forked from kscience/kmath
update instructions
This commit is contained in:
parent
adfb541fff
commit
84937ecaca
@ -10,5 +10,22 @@ which covers a wide set of applications from particle physics
|
||||
simulations to deep learning and general differentiable programs
|
||||
written on top of `AutoGrad` & `ATen`.
|
||||
|
||||
Currently, the native artifacts support only `GNU` and
|
||||
`CUDA` for GPU acceleration.
|
||||
## Installation
|
||||
|
||||
Currently, to build native artifacts, we support only
|
||||
the [GNU](https://gcc.gnu.org/) toolchain. For `GPU` kernels, we require a compatible
|
||||
[CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html)
|
||||
installation. If you are on Windows, we recommend setting up
|
||||
everything on [WSL](https://docs.nvidia.com/cuda/wsl-user-guide/index.html).
|
||||
|
||||
To install the library, you have to publish
|
||||
locally `kmath-core`, `kmath-tensors` with `kmath-noa`:
|
||||
|
||||
```
|
||||
./gradlew -q :kmath-core:publishToMavenLocal :kmath-tensors:publishToMavenLocal :kmath-noa:publishToMavenLocal
|
||||
```
|
||||
|
||||
This builds `jtorch` a JNI wrapper for `NOA/LibTorch`, placed inside:
|
||||
|
||||
`~/.konan/third-party/kmath-noa-<version>/cpp-build`
|
||||
|
||||
|
@ -18,8 +18,8 @@ dependencies {
|
||||
api(project(":kmath-tensors"))
|
||||
}
|
||||
|
||||
val home = System.getProperty("user.home")
|
||||
val javaHome = System.getProperty("java.home")
|
||||
val home: String = System.getProperty("user.home")
|
||||
val javaHome: String = System.getProperty("java.home")
|
||||
val thirdPartyDir = "$home/.konan/third-party/kmath-noa-${project.property("version")}"
|
||||
val cppBuildDir = "$thirdPartyDir/cpp-build"
|
||||
val cppSources = projectDir.resolve("src/main/cpp")
|
||||
|
Loading…
Reference in New Issue
Block a user