark.kt @@ -15,10 +15,8 @@ import space.kscience.kmath.linear.invoke import space.kscience.kmath.linear.linearSpace import space.kscience.kmath.multik.multikAlgebra import space.kscience.kmath.operations.DoubleField -import space.kscience.kmath.operations.invoke import space.kscience.kmath.structures.Buffer import space.kscience.kmath.tensorflow.produceWithTF -import space.kscience.kmath.tensors.core.DoubleTensorAlgebra import space.kscience.kmath.tensors.core.tensorAlgebra import kotlin.random.Random @@ -36,9 +34,6 @@ internal class DotBenchmark { random.nextDouble() } - val tensor1 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12224) - val tensor2 = DoubleTensorAlgebra.randomNormal(shape = intArrayOf(dim, dim), 12225) - val cmMatrix1 = CMLinearSpace { matrix1.toCM() } val cmMatrix2 = CMLinearSpace { matrix2.toCM() } @@ -48,10 +43,10 @@ internal class DotBenchmark { @Benchmark - fun tfDot(blackhole: Blackhole){ + fun tfDot(blackhole: Blackhole) { blackhole.consume( DoubleField.produceWithTF { - tensor1 dot tensor2 + matrix1 dot matrix1 } ) } @@ -95,9 +90,4 @@ internal class DotBenchmark { fun doubleDot(blackhole: Blackhole) = with(DoubleField.linearSpace) { blackhole.consume(matrix1 dot matrix2) } - - @Benchmark - fun doubleTensorDot(blackhole: Blackhole) = DoubleTensorAlgebra.invoke { - blackhole.consume(tensor1 dot tensor2) - } }