forked from kscience/kmath
Slight adjustment to tensor internals
This commit is contained in:
parent
c8621ee5b7
commit
7f32348e7a
@ -5,8 +5,10 @@
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.nd.MutableStructure2D
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.structures.indices
|
||||
import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra
|
||||
import space.kscience.kmath.tensors.api.LinearOpsTensorAlgebra
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
@ -813,28 +815,32 @@ public open class DoubleTensorAlgebra :
|
||||
val sTensor = zeros(commonShape + intArrayOf(min(n, m)))
|
||||
val vTensor = zeros(commonShape + intArrayOf(min(n, m), m))
|
||||
|
||||
tensor.matrixSequence()
|
||||
.zip(
|
||||
uTensor.matrixSequence()
|
||||
.zip(
|
||||
sTensor.vectorSequence()
|
||||
.zip(vTensor.matrixSequence())
|
||||
)
|
||||
).forEach { (matrix, USV) ->
|
||||
val matrixSize = matrix.shape.reduce { acc, i -> acc * i }
|
||||
val curMatrix = DoubleTensor(
|
||||
matrix.shape,
|
||||
matrix.mutableBuffer.array().slice(matrix.bufferStart until matrix.bufferStart + matrixSize)
|
||||
.toDoubleArray()
|
||||
)
|
||||
svdHelper(curMatrix, USV, m, n, epsilon)
|
||||
}
|
||||
val matrices = tensor.matrices
|
||||
val uTensors = uTensor.matrices
|
||||
val sTensorVectors = sTensor.vectors
|
||||
val vTensors = vTensor.matrices
|
||||
|
||||
for (index in matrices.indices) {
|
||||
val matrix = matrices[index]
|
||||
val usv = Triple(
|
||||
uTensors[index],
|
||||
sTensorVectors[index],
|
||||
vTensors[index]
|
||||
)
|
||||
val matrixSize = matrix.shape.reduce { acc, i -> acc * i }
|
||||
val curMatrix = DoubleTensor(
|
||||
matrix.shape,
|
||||
matrix.mutableBuffer.array()
|
||||
.slice(matrix.bufferStart until matrix.bufferStart + matrixSize)
|
||||
.toDoubleArray()
|
||||
)
|
||||
svdHelper(curMatrix, usv, m, n, epsilon)
|
||||
}
|
||||
|
||||
return Triple(uTensor.transpose(), sTensor, vTensor.transpose())
|
||||
}
|
||||
|
||||
override fun Tensor<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> =
|
||||
symEig(epsilon = 1e-15)
|
||||
override fun Tensor<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> = symEig(epsilon = 1e-15)
|
||||
|
||||
/**
|
||||
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
|
||||
@ -846,12 +852,26 @@ public open class DoubleTensorAlgebra :
|
||||
*/
|
||||
public fun Tensor<Double>.symEig(epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
|
||||
checkSymmetric(tensor, epsilon)
|
||||
|
||||
fun MutableStructure2D<Double>.cleanSym(n: Int) {
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until n) {
|
||||
if (i == j) {
|
||||
this[i, j] = sign(this[i, j])
|
||||
} else {
|
||||
this[i, j] = 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
val (u, s, v) = tensor.svd(epsilon)
|
||||
val shp = s.shape + intArrayOf(1)
|
||||
val utv = u.transpose() dot v
|
||||
val n = s.shape.last()
|
||||
for (matrix in utv.matrixSequence())
|
||||
cleanSymHelper(matrix.as2D(), n)
|
||||
for (matrix in utv.matrixSequence()) {
|
||||
matrix.as2D().cleanSym(n)
|
||||
}
|
||||
|
||||
val eig = (utv dot s.view(shp)).view(s.shape)
|
||||
return eig to v
|
||||
|
@ -10,41 +10,54 @@ import space.kscience.kmath.nd.MutableStructure2D
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.tensors.core.*
|
||||
import space.kscience.kmath.structures.VirtualBuffer
|
||||
import space.kscience.kmath.structures.asSequence
|
||||
import space.kscience.kmath.tensors.core.BufferedTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra.Companion.valueOrNull
|
||||
import space.kscience.kmath.tensors.core.IntTensor
|
||||
import kotlin.math.abs
|
||||
import kotlin.math.min
|
||||
import kotlin.math.sign
|
||||
import kotlin.math.sqrt
|
||||
|
||||
internal val <T> BufferedTensor<T>.vectors: VirtualBuffer<BufferedTensor<T>>
|
||||
get() {
|
||||
val n = shape.size
|
||||
val vectorOffset = shape[n - 1]
|
||||
val vectorShape = intArrayOf(shape.last())
|
||||
|
||||
internal fun <T> BufferedTensor<T>.vectorSequence(): Sequence<BufferedTensor<T>> = sequence {
|
||||
val n = shape.size
|
||||
val vectorOffset = shape[n - 1]
|
||||
val vectorShape = intArrayOf(shape.last())
|
||||
for (offset in 0 until numElements step vectorOffset) {
|
||||
val vector = BufferedTensor(vectorShape, mutableBuffer, bufferStart + offset)
|
||||
yield(vector)
|
||||
return VirtualBuffer(numElements / vectorOffset) { index ->
|
||||
val offset = index * vectorOffset
|
||||
BufferedTensor(vectorShape, mutableBuffer, bufferStart + offset)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTensor<T>> = sequence {
|
||||
val n = shape.size
|
||||
check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" }
|
||||
val matrixOffset = shape[n - 1] * shape[n - 2]
|
||||
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1])
|
||||
for (offset in 0 until numElements step matrixOffset) {
|
||||
val matrix = BufferedTensor(matrixShape, mutableBuffer, bufferStart + offset)
|
||||
yield(matrix)
|
||||
|
||||
internal fun <T> BufferedTensor<T>.vectorSequence(): Sequence<BufferedTensor<T>> = vectors.asSequence()
|
||||
|
||||
/**
|
||||
* A random access alternative to [matrixSequence]
|
||||
*/
|
||||
internal val <T> BufferedTensor<T>.matrices: VirtualBuffer<BufferedTensor<T>>
|
||||
get() {
|
||||
val n = shape.size
|
||||
check(n >= 2) { "Expected tensor with 2 or more dimensions, got size $n" }
|
||||
val matrixOffset = shape[n - 1] * shape[n - 2]
|
||||
val matrixShape = intArrayOf(shape[n - 2], shape[n - 1])
|
||||
|
||||
return VirtualBuffer(numElements / matrixOffset) { index ->
|
||||
val offset = index * matrixOffset
|
||||
BufferedTensor(matrixShape, mutableBuffer, bufferStart + offset)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTensor<T>> = matrices.asSequence()
|
||||
|
||||
internal fun dotHelper(
|
||||
a: MutableStructure2D<Double>,
|
||||
b: MutableStructure2D<Double>,
|
||||
res: MutableStructure2D<Double>,
|
||||
l: Int, m: Int, n: Int
|
||||
l: Int, m: Int, n: Int,
|
||||
) {
|
||||
for (i in 0 until l) {
|
||||
for (j in 0 until n) {
|
||||
@ -60,7 +73,7 @@ internal fun dotHelper(
|
||||
internal fun luHelper(
|
||||
lu: MutableStructure2D<Double>,
|
||||
pivots: MutableStructure1D<Int>,
|
||||
epsilon: Double
|
||||
epsilon: Double,
|
||||
): Boolean {
|
||||
|
||||
val m = lu.rowNum
|
||||
@ -122,7 +135,7 @@ internal fun <T> BufferedTensor<T>.setUpPivots(): IntTensor {
|
||||
|
||||
internal fun DoubleTensorAlgebra.computeLU(
|
||||
tensor: DoubleTensor,
|
||||
epsilon: Double
|
||||
epsilon: Double,
|
||||
): Pair<DoubleTensor, IntTensor>? {
|
||||
|
||||
checkSquareMatrix(tensor.shape)
|
||||
@ -139,7 +152,7 @@ internal fun DoubleTensorAlgebra.computeLU(
|
||||
internal fun pivInit(
|
||||
p: MutableStructure2D<Double>,
|
||||
pivot: MutableStructure1D<Int>,
|
||||
n: Int
|
||||
n: Int,
|
||||
) {
|
||||
for (i in 0 until n) {
|
||||
p[i, pivot[i]] = 1.0
|
||||
@ -150,7 +163,7 @@ internal fun luPivotHelper(
|
||||
l: MutableStructure2D<Double>,
|
||||
u: MutableStructure2D<Double>,
|
||||
lu: MutableStructure2D<Double>,
|
||||
n: Int
|
||||
n: Int,
|
||||
) {
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until n) {
|
||||
@ -170,7 +183,7 @@ internal fun luPivotHelper(
|
||||
internal fun choleskyHelper(
|
||||
a: MutableStructure2D<Double>,
|
||||
l: MutableStructure2D<Double>,
|
||||
n: Int
|
||||
n: Int,
|
||||
) {
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until i) {
|
||||
@ -200,7 +213,7 @@ internal fun luMatrixDet(lu: MutableStructure2D<Double>, pivots: MutableStructur
|
||||
internal fun luMatrixInv(
|
||||
lu: MutableStructure2D<Double>,
|
||||
pivots: MutableStructure1D<Int>,
|
||||
invMatrix: MutableStructure2D<Double>
|
||||
invMatrix: MutableStructure2D<Double>,
|
||||
) {
|
||||
val m = lu.shape[0]
|
||||
|
||||
@ -227,7 +240,7 @@ internal fun luMatrixInv(
|
||||
internal fun DoubleTensorAlgebra.qrHelper(
|
||||
matrix: DoubleTensor,
|
||||
q: DoubleTensor,
|
||||
r: MutableStructure2D<Double>
|
||||
r: MutableStructure2D<Double>,
|
||||
) {
|
||||
checkSquareMatrix(matrix.shape)
|
||||
val n = matrix.shape[0]
|
||||
@ -280,12 +293,11 @@ internal fun DoubleTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10)
|
||||
|
||||
internal fun DoubleTensorAlgebra.svdHelper(
|
||||
matrix: DoubleTensor,
|
||||
USV: Pair<BufferedTensor<Double>, Pair<BufferedTensor<Double>, BufferedTensor<Double>>>,
|
||||
m: Int, n: Int, epsilon: Double
|
||||
USV: Triple<BufferedTensor<Double>, BufferedTensor<Double>, BufferedTensor<Double>>,
|
||||
m: Int, n: Int, epsilon: Double,
|
||||
) {
|
||||
val res = ArrayList<Triple<Double, DoubleTensor, DoubleTensor>>(0)
|
||||
val (matrixU, SV) = USV
|
||||
val (matrixS, matrixV) = SV
|
||||
val (matrixU, matrixS, matrixV) = USV
|
||||
|
||||
for (k in 0 until min(n, m)) {
|
||||
var a = matrix.copy()
|
||||
@ -329,14 +341,3 @@ internal fun DoubleTensorAlgebra.svdHelper(
|
||||
matrixV.mutableBuffer.array()[matrixV.bufferStart + i] = vBuffer[i]
|
||||
}
|
||||
}
|
||||
|
||||
internal fun cleanSymHelper(matrix: MutableStructure2D<Double>, n: Int) {
|
||||
for (i in 0 until n)
|
||||
for (j in 0 until n) {
|
||||
if (i == j) {
|
||||
matrix[i, j] = sign(matrix[i, j])
|
||||
} else {
|
||||
matrix[i, j] = 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user