resolve conflict

This commit is contained in:
Andrei Kislitsyn 2021-03-19 23:26:54 +03:00
commit a0534b896f
15 changed files with 449 additions and 235 deletions

View File

@ -17,7 +17,7 @@ public interface LinearOpsTensorAlgebra<T, TensorType : TensorStructure<T>, Inde
public fun TensorType.lu(): Pair<TensorType, IndexTensorType>
//https://pytorch.org/docs/stable/generated/torch.lu_unpack.html
public fun luPivot(lu: TensorType, pivots: IntTensor): Triple<TensorType, TensorType, TensorType>
public fun luPivot(lu: TensorType, pivots: IndexTensorType): Triple<TensorType, TensorType, TensorType>
//https://pytorch.org/docs/stable/linalg.html#torch.linalg.svd
public fun TensorType.svd(): Triple<TensorType, TensorType, TensorType>

View File

@ -3,9 +3,8 @@ package space.kscience.kmath.tensors
// https://proofwiki.org/wiki/Definition:Algebra_over_Ring
public interface TensorAlgebra<T, TensorType : TensorStructure<T>> {
//https://pytorch.org/docs/stable/generated/torch.full.html
public fun full(shape: IntArray, value: T): TensorType
public fun full(value: T, shape: IntArray): TensorType
public fun ones(shape: IntArray): TensorType
public fun zeros(shape: IntArray): TensorType

View File

@ -1,10 +1,91 @@
package space.kscience.kmath.tensors
package space.kscience.kmath.tensors.core
import space.kscience.kmath.structures.*
import kotlin.math.max
public class BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
override fun DoubleTensor.plus(other: DoubleTensor): DoubleTensor {
val broadcast = broadcastTensors(this, other)
val newThis = broadcast[0]
val newOther = broadcast[1]
val resBuffer = DoubleArray(newThis.strides.linearSize) { i ->
newThis.buffer.array()[i] + newOther.buffer.array()[i]
}
return DoubleTensor(newThis.shape, resBuffer)
}
override fun DoubleTensor.plusAssign(other: DoubleTensor) {
val newOther = broadcastTo(other, this.shape)
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] +=
newOther.buffer.array()[this.bufferStart + i]
}
}
override fun DoubleTensor.minus(other: DoubleTensor): DoubleTensor {
val broadcast = broadcastTensors(this, other)
val newThis = broadcast[0]
val newOther = broadcast[1]
val resBuffer = DoubleArray(newThis.strides.linearSize) { i ->
newThis.buffer.array()[i] - newOther.buffer.array()[i]
}
return DoubleTensor(newThis.shape, resBuffer)
}
override fun DoubleTensor.minusAssign(other: DoubleTensor) {
val newOther = broadcastTo(other, this.shape)
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] -=
newOther.buffer.array()[this.bufferStart + i]
}
}
override fun DoubleTensor.times(other: DoubleTensor): DoubleTensor {
val broadcast = broadcastTensors(this, other)
val newThis = broadcast[0]
val newOther = broadcast[1]
val resBuffer = DoubleArray(newThis.strides.linearSize) { i ->
newThis.buffer.array()[newOther.bufferStart + i] *
newOther.buffer.array()[newOther.bufferStart + i]
}
return DoubleTensor(newThis.shape, resBuffer)
}
override fun DoubleTensor.timesAssign(other: DoubleTensor) {
val newOther = broadcastTo(other, this.shape)
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] *=
newOther.buffer.array()[this.bufferStart + i]
}
}
override fun DoubleTensor.div(other: DoubleTensor): DoubleTensor {
val broadcast = broadcastTensors(this, other)
val newThis = broadcast[0]
val newOther = broadcast[1]
val resBuffer = DoubleArray(newThis.strides.linearSize) { i ->
newThis.buffer.array()[newOther.bufferStart + i] /
newOther.buffer.array()[newOther.bufferStart + i]
}
return DoubleTensor(newThis.shape, resBuffer)
}
override fun DoubleTensor.divAssign(other: DoubleTensor) {
val newOther = broadcastTo(other, this.shape)
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] /=
newOther.buffer.array()[this.bufferStart + i]
}
}
}
public inline fun <R> BroadcastDoubleTensorAlgebra(block: BroadcastDoubleTensorAlgebra.() -> R): R =
BroadcastDoubleTensorAlgebra().block()
internal inline fun broadcastShapes(vararg shapes: IntArray): IntArray {
println(shapes)
var totalDim = 0
for (shape in shapes) {
totalDim = max(totalDim, shape.size)
@ -100,67 +181,3 @@ internal inline fun broadcastTensors(vararg tensors: DoubleTensor): List<DoubleT
return res
}
internal inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkDot(a: TensorType, b: TensorType): Unit {
val sa = a.shape
val sb = b.shape
val na = sa.size
val nb = sb.size
var status: Boolean
if (nb == 1) {
status = sa.last() == sb[0]
} else {
status = sa.last() == sb[nb - 2]
if ((na > 2) and (nb > 2)) {
status = status and
(sa.take(nb - 2).toIntArray() contentEquals sb.take(nb - 2).toIntArray())
}
}
check(status) { "Incompatible shapes $sa and $sb for dot product" }
}
internal inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkTranspose(dim: Int, i: Int, j: Int): Unit =
check((i < dim) and (j < dim)) {
"Cannot transpose $i to $j for a tensor of dim $dim"
}
internal inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkView(a: TensorType, shape: IntArray): Unit =
check(a.shape.reduce(Int::times) == shape.reduce(Int::times))
/**
* Returns a reference to [IntArray] containing all of the elements of this [Buffer].
*/
internal fun Buffer<Int>.array(): IntArray = when(this) {
is IntBuffer -> array
else -> throw RuntimeException("Failed to cast Buffer to IntArray")
}
/**
* Returns a reference to [LongArray] containing all of the elements of this [Buffer].
*/
internal fun Buffer<Long>.array(): LongArray = when(this) {
is LongBuffer -> array
else -> throw RuntimeException("Failed to cast Buffer to LongArray")
}
/**
* Returns a reference to [FloatArray] containing all of the elements of this [Buffer].
*/
internal fun Buffer<Float>.array(): FloatArray = when(this) {
is FloatBuffer -> array
else -> throw RuntimeException("Failed to cast Buffer to FloatArray")
}
/**
* Returns a reference to [DoubleArray] containing all of the elements of this [Buffer].
*/
internal fun Buffer<Double>.array(): DoubleArray = when(this) {
is RealBuffer -> array
else -> throw RuntimeException("Failed to cast Buffer to DoubleArray")
}

View File

@ -1,8 +1,10 @@
package space.kscience.kmath.tensors
package space.kscience.kmath.tensors.core
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.nd.*
import space.kscience.kmath.structures.*
import space.kscience.kmath.tensors.TensorStrides
import space.kscience.kmath.tensors.TensorStructure
public open class BufferedTensor<T>(
@ -66,25 +68,25 @@ public open class BufferedTensor<T>(
}
public class IntTensor(
public class IntTensor internal constructor(
shape: IntArray,
buffer: IntArray,
offset: Int = 0
) : BufferedTensor<Int>(shape, IntBuffer(buffer), offset)
public class LongTensor(
public class LongTensor internal constructor(
shape: IntArray,
buffer: LongArray,
offset: Int = 0
) : BufferedTensor<Long>(shape, LongBuffer(buffer), offset)
public class FloatTensor(
public class FloatTensor internal constructor(
shape: IntArray,
buffer: FloatArray,
offset: Int = 0
) : BufferedTensor<Float>(shape, FloatBuffer(buffer), offset)
public class DoubleTensor(
public class DoubleTensor internal constructor(
shape: IntArray,
buffer: DoubleArray,
offset: Int = 0

View File

@ -1,4 +1,6 @@
package space.kscience.kmath.tensors
package space.kscience.kmath.tensors.core
import space.kscience.kmath.tensors.AnalyticTensorAlgebra
public class DoubleAnalyticTensorAlgebra:
AnalyticTensorAlgebra<Double, DoubleTensor>,

View File

@ -1,4 +1,6 @@
package space.kscience.kmath.tensors
package space.kscience.kmath.tensors.core
import space.kscience.kmath.tensors.LinearOpsTensorAlgebra
public class DoubleLinearOpsTensorAlgebra :
LinearOpsTensorAlgebra<Double, DoubleTensor, IntTensor>,

View File

@ -1,4 +1,6 @@
package space.kscience.kmath.tensors
package space.kscience.kmath.tensors.core
import space.kscience.kmath.tensors.OrderedTensorAlgebra
public open class DoubleOrderedTensorAlgebra:
OrderedTensorAlgebra<Double, DoubleTensor>,

View File

@ -1,8 +1,10 @@
package space.kscience.kmath.tensors
package space.kscience.kmath.tensors.core
import space.kscience.kmath.tensors.ReduceOpsTensorAlgebra
public class DoubleReduceOpsTensorAlgebra:
DoubleTensorAlgebra(),
ReduceOpsTensorAlgebra<Double, DoubleTensor> {
ReduceOpsTensorAlgebra<Double, DoubleTensor> {
override fun DoubleTensor.value(): Double {
check(this.shape contentEquals intArrayOf(1)) {

View File

@ -1,8 +1,18 @@
package space.kscience.kmath.tensors
package space.kscience.kmath.tensors.core
import space.kscience.kmath.tensors.TensorPartialDivisionAlgebra
public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, DoubleTensor> {
public fun fromArray(shape: IntArray, buffer: DoubleArray): DoubleTensor {
checkEmptyShape(shape)
checkEmptyDoubleBuffer(buffer)
checkBufferShapeConsistency(shape, buffer)
return DoubleTensor(shape, buffer, 0)
}
override operator fun DoubleTensor.get(i: Int): DoubleTensor {
val lastShape = this.shape.drop(1).toIntArray()
val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1)
@ -10,6 +20,7 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
return DoubleTensor(newShape, this.buffer.array(), newStart)
}
<<<<<<< HEAD:kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/DoubleTensorAlgebra.kt
override fun full(shape: IntArray, value: Double): DoubleTensor {
val buffer = DoubleArray(TensorStrides(shape).linearSize) { value }
return DoubleTensor(shape, buffer)
@ -19,14 +30,31 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
override fun ones(shape: IntArray): DoubleTensor = full(shape, 1.0)
=======
override fun full(value: Double, shape: IntArray): DoubleTensor {
checkEmptyShape(shape)
val buffer = DoubleArray(shape.reduce(Int::times)) { value }
return DoubleTensor(shape, buffer)
}
>>>>>>> ups/feature/tensor-algebra:kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt
override fun DoubleTensor.fullLike(value: Double): DoubleTensor {
val shape = this.shape
val buffer = DoubleArray(this.strides.linearSize) { value }
return DoubleTensor(shape, buffer)
}
<<<<<<< HEAD:kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/DoubleTensorAlgebra.kt
override fun DoubleTensor.zeroesLike(): DoubleTensor = this.fullLike(0.0)
=======
override fun zeros(shape: IntArray): DoubleTensor = full(0.0, shape)
override fun DoubleTensor.zeroesLike(): DoubleTensor = this.fullLike(0.0)
override fun ones(shape: IntArray): DoubleTensor = full(1.0, shape)
>>>>>>> ups/feature/tensor-algebra:kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt
override fun DoubleTensor.onesLike(): DoubleTensor = this.fullLike(1.0)
override fun eye(n: Int): DoubleTensor {
@ -54,13 +82,11 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
override fun DoubleTensor.plus(value: Double): DoubleTensor = value + this
override fun DoubleTensor.plus(other: DoubleTensor): DoubleTensor {
val broadcast = broadcastTensors(this, other)
val newThis = broadcast[0]
val newOther = broadcast[1]
val resBuffer = DoubleArray(newThis.strides.linearSize) { i ->
newThis.buffer.array()[i] + newOther.buffer.array()[i]
checkShapesCompatible(this, other)
val resBuffer = DoubleArray(this.strides.linearSize) { i ->
this.buffer.array()[i] + other.buffer.array()[i]
}
return DoubleTensor(newThis.shape, resBuffer)
return DoubleTensor(this.shape, resBuffer)
}
override fun DoubleTensor.plusAssign(value: Double) {
@ -70,10 +96,10 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
}
override fun DoubleTensor.plusAssign(other: DoubleTensor) {
val newOther = broadcastTo(other, this.shape)
checkShapesCompatible(this, other)
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] +=
newOther.buffer.array()[this.bufferStart + i]
other.buffer.array()[this.bufferStart + i]
}
}
@ -92,13 +118,11 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
}
override fun DoubleTensor.minus(other: DoubleTensor): DoubleTensor {
val broadcast = broadcastTensors(this, other)
val newThis = broadcast[0]
val newOther = broadcast[1]
val resBuffer = DoubleArray(newThis.strides.linearSize) { i ->
newThis.buffer.array()[i] - newOther.buffer.array()[i]
checkShapesCompatible(this, other)
val resBuffer = DoubleArray(this.strides.linearSize) { i ->
this.buffer.array()[i] - other.buffer.array()[i]
}
return DoubleTensor(newThis.shape, resBuffer)
return DoubleTensor(this.shape, resBuffer)
}
override fun DoubleTensor.minusAssign(value: Double) {
@ -108,10 +132,10 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
}
override fun DoubleTensor.minusAssign(other: DoubleTensor) {
val newOther = broadcastTo(other, this.shape)
checkShapesCompatible(this, other)
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] -=
newOther.buffer.array()[this.bufferStart + i]
other.buffer.array()[this.bufferStart + i]
}
}
@ -125,15 +149,12 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
override fun DoubleTensor.times(value: Double): DoubleTensor = value * this
override fun DoubleTensor.times(other: DoubleTensor): DoubleTensor {
val broadcast = broadcastTensors(this, other)
val newThis = broadcast[0]
val newOther = broadcast[1]
val resBuffer = DoubleArray(newThis.strides.linearSize) { i ->
newThis.buffer.array()[newOther.bufferStart + i] *
newOther.buffer.array()[newOther.bufferStart + i]
checkShapesCompatible(this, other)
val resBuffer = DoubleArray(this.strides.linearSize) { i ->
this.buffer.array()[other.bufferStart + i] *
other.buffer.array()[other.bufferStart + i]
}
return DoubleTensor(newThis.shape, resBuffer)
return DoubleTensor(this.shape, resBuffer)
}
override fun DoubleTensor.timesAssign(value: Double) {
@ -143,10 +164,40 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
}
override fun DoubleTensor.timesAssign(other: DoubleTensor) {
val newOther = broadcastTo(other, this.shape)
checkShapesCompatible(this, other)
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] *=
newOther.buffer.array()[this.bufferStart + i]
other.buffer.array()[this.bufferStart + i]
}
}
override fun DoubleTensor.div(value: Double): DoubleTensor {
val resBuffer = DoubleArray(this.strides.linearSize) { i ->
this.buffer.array()[this.bufferStart + i] / value
}
return DoubleTensor(this.shape, resBuffer)
}
override fun DoubleTensor.div(other: DoubleTensor): DoubleTensor {
checkShapesCompatible(this, other)
val resBuffer = DoubleArray(this.strides.linearSize) { i ->
this.buffer.array()[other.bufferStart + i] /
other.buffer.array()[other.bufferStart + i]
}
return DoubleTensor(this.shape, resBuffer)
}
override fun DoubleTensor.divAssign(value: Double) {
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] /= value
}
}
override fun DoubleTensor.divAssign(other: DoubleTensor) {
checkShapesCompatible(this, other)
for (i in 0 until this.strides.linearSize) {
this.buffer.array()[this.bufferStart + i] /=
other.buffer.array()[this.bufferStart + i]
}
}
@ -221,27 +272,10 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
TODO("Not yet implemented")
}
override fun DoubleTensor.div(value: Double): DoubleTensor {
TODO("Not yet implemented")
}
override fun DoubleTensor.div(other: DoubleTensor): DoubleTensor {
TODO("Not yet implemented")
}
override fun DoubleTensor.flatten(startDim: Int, endDim: Int): DoubleTensor {
TODO("Not yet implemented")
}
override fun DoubleTensor.divAssign(value: Double) {
TODO("Not yet implemented")
}
override fun DoubleTensor.divAssign(other: DoubleTensor) {
TODO("Not yet implemented")
}
override fun DoubleTensor.mean(dim: Int, keepDim: Boolean): DoubleTensor {
TODO("Not yet implemented")
}
@ -264,5 +298,6 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
}
public inline fun <R> DoubleTensorAlgebra(block: DoubleTensorAlgebra.() -> R): R =
DoubleTensorAlgebra().block()

View File

@ -0,0 +1,67 @@
package space.kscience.kmath.tensors.core
import space.kscience.kmath.tensors.TensorAlgebra
import space.kscience.kmath.tensors.TensorStructure
internal inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkEmptyShape(shape: IntArray): Unit =
check(shape.isNotEmpty()) {
"Illegal empty shape provided"
}
internal inline fun < TensorType : TensorStructure<Double>,
TorchTensorAlgebraType : TensorAlgebra<Double, TensorType>>
TorchTensorAlgebraType.checkEmptyDoubleBuffer(buffer: DoubleArray): Unit =
check(buffer.isNotEmpty()) {
"Illegal empty buffer provided"
}
internal inline fun < TensorType : TensorStructure<Double>,
TorchTensorAlgebraType : TensorAlgebra<Double, TensorType>>
TorchTensorAlgebraType.checkBufferShapeConsistency(shape: IntArray, buffer: DoubleArray): Unit =
check(buffer.size == shape.reduce(Int::times)) {
"Inconsistent shape ${shape.toList()} for buffer of size ${buffer.size} provided"
}
internal inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkShapesCompatible(a: TensorType, b: TensorType): Unit =
check(a.shape contentEquals b.shape) {
"Incompatible shapes ${a.shape.toList()} and ${b.shape.toList()} "
}
internal inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkDot(a: TensorType, b: TensorType): Unit {
val sa = a.shape
val sb = b.shape
val na = sa.size
val nb = sb.size
var status: Boolean
if (nb == 1) {
status = sa.last() == sb[0]
} else {
status = sa.last() == sb[nb - 2]
if ((na > 2) and (nb > 2)) {
status = status and
(sa.take(nb - 2).toIntArray() contentEquals sb.take(nb - 2).toIntArray())
}
}
check(status) { "Incompatible shapes ${sa.toList()} and ${sb.toList()} provided for dot product" }
}
internal inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkTranspose(dim: Int, i: Int, j: Int): Unit =
check((i < dim) and (j < dim)) {
"Cannot transpose $i to $j for a tensor of dim $dim"
}
internal inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkView(a: TensorType, shape: IntArray): Unit =
check(a.shape.reduce(Int::times) == shape.reduce(Int::times))

View File

@ -0,0 +1,36 @@
package space.kscience.kmath.tensors.core
import space.kscience.kmath.structures.*
/**
* Returns a reference to [IntArray] containing all of the elements of this [Buffer].
*/
internal fun Buffer<Int>.array(): IntArray = when (this) {
is IntBuffer -> array
else -> throw RuntimeException("Failed to cast Buffer to IntArray")
}
/**
* Returns a reference to [LongArray] containing all of the elements of this [Buffer].
*/
internal fun Buffer<Long>.array(): LongArray = when (this) {
is LongBuffer -> array
else -> throw RuntimeException("Failed to cast Buffer to LongArray")
}
/**
* Returns a reference to [FloatArray] containing all of the elements of this [Buffer].
*/
internal fun Buffer<Float>.array(): FloatArray = when (this) {
is FloatBuffer -> array
else -> throw RuntimeException("Failed to cast Buffer to FloatArray")
}
/**
* Returns a reference to [DoubleArray] containing all of the elements of this [Buffer].
*/
internal fun Buffer<Double>.array(): DoubleArray = when (this) {
is RealBuffer -> array
else -> throw RuntimeException("Failed to cast Buffer to DoubleArray")
}

View File

@ -1,105 +0,0 @@
package space.kscience.kmath.tensors
import kotlin.test.Test
import kotlin.test.assertTrue
class TestDoubleTensorAlgebra {
@Test
fun doublePlus() = DoubleTensorAlgebra {
val tensor = DoubleTensor(intArrayOf(2), doubleArrayOf(1.0, 2.0))
val res = 10.0 + tensor
assertTrue(res.buffer.array() contentEquals doubleArrayOf(11.0,12.0))
}
@Test
fun transpose1x1() = DoubleTensorAlgebra {
val tensor = DoubleTensor(intArrayOf(1), doubleArrayOf(0.0))
val res = tensor.transpose(0, 0)
assertTrue(res.buffer.array() contentEquals doubleArrayOf(0.0))
assertTrue(res.shape contentEquals intArrayOf(1))
}
@Test
fun transpose3x2() = DoubleTensorAlgebra {
val tensor = DoubleTensor(intArrayOf(3, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val res = tensor.transpose(1, 0)
assertTrue(res.buffer.array() contentEquals doubleArrayOf(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))
assertTrue(res.shape contentEquals intArrayOf(2, 3))
}
@Test
fun transpose1x2x3() = DoubleTensorAlgebra {
val tensor = DoubleTensor(intArrayOf(1, 2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val res01 = tensor.transpose(0, 1)
val res02 = tensor.transpose(0, 2)
val res12 = tensor.transpose(1, 2)
assertTrue(res01.shape contentEquals intArrayOf(2, 1, 3))
assertTrue(res02.shape contentEquals intArrayOf(3, 2, 1))
assertTrue(res12.shape contentEquals intArrayOf(1, 3, 2))
assertTrue(res01.buffer.array() contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
assertTrue(res02.buffer.array() contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
assertTrue(res12.buffer.array() contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
}
@Test
fun broadcastShapes() = DoubleTensorAlgebra {
assertTrue(broadcastShapes(
intArrayOf(2, 3), intArrayOf(1, 3), intArrayOf(1, 1, 1)
) contentEquals intArrayOf(1, 2, 3))
assertTrue(broadcastShapes(
intArrayOf(6, 7), intArrayOf(5, 6, 1), intArrayOf(7,), intArrayOf(5, 1, 7)
) contentEquals intArrayOf(5, 6, 7))
}
@Test
fun broadcastTo() = DoubleTensorAlgebra {
val tensor1 = DoubleTensor(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = DoubleTensor(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val res = broadcastTo(tensor2, tensor1.shape)
assertTrue(res.shape contentEquals intArrayOf(2, 3))
assertTrue(res.buffer.array() contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0))
}
@Test
fun broadcastTensors() = DoubleTensorAlgebra {
val tensor1 = DoubleTensor(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = DoubleTensor(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor3 = DoubleTensor(intArrayOf(1, 1, 1), doubleArrayOf(500.0))
val res = broadcastTensors(tensor1, tensor2, tensor3)
assertTrue(res[0].shape contentEquals intArrayOf(1, 2, 3))
assertTrue(res[1].shape contentEquals intArrayOf(1, 2, 3))
assertTrue(res[2].shape contentEquals intArrayOf(1, 2, 3))
assertTrue(res[0].buffer.array() contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
assertTrue(res[1].buffer.array() contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0))
assertTrue(res[2].buffer.array() contentEquals doubleArrayOf(500.0, 500.0, 500.0, 500.0, 500.0, 500.0))
}
@Test
fun minusTensor() = DoubleTensorAlgebra {
val tensor1 = DoubleTensor(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = DoubleTensor(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor3 = DoubleTensor(intArrayOf(1, 1, 1), doubleArrayOf(500.0))
assertTrue((tensor2 - tensor1).shape contentEquals intArrayOf(2, 3))
assertTrue((tensor2 - tensor1).buffer.array() contentEquals doubleArrayOf(9.0, 18.0, 27.0, 6.0, 15.0, 24.0))
assertTrue((tensor3 - tensor1).shape contentEquals intArrayOf(1, 2, 3))
assertTrue((tensor3 - tensor1).buffer.array()
contentEquals doubleArrayOf(499.0, 498.0, 497.0, 496.0, 495.0, 494.0))
assertTrue((tensor3 - tensor2).shape contentEquals intArrayOf(1, 1, 3))
assertTrue((tensor3 - tensor2).buffer.array() contentEquals doubleArrayOf(490.0, 480.0, 470.0))
}
}

View File

@ -0,0 +1,73 @@
package space.kscience.kmath.tensors.core
import kotlin.test.Test
import kotlin.test.assertTrue
class TestBroadcasting {
@Test
fun broadcastShapes() = DoubleTensorAlgebra {
assertTrue(
broadcastShapes(
intArrayOf(2, 3), intArrayOf(1, 3), intArrayOf(1, 1, 1)
) contentEquals intArrayOf(1, 2, 3)
)
assertTrue(
broadcastShapes(
intArrayOf(6, 7), intArrayOf(5, 6, 1), intArrayOf(7), intArrayOf(5, 1, 7)
) contentEquals intArrayOf(5, 6, 7)
)
}
@Test
fun broadcastTo() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val res = broadcastTo(tensor2, tensor1.shape)
assertTrue(res.shape contentEquals intArrayOf(2, 3))
assertTrue(res.buffer.array() contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0))
}
@Test
fun broadcastTensors() = DoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor3 = fromArray(intArrayOf(1, 1, 1), doubleArrayOf(500.0))
val res = broadcastTensors(tensor1, tensor2, tensor3)
assertTrue(res[0].shape contentEquals intArrayOf(1, 2, 3))
assertTrue(res[1].shape contentEquals intArrayOf(1, 2, 3))
assertTrue(res[2].shape contentEquals intArrayOf(1, 2, 3))
assertTrue(res[0].buffer.array() contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
assertTrue(res[1].buffer.array() contentEquals doubleArrayOf(10.0, 20.0, 30.0, 10.0, 20.0, 30.0))
assertTrue(res[2].buffer.array() contentEquals doubleArrayOf(500.0, 500.0, 500.0, 500.0, 500.0, 500.0))
}
@Test
fun minusTensor() = BroadcastDoubleTensorAlgebra {
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val tensor2 = fromArray(intArrayOf(1, 3), doubleArrayOf(10.0, 20.0, 30.0))
val tensor3 = fromArray(intArrayOf(1, 1, 1), doubleArrayOf(500.0))
val tensor21 = tensor2 - tensor1
val tensor31 = tensor3 - tensor1
val tensor32 = tensor3 - tensor2
assertTrue(tensor21.shape contentEquals intArrayOf(2, 3))
assertTrue(tensor21.buffer.array() contentEquals doubleArrayOf(9.0, 18.0, 27.0, 6.0, 15.0, 24.0))
assertTrue(tensor31.shape contentEquals intArrayOf(1, 2, 3))
assertTrue(
tensor31.buffer.array()
contentEquals doubleArrayOf(499.0, 498.0, 497.0, 496.0, 495.0, 494.0)
)
assertTrue(tensor32.shape contentEquals intArrayOf(1, 1, 3))
assertTrue(tensor32.buffer.array() contentEquals doubleArrayOf(490.0, 480.0, 470.0))
}
}

View File

@ -1,4 +1,4 @@
package space.kscience.kmath.tensors
package space.kscience.kmath.tensors.core
import space.kscience.kmath.nd.as1D
@ -13,20 +13,20 @@ class TestDoubleTensor {
@Test
fun valueTest() = DoubleReduceOpsTensorAlgebra {
val value = 12.5
val tensor = DoubleTensor(intArrayOf(1), doubleArrayOf(value))
val tensor = fromArray(intArrayOf(1), doubleArrayOf(value))
assertEquals(tensor.value(), value)
}
@Test
fun stridesTest(){
val tensor = DoubleTensor(intArrayOf(2,2), doubleArrayOf(3.5,5.8,58.4,2.4))
fun stridesTest() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(2,2), doubleArrayOf(3.5,5.8,58.4,2.4))
assertEquals(tensor[intArrayOf(0,1)], 5.8)
assertTrue(tensor.elements().map{ it.second }.toList().toDoubleArray() contentEquals tensor.buffer.toDoubleArray())
}
@Test
fun getTest() = DoubleTensorAlgebra {
val tensor = DoubleTensor(intArrayOf(1,2,2), doubleArrayOf(3.5,5.8,58.4,2.4))
val tensor = fromArray(intArrayOf(1,2,2), doubleArrayOf(3.5,5.8,58.4,2.4))
val matrix = tensor[0].as2D()
assertEquals(matrix[0,1], 5.8)

View File

@ -0,0 +1,82 @@
package space.kscience.kmath.tensors.core
import kotlin.test.Test
import kotlin.test.assertTrue
class TestDoubleTensorAlgebra {
@Test
fun doublePlus() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(2), doubleArrayOf(1.0, 2.0))
val res = 10.0 + tensor
assertTrue(res.buffer.array() contentEquals doubleArrayOf(11.0, 12.0))
}
@Test
fun transpose1x1() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(1), doubleArrayOf(0.0))
val res = tensor.transpose(0, 0)
assertTrue(res.buffer.array() contentEquals doubleArrayOf(0.0))
assertTrue(res.shape contentEquals intArrayOf(1))
}
@Test
fun transpose3x2() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(3, 2), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val res = tensor.transpose(1, 0)
assertTrue(res.buffer.array() contentEquals doubleArrayOf(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))
assertTrue(res.shape contentEquals intArrayOf(2, 3))
}
@Test
fun transpose1x2x3() = DoubleTensorAlgebra {
val tensor = fromArray(intArrayOf(1, 2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val res01 = tensor.transpose(0, 1)
val res02 = tensor.transpose(0, 2)
val res12 = tensor.transpose(1, 2)
assertTrue(res01.shape contentEquals intArrayOf(2, 1, 3))
assertTrue(res02.shape contentEquals intArrayOf(3, 2, 1))
assertTrue(res12.shape contentEquals intArrayOf(1, 3, 2))
assertTrue(res01.buffer.array() contentEquals doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
assertTrue(res02.buffer.array() contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
assertTrue(res12.buffer.array() contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
}
@Test
fun linearStructure() = DoubleTensorAlgebra {
val shape = intArrayOf(3)
val tensorA = full(value = -4.5, shape = shape)
val tensorB = full(value = 10.9, shape = shape)
val tensorC = full(value = 789.3, shape = shape)
val tensorD = full(value = -72.9, shape = shape)
val tensorE = full(value = 553.1, shape = shape)
val result = 15.8 * tensorA - 1.5 * tensorB * (-tensorD) + 0.02 * tensorC / tensorE - 39.4
val expected = fromArray(
shape,
(1..3).map {
15.8 * (-4.5) - 1.5 * 10.9 * 72.9 + 0.02 * 789.3 / 553.1 - 39.4
}.toDoubleArray()
)
val assignResult = zeros(shape)
tensorA *= 15.8
tensorB *= 1.5
tensorB *= -tensorD
tensorC *= 0.02
tensorC /= tensorE
assignResult += tensorA
assignResult -= tensorB
assignResult += tensorC
assignResult += -39.4
assertTrue(expected.buffer.array() contentEquals result.buffer.array())
assertTrue(expected.buffer.array() contentEquals assignResult.buffer.array())
}
}