diff --git a/kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/TensorAlgebra.kt b/kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/TensorAlgebra.kt
index 7ec920d88..1673657d3 100644
--- a/kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/TensorAlgebra.kt
+++ b/kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/TensorAlgebra.kt
@@ -3,19 +3,17 @@ package space.kscience.kmath.tensors
 // https://proofwiki.org/wiki/Definition:Algebra_over_Ring
 public interface TensorAlgebra<T, TensorType : TensorStructure<T>> {
 
+    //https://pytorch.org/docs/stable/generated/torch.full.html
+    public fun full(value: T, shape: IntArray): TensorType
+
+    //https://pytorch.org/docs/stable/generated/torch.full_like.html#torch.full_like
+    public fun TensorType.fullLike(value: T): TensorType
 
     public fun zeros(shape: IntArray): TensorType
     public fun TensorType.zeroesLike(): TensorType // mb it shouldn't be tensor but algebra method (like in numpy/torch) ?
     public fun ones(shape: IntArray): TensorType
     public fun TensorType.onesLike(): TensorType
 
-
-    //https://pytorch.org/docs/stable/generated/torch.full.html
-    public fun full(shape: IntArray, value: T): TensorType
-
-    //https://pytorch.org/docs/stable/generated/torch.full_like.html#torch.full_like
-    public fun TensorType.fullLike(value: T): TensorType
-
     //https://pytorch.org/docs/stable/generated/torch.eye.html
     public fun eye(n: Int): TensorType
 
diff --git a/kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt b/kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt
index 9decc0e6a..1c156b4e3 100644
--- a/kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt
+++ b/kmath-core/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt
@@ -20,23 +20,25 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
         return DoubleTensor(newShape, this.buffer.array(), newStart)
     }
 
-    override fun zeros(shape: IntArray): DoubleTensor {
-        TODO("Not yet implemented")
-    }
-
-    override fun DoubleTensor.zeroesLike(): DoubleTensor {
-        val shape = this.shape
-        val buffer = DoubleArray(this.strides.linearSize) { 0.0 }
+    override fun full(value: Double, shape: IntArray): DoubleTensor {
+        checkEmptyShape(shape)
+        val buffer = DoubleArray(shape.reduce(Int::times)) { value }
         return DoubleTensor(shape, buffer)
     }
 
-    override fun ones(shape: IntArray): DoubleTensor {
-        TODO("Not yet implemented")
+    override fun DoubleTensor.fullLike(value: Double): DoubleTensor {
+        val shape = this.shape
+        val buffer = DoubleArray(this.strides.linearSize) { value }
+        return DoubleTensor(shape, buffer)
     }
 
-    override fun DoubleTensor.onesLike(): DoubleTensor {
-        TODO("Not yet implemented")
-    }
+    override fun zeros(shape: IntArray): DoubleTensor = full(0.0, shape)
+
+    override fun DoubleTensor.zeroesLike(): DoubleTensor = this.fullLike(0.0)
+
+    override fun ones(shape: IntArray): DoubleTensor = full(1.0, shape)
+
+    override fun DoubleTensor.onesLike(): DoubleTensor = this.fullLike(1.0)
 
     override fun eye(n: Int): DoubleTensor {
         val shape = intArrayOf(n, n)
@@ -225,15 +227,6 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double, Dou
         TODO("Not yet implemented")
     }
 
-    override fun full(shape: IntArray, value: Double): DoubleTensor {
-        TODO("Not yet implemented")
-    }
-
-    override fun DoubleTensor.fullLike(value: Double): DoubleTensor {
-        TODO("Not yet implemented")
-    }
-
-
     override fun DoubleTensor.sum(dim: Int, keepDim: Boolean): DoubleTensor {
         TODO("Not yet implemented")
     }
diff --git a/kmath-core/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleTensorAlgebra.kt b/kmath-core/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleTensorAlgebra.kt
index 8b4d5ca16..ddfba0d59 100644
--- a/kmath-core/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleTensorAlgebra.kt
+++ b/kmath-core/src/commonTest/kotlin/space/kscience/kmath/tensors/core/TestDoubleTensorAlgebra.kt
@@ -47,4 +47,36 @@ class TestDoubleTensorAlgebra {
         assertTrue(res12.buffer.array() contentEquals doubleArrayOf(1.0, 4.0, 2.0, 5.0, 3.0, 6.0))
     }
 
+    @Test
+    fun linearStructure() = DoubleTensorAlgebra {
+        val shape = intArrayOf(3)
+        val tensorA = full(value = -4.5, shape = shape)
+        val tensorB = full(value = 10.9, shape = shape)
+        val tensorC = full(value = 789.3, shape = shape)
+        val tensorD = full(value = -72.9, shape = shape)
+        val tensorE = full(value = 553.1, shape = shape)
+        val result = 15.8 * tensorA - 1.5 * tensorB * (-tensorD) + 0.02 * tensorC / tensorE - 39.4
+
+        val expected = fromArray(
+            shape,
+            (1..3).map {
+                15.8 * (-4.5) - 1.5 * 10.9 * 72.9 + 0.02 * 789.3 / 553.1 - 39.4
+            }.toDoubleArray()
+        )
+
+        val assignResult = zeros(shape)
+        tensorA *= 15.8
+        tensorB *= 1.5
+        tensorB *= -tensorD
+        tensorC *= 0.02
+        tensorC /= tensorE
+        assignResult += tensorA
+        assignResult -= tensorB
+        assignResult += tensorC
+        assignResult += -39.4
+
+        assertTrue(expected.buffer.array() contentEquals result.buffer.array())
+        assertTrue(expected.buffer.array() contentEquals assignResult.buffer.array())
+    }
+
 }
\ No newline at end of file