forked from kscience/kmath
Refactored Matrix features
This commit is contained in:
parent
569ff6357b
commit
a2ef50ab47
@ -4,11 +4,16 @@ import org.apache.commons.math3.linear.*
|
|||||||
import org.apache.commons.math3.linear.RealMatrix
|
import org.apache.commons.math3.linear.RealMatrix
|
||||||
import org.apache.commons.math3.linear.RealVector
|
import org.apache.commons.math3.linear.RealVector
|
||||||
|
|
||||||
inline class CMMatrix(val origin: RealMatrix) : Matrix<Double> {
|
class CMMatrix(val origin: RealMatrix, features: Set<MatrixFeature>? = null) : Matrix<Double> {
|
||||||
override val rowNum: Int get() = origin.rowDimension
|
override val rowNum: Int get() = origin.rowDimension
|
||||||
override val colNum: Int get() = origin.columnDimension
|
override val colNum: Int get() = origin.columnDimension
|
||||||
|
|
||||||
override val features: Set<MatrixFeature> get() = emptySet()
|
override val features: Set<MatrixFeature> = features ?: sequence<MatrixFeature> {
|
||||||
|
if(origin is DiagonalMatrix) yield(DiagonalFeature)
|
||||||
|
}.toSet()
|
||||||
|
|
||||||
|
override fun suggestFeature(vararg features: MatrixFeature) =
|
||||||
|
CMMatrix(origin, this.features + features)
|
||||||
|
|
||||||
override fun get(i: Int, j: Int): Double = origin.getEntry(i, j)
|
override fun get(i: Int, j: Int): Double = origin.getEntry(i, j)
|
||||||
}
|
}
|
||||||
@ -23,7 +28,7 @@ fun Matrix<Double>.toCM(): CMMatrix = if (this is CMMatrix) {
|
|||||||
|
|
||||||
fun RealMatrix.toMatrix() = CMMatrix(this)
|
fun RealMatrix.toMatrix() = CMMatrix(this)
|
||||||
|
|
||||||
inline class CMVector(val origin: RealVector) : Point<Double> {
|
class CMVector(val origin: RealVector) : Point<Double> {
|
||||||
override val size: Int get() = origin.dimension
|
override val size: Int get() = origin.dimension
|
||||||
|
|
||||||
override fun get(index: Int): Double = origin.getEntry(index)
|
override fun get(index: Int): Double = origin.getEntry(index)
|
||||||
|
@ -35,6 +35,9 @@ class BufferMatrix<T : Any>(
|
|||||||
|
|
||||||
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
|
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
|
||||||
|
|
||||||
|
override fun suggestFeature(vararg features: MatrixFeature) =
|
||||||
|
BufferMatrix(rowNum, colNum, buffer, this.features + features)
|
||||||
|
|
||||||
override fun get(index: IntArray): T = get(index[0], index[1])
|
override fun get(index: IntArray): T = get(index[0], index[1])
|
||||||
|
|
||||||
override fun get(i: Int, j: Int): T = buffer[i * colNum + j]
|
override fun get(i: Int, j: Int): T = buffer[i * colNum + j]
|
||||||
|
@ -8,20 +8,19 @@ import scientifik.kmath.structures.MutableBufferFactory
|
|||||||
import scientifik.kmath.structures.NDStructure
|
import scientifik.kmath.structures.NDStructure
|
||||||
import scientifik.kmath.structures.get
|
import scientifik.kmath.structures.get
|
||||||
|
|
||||||
|
|
||||||
class LUPDecomposition<T : Comparable<T>>(
|
class LUPDecomposition<T : Comparable<T>>(
|
||||||
private val elementContext: Ring<T>,
|
private val elementContext: Ring<T>,
|
||||||
internal val lu: NDStructure<T>,
|
internal val lu: NDStructure<T>,
|
||||||
val pivot: IntArray,
|
val pivot: IntArray,
|
||||||
private val even: Boolean
|
private val even: Boolean
|
||||||
) : DeterminantFeature<T> {
|
) : LUPDecompositionFeature<T>, DeterminantFeature<T> {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the matrix L of the decomposition.
|
* Returns the matrix L of the decomposition.
|
||||||
*
|
*
|
||||||
* L is a lower-triangular matrix with [Ring.one] in diagonal
|
* L is a lower-triangular matrix with [Ring.one] in diagonal
|
||||||
*/
|
*/
|
||||||
val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
|
override val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(LFeature)) { i, j ->
|
||||||
when {
|
when {
|
||||||
j < i -> lu[i, j]
|
j < i -> lu[i, j]
|
||||||
j == i -> elementContext.one
|
j == i -> elementContext.one
|
||||||
@ -35,7 +34,7 @@ class LUPDecomposition<T : Comparable<T>>(
|
|||||||
*
|
*
|
||||||
* U is an upper-triangular matrix including the diagonal
|
* U is an upper-triangular matrix including the diagonal
|
||||||
*/
|
*/
|
||||||
val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
|
override val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(UFeature)) { i, j ->
|
||||||
if (j >= i) lu[i, j] else elementContext.zero
|
if (j >= i) lu[i, j] else elementContext.zero
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -46,7 +45,7 @@ class LUPDecomposition<T : Comparable<T>>(
|
|||||||
* P is a sparse matrix with exactly one element set to [Ring.one] in
|
* P is a sparse matrix with exactly one element set to [Ring.one] in
|
||||||
* each row and each column, all other elements being set to [Ring.zero].
|
* each row and each column, all other elements being set to [Ring.zero].
|
||||||
*/
|
*/
|
||||||
val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
|
override val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
|
||||||
if (j == pivot[i]) elementContext.one else elementContext.zero
|
if (j == pivot[i]) elementContext.one else elementContext.zero
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -116,6 +116,14 @@ interface Matrix<T : Any> : NDStructure<T> {
|
|||||||
|
|
||||||
val features: Set<MatrixFeature>
|
val features: Set<MatrixFeature>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Suggest new feature for this matrix. The result is the new matrix that may or may not reuse existing data structure.
|
||||||
|
*
|
||||||
|
* The implementation does not guarantee to check that matrix actually have the feature, so one should be careful to
|
||||||
|
* add only those features that are valid.
|
||||||
|
*/
|
||||||
|
fun suggestFeature(vararg features: MatrixFeature): Matrix<T>
|
||||||
|
|
||||||
operator fun get(i: Int, j: Int): T
|
operator fun get(i: Int, j: Int): T
|
||||||
|
|
||||||
override fun get(index: IntArray): T = get(index[0], index[1])
|
override fun get(index: IntArray): T = get(index[0], index[1])
|
||||||
|
@ -12,7 +12,7 @@ interface MatrixFeature
|
|||||||
object DiagonalFeature : MatrixFeature
|
object DiagonalFeature : MatrixFeature
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Matix with this feature has all zero elements
|
* Matrix with this feature has all zero elements
|
||||||
*/
|
*/
|
||||||
object ZeroFeature : MatrixFeature
|
object ZeroFeature : MatrixFeature
|
||||||
|
|
||||||
@ -21,10 +21,42 @@ object ZeroFeature : MatrixFeature
|
|||||||
*/
|
*/
|
||||||
object UnitFeature : MatrixFeature
|
object UnitFeature : MatrixFeature
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Inverted matrix feature
|
||||||
|
*/
|
||||||
interface InverseMatrixFeature<T : Any> : MatrixFeature {
|
interface InverseMatrixFeature<T : Any> : MatrixFeature {
|
||||||
val inverse: Matrix<T>
|
val inverse: Matrix<T>
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A determinant container
|
||||||
|
*/
|
||||||
interface DeterminantFeature<T : Any> : MatrixFeature {
|
interface DeterminantFeature<T : Any> : MatrixFeature {
|
||||||
val determinant: T
|
val determinant: T
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Suppress("FunctionName")
|
||||||
|
fun <T: Any> DeterminantFeature(determinant: T) = object: DeterminantFeature<T>{
|
||||||
|
override val determinant: T = determinant
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Lower triangular matrix
|
||||||
|
*/
|
||||||
|
object LFeature: MatrixFeature
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Upper triangular feature
|
||||||
|
*/
|
||||||
|
object UFeature: MatrixFeature
|
||||||
|
|
||||||
|
/**
|
||||||
|
* TODO add documentation
|
||||||
|
*/
|
||||||
|
interface LUPDecompositionFeature<T : Any> : MatrixFeature {
|
||||||
|
val l: Matrix<T>
|
||||||
|
val u: Matrix<T>
|
||||||
|
val p: Matrix<T>
|
||||||
|
}
|
||||||
|
|
||||||
|
//TODO add sparse matrix feature
|
@ -8,6 +8,9 @@ class VirtualMatrix<T : Any>(
|
|||||||
) : Matrix<T> {
|
) : Matrix<T> {
|
||||||
override fun get(i: Int, j: Int): T = generator(i, j)
|
override fun get(i: Int, j: Int): T = generator(i, j)
|
||||||
|
|
||||||
|
override fun suggestFeature(vararg features: MatrixFeature) =
|
||||||
|
VirtualMatrix(rowNum, colNum, this.features + features, generator)
|
||||||
|
|
||||||
override fun equals(other: Any?): Boolean {
|
override fun equals(other: Any?): Boolean {
|
||||||
if (this === other) return true
|
if (this === other) return true
|
||||||
if (other !is Matrix<*>) return false
|
if (other !is Matrix<*>) return false
|
||||||
|
@ -15,6 +15,7 @@ class ShortNDRing(override val shape: IntArray) :
|
|||||||
override val zero by lazy { produce { ShortRing.zero } }
|
override val zero by lazy { produce { ShortRing.zero } }
|
||||||
override val one by lazy { produce { ShortRing.one } }
|
override val one by lazy { produce { ShortRing.one } }
|
||||||
|
|
||||||
|
@Suppress("OVERRIDE_BY_INLINE")
|
||||||
override inline fun buildBuffer(size: Int, crossinline initializer: (Int) -> Short): Buffer<Short> =
|
override inline fun buildBuffer(size: Int, crossinline initializer: (Int) -> Short): Buffer<Short> =
|
||||||
ShortBuffer(ShortArray(size) { initializer(it) })
|
ShortBuffer(ShortArray(size) { initializer(it) })
|
||||||
|
|
||||||
|
@ -48,10 +48,25 @@ class KomaMatrixContext<T : Any>(val factory: MatrixFactory<koma.matrix.Matrix<T
|
|||||||
KomaMatrix(a.toKoma().origin.inv())
|
KomaMatrix(a.toKoma().origin.inv())
|
||||||
}
|
}
|
||||||
|
|
||||||
inline class KomaMatrix<T : Any>(val origin: koma.matrix.Matrix<T>) : Matrix<T> {
|
class KomaMatrix<T : Any>(val origin: koma.matrix.Matrix<T>, features: Set<MatrixFeature>? = null) :
|
||||||
|
Matrix<T> {
|
||||||
override val rowNum: Int get() = origin.numRows()
|
override val rowNum: Int get() = origin.numRows()
|
||||||
override val colNum: Int get() = origin.numCols()
|
override val colNum: Int get() = origin.numCols()
|
||||||
override val features: Set<MatrixFeature> get() = emptySet()
|
|
||||||
|
override val features: Set<MatrixFeature> = features ?: setOf(
|
||||||
|
object : DeterminantFeature<T> {
|
||||||
|
override val determinant: T get() = origin.det()
|
||||||
|
},
|
||||||
|
object : LUPDecompositionFeature<T> {
|
||||||
|
private val lup by lazy { origin.LU() }
|
||||||
|
override val l: Matrix<T> get() = KomaMatrix(lup.second)
|
||||||
|
override val u: Matrix<T> get() = KomaMatrix(lup.third)
|
||||||
|
override val p: Matrix<T> get() = KomaMatrix(lup.first)
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
override fun suggestFeature(vararg features: MatrixFeature): Matrix<T> =
|
||||||
|
KomaMatrix(this.origin, this.features + features)
|
||||||
|
|
||||||
override fun get(i: Int, j: Int): T = origin.getGeneric(i, j)
|
override fun get(i: Int, j: Int): T = origin.getGeneric(i, j)
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user