forked from kscience/kmath
add documentation to map and randomNormal function
This commit is contained in:
parent
56cadbd9ef
commit
90149e3965
@ -415,6 +415,12 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
||||
return resTensor.tensor
|
||||
}
|
||||
|
||||
/**
|
||||
* Applies the [transform] function to each element of the tensor and returns the resulting modified tensor.
|
||||
*
|
||||
* @param transform the function to be applied to each element of the tensor.
|
||||
* @return the resulting tensor after applying the function.
|
||||
*/
|
||||
public fun Tensor<Double>.map(transform: (Double) -> Double): DoubleTensor {
|
||||
return DoubleTensor(
|
||||
tensor.shape,
|
||||
@ -423,10 +429,24 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Compares element-wise two tensors with a specified precision.
|
||||
*
|
||||
* @param other the tensor to compare with `input` tensor.
|
||||
* @param epsilon permissible error when comparing two Double values.
|
||||
* @return true if two tensors have the same shape and elements, false otherwise.
|
||||
*/
|
||||
public fun Tensor<Double>.eq(other: Tensor<Double>, epsilon: Double): Boolean {
|
||||
return tensor.eq(other) { x, y -> abs(x - y) < epsilon }
|
||||
}
|
||||
|
||||
/**
|
||||
* Compares element-wise two tensors.
|
||||
* Comparison of two Double values occurs with 1e-5 precision.
|
||||
*
|
||||
* @param other the tensor to compare with `input` tensor.
|
||||
* @return true if two tensors have the same shape and elements, false otherwise.
|
||||
*/
|
||||
public infix fun Tensor<Double>.eq(other: Tensor<Double>): Boolean = tensor.eq(other, 1e-5)
|
||||
|
||||
private fun Tensor<Double>.eq(
|
||||
@ -450,9 +470,25 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
||||
return true
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a tensor of random numbers drawn from normal distributions with 0.0 mean and 1.0 standard deviation.
|
||||
*
|
||||
* @param shape the desired shape for the output tensor.
|
||||
* @param seed the random seed of the pseudo-random number generator.
|
||||
* @return tensor of a given shape filled with numbers from the normal distribution
|
||||
* with 0.0 mean and 1.0 standard deviation.
|
||||
*/
|
||||
public fun randomNormal(shape: IntArray, seed: Long = 0): DoubleTensor =
|
||||
DoubleTensor(shape, getRandomNormals(shape.reduce(Int::times), seed))
|
||||
|
||||
/**
|
||||
* Returns a tensor with the same shape as `input` of random numbers drawn from normal distributions
|
||||
* with 0.0 mean and 1.0 standard deviation.
|
||||
*
|
||||
* @param seed the random seed of the pseudo-random number generator.
|
||||
* @return tensor with the same shape as `input` filled with numbers from the normal distribution
|
||||
* with 0.0 mean and 1.0 standard deviation.
|
||||
*/
|
||||
public fun Tensor<Double>.randomNormalLike(seed: Long = 0): DoubleTensor =
|
||||
DoubleTensor(tensor.shape, getRandomNormals(tensor.shape.reduce(Int::times), seed))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user