[WIP] Features to Attributes refactoring

This commit is contained in:
Alexander Nozik 2023-07-09 15:51:50 +03:00
parent d3893ab7e6
commit 6da51b7794
34 changed files with 457 additions and 1300 deletions

View File

@ -3,9 +3,11 @@
## Unreleased ## Unreleased
### Added ### Added
- Explicit `mutableStructureND` builders for mutable stucures - New Attributes-kt module that could be used as stand-alone. It declares type-safe attributes containers.
- Explicit `mutableStructureND` builders for mutable structures
### Changed ### Changed
- Features replaced with Attributes.
### Deprecated ### Deprecated

View File

@ -9,20 +9,31 @@ import kotlin.reflect.KType
public interface Attribute<T> public interface Attribute<T>
/**
* An attribute that could be either present or absent
*/
public interface FlagAttribute : Attribute<Unit>
/**
* An attribute with a default value
*/
public interface AttributeWithDefault<T> : Attribute<T> { public interface AttributeWithDefault<T> : Attribute<T> {
public val default: T public val default: T
} }
/**
* Attribute containing a set of values
*/
public interface SetAttribute<V> : Attribute<Set<V>> public interface SetAttribute<V> : Attribute<Set<V>>
/** /**
* An attribute that has a type parameter for value * An attribute that has a type parameter for value
* @param type parameter-type
*/ */
public abstract class PolymorphicAttribute<T>(public val type: KType) : Attribute<T> { public abstract class PolymorphicAttribute<T>(public val type: SafeType<T>) : Attribute<T> {
override fun equals(other: Any?): Boolean = (other as? PolymorphicAttribute<*>)?.type == this.type override fun equals(other: Any?): Boolean = other != null &&
(this::class == other::class) &&
(other as? PolymorphicAttribute<*>)?.type == this.type
override fun hashCode(): Int { override fun hashCode(): Int = this::class.hashCode() + type.hashCode()
return type.hashCode()
}
} }

View File

@ -24,18 +24,45 @@ public value class Attributes internal constructor(public val content: Map<out A
public fun Attributes.isEmpty(): Boolean = content.isEmpty() public fun Attributes.isEmpty(): Boolean = content.isEmpty()
/**
* Get attribute value or default
*/
public fun <T> Attributes.getOrDefault(attribute: AttributeWithDefault<T>): T = get(attribute) ?: attribute.default public fun <T> Attributes.getOrDefault(attribute: AttributeWithDefault<T>): T = get(attribute) ?: attribute.default
public fun <T, A : Attribute<T>> Attributes.withAttribute( /**
* Check if there is an attribute that matches given key by type and adheres to [predicate].
*/
@Suppress("UNCHECKED_CAST")
public inline fun <T, reified A : Attribute<T>> Attributes.any(predicate: (value: T) -> Boolean): Boolean =
content.any { (mapKey, mapValue) -> mapKey is A && predicate(mapValue as T) }
/**
* Check if there is an attribute of given type (subtypes included)
*/
public inline fun <T, reified A : Attribute<T>> Attributes.any(): Boolean =
content.any { (mapKey, _) -> mapKey is A }
/**
* Check if [Attributes] contains a flag. Multiple keys that are instances of a flag could be present
*/
public inline fun <reified A : FlagAttribute> Attributes.has(): Boolean =
content.keys.any { it is A }
/**
* Create [Attributes] with an added or replaced attribute key.
*/
public fun <T : Any, A : Attribute<T>> Attributes.withAttribute(
attribute: A, attribute: A,
attrValue: T?, attrValue: T,
): Attributes = Attributes( ): Attributes = Attributes(content + (attribute to attrValue))
if (attrValue == null) {
content - attribute public fun <A : Attribute<Unit>> Attributes.withAttribute(attribute: A): Attributes =
} else { withAttribute(attribute, Unit)
content + (attribute to attrValue)
} /**
) * Create new [Attributes] by removing [attribute] key
*/
public fun Attributes.withoutAttribute(attribute: Attribute<*>): Attributes = Attributes(content.minus(attribute))
/** /**
* Add an element to a [SetAttribute] * Add an element to a [SetAttribute]
@ -63,6 +90,9 @@ public fun <T, A : SetAttribute<T>> Attributes.withoutAttributeElement(
) )
} }
/**
* Create [Attributes] with a single key
*/
public fun <T : Any, A : Attribute<T>> Attributes( public fun <T : Any, A : Attribute<T>> Attributes(
attribute: A, attribute: A,
attrValue: T, attrValue: T,

View File

@ -0,0 +1,26 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
import kotlin.reflect.KClass
import kotlin.reflect.KType
import kotlin.reflect.typeOf
/**
* Safe variant ok Kotlin [KType] that ensures that the type parameter is of the same type ask [kType]
*
* @param kType raw [KType]
*/
public class SafeType<T> @PublishedApi internal constructor(public val kType: KType)
public inline fun <reified T> safeTypeOf(): SafeType<T> = SafeType(typeOf<T>())
/**
* Derive Kotlin [KClass] from this type and fail if the type is not a class (should not happen)
*/
@Suppress("UNCHECKED_CAST")
@UnstableAttributesAPI
public val <T> SafeType<T>.kClass: KClass<T & Any> get() = kType.classifier as KClass<T & Any>

View File

@ -0,0 +1,17 @@
/*
* Copyright 2018-2023 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.attributes
/**
* Marks declarations that are still experimental in the Attributes-kt APIs, which means that the design of the corresponding
* declarations has open issues that may (or may not) lead to their changes in the future. Roughly speaking, there is
* a chance of those declarations will be deprecated in the future or the semantics of their behavior may change
* in some way that may break some code.
*/
@MustBeDocumented
@Retention(value = AnnotationRetention.BINARY)
@RequiresOptIn("This API is unstable and could change in future", RequiresOptIn.Level.WARNING)
public annotation class UnstableAttributesAPI

View File

@ -1,4 +1,4 @@
enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS") rootProject.name = "buildSrc"
dependencyResolutionManagement { dependencyResolutionManagement {
val projectProperties = java.util.Properties() val projectProperties = java.util.Properties()
@ -13,6 +13,7 @@ dependencyResolutionManagement {
val toolsVersion: String = projectProperties["toolsVersion"].toString() val toolsVersion: String = projectProperties["toolsVersion"].toString()
@Suppress("UnstableApiUsage")
repositories { repositories {
mavenLocal() mavenLocal()
maven("https://repo.kotlin.link") maven("https://repo.kotlin.link")

View File

@ -56,6 +56,8 @@ public object EjmlLinearSpace${ops} : EjmlLinearSpace<${type}, ${kmathAlgebra},
*/ */
override val elementAlgebra: $kmathAlgebra get() = $kmathAlgebra override val elementAlgebra: $kmathAlgebra get() = $kmathAlgebra
override val elementType: KType get() = typeOf<$type>()
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
override fun Matrix<${type}>.toEjml(): Ejml${type}Matrix<${ejmlMatrixType}> = when { override fun Matrix<${type}>.toEjml(): Ejml${type}Matrix<${ejmlMatrixType}> = when {
this is Ejml${type}Matrix<*> && origin is $ejmlMatrixType -> this as Ejml${type}Matrix<${ejmlMatrixType}> this is Ejml${type}Matrix<*> && origin is $ejmlMatrixType -> this as Ejml${type}Matrix<${ejmlMatrixType}>

View File

@ -12,4 +12,3 @@ org.gradle.parallel=true
org.gradle.workers.max=4 org.gradle.workers.max=4
org.gradle.configureondemand=true org.gradle.configureondemand=true
org.gradle.jvmargs=-Xmx4096m org.gradle.jvmargs=-Xmx4096m

View File

@ -1,5 +1,5 @@
distributionBase=GRADLE_USER_HOME distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-8.1.1-bin.zip distributionUrl=https\://services.gradle.org/distributions/gradle-8.2-bin.zip
zipStoreBase=GRADLE_USER_HOME zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists zipStorePath=wrapper/dists

View File

@ -8,12 +8,14 @@ package space.kscience.kmath.commons.linear
import org.apache.commons.math3.linear.* import org.apache.commons.math3.linear.*
import space.kscience.kmath.UnstableKMathAPI import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.linear.* import space.kscience.kmath.linear.*
import space.kscience.kmath.nd.StructureFeature import space.kscience.kmath.nd.StructureAttribute
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
import kotlin.reflect.KClass import kotlin.reflect.KClass
import kotlin.reflect.KType
import kotlin.reflect.cast import kotlin.reflect.cast
import kotlin.reflect.typeOf
public class CMMatrix(public val origin: RealMatrix) : Matrix<Double> { public class CMMatrix(public val origin: RealMatrix) : Matrix<Double> {
override val rowNum: Int get() = origin.rowDimension override val rowNum: Int get() = origin.rowDimension
@ -38,6 +40,8 @@ public fun RealVector.toPoint(): CMVector = CMVector(this)
public object CMLinearSpace : LinearSpace<Double, DoubleField> { public object CMLinearSpace : LinearSpace<Double, DoubleField> {
override val elementAlgebra: DoubleField get() = DoubleField override val elementAlgebra: DoubleField get() = DoubleField
override val elementType: KType = typeOf<Double>()
override fun buildMatrix( override fun buildMatrix(
rows: Int, rows: Int,
columns: Int, columns: Int,
@ -99,7 +103,7 @@ public object CMLinearSpace : LinearSpace<Double, DoubleField> {
v * this v * this
@UnstableKMathAPI @UnstableKMathAPI
override fun <F : StructureFeature> computeFeature(structure: Matrix<Double>, type: KClass<out F>): F? { override fun <F : StructureAttribute> computeFeature(structure: Matrix<Double>, type: KClass<out F>): F? {
//Return the feature if it is intrinsic to the structure //Return the feature if it is intrinsic to the structure
structure.getFeature(type)?.let { return it } structure.getFeature(type)?.let { return it }
@ -108,36 +112,37 @@ public object CMLinearSpace : LinearSpace<Double, DoubleField> {
return when (type) { return when (type) {
IsDiagonal::class -> if (origin is DiagonalMatrix) IsDiagonal else null IsDiagonal::class -> if (origin is DiagonalMatrix) IsDiagonal else null
DeterminantFeature::class, LupDecompositionFeature::class -> object : Determinant::class, LupDecompositionAttribute::class -> object :
DeterminantFeature<Double>, Determinant<Double>,
LupDecompositionFeature<Double> { LupDecompositionAttribute<Double> {
private val lup by lazy { LUDecomposition(origin) } private val lup by lazy { LUDecomposition(origin) }
override val determinant: Double by lazy { lup.determinant } override val determinant: Double by lazy { lup.determinant }
override val l: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(lup.l).withFeature(LFeature) } override val l: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(lup.l).withAttribute(LowerTriangular) }
override val u: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(lup.u).withFeature(UFeature) } override val u: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(lup.u).withAttribute(UpperTriangular) }
override val p: Matrix<Double> by lazy { CMMatrix(lup.p) } override val p: Matrix<Double> by lazy { CMMatrix(lup.p) }
} }
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Double> { CholeskyDecompositionAttribute::class -> object : CholeskyDecompositionAttribute<Double> {
override val l: Matrix<Double> by lazy<Matrix<Double>> { override val l: Matrix<Double> by lazy<Matrix<Double>> {
val cholesky = CholeskyDecomposition(origin) val cholesky = CholeskyDecomposition(origin)
CMMatrix(cholesky.l).withFeature(LFeature) CMMatrix(cholesky.l).withAttribute(LowerTriangular)
} }
} }
QRDecompositionFeature::class -> object : QRDecompositionFeature<Double> { QRDecompositionAttribute::class -> object : QRDecompositionAttribute<Double> {
private val qr by lazy { QRDecomposition(origin) } private val qr by lazy { QRDecomposition(origin) }
override val q: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(qr.q).withFeature(OrthogonalFeature) } override val q: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(qr.q).withAttribute(OrthogonalAttribute) }
override val r: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(qr.r).withFeature(UFeature) } override val r: Matrix<Double> by lazy<Matrix<Double>> { CMMatrix(qr.r).withAttribute(UpperTriangular) }
} }
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<Double> { SingularValueDecompositionAttribute::class -> object : SingularValueDecompositionAttribute<Double> {
private val sv by lazy { SingularValueDecomposition(origin) } private val sv by lazy { SingularValueDecomposition(origin) }
override val u: Matrix<Double> by lazy { CMMatrix(sv.u) } override val u: Matrix<Double> by lazy { CMMatrix(sv.u) }
override val s: Matrix<Double> by lazy { CMMatrix(sv.s) } override val s: Matrix<Double> by lazy { CMMatrix(sv.s) }
override val v: Matrix<Double> by lazy { CMMatrix(sv.v) } override val v: Matrix<Double> by lazy { CMMatrix(sv.v) }
override val singularValues: Point<Double> by lazy { DoubleBuffer(sv.singularValues) } override val singularValues: Point<Double> by lazy { DoubleBuffer(sv.singularValues) }
} }
else -> null else -> null
}?.let(type::cast) }?.let(type::cast)
} }

View File

@ -13,6 +13,8 @@ import space.kscience.kmath.structures.MutableBufferFactory
import space.kscience.kmath.structures.asBuffer import space.kscience.kmath.structures.asBuffer
import kotlin.math.max import kotlin.math.max
import kotlin.math.min import kotlin.math.min
import kotlin.reflect.KType
import kotlin.reflect.typeOf
/** /**
* Class representing both the value and the differentials of a function. * Class representing both the value and the differentials of a function.

View File

@ -5,12 +5,15 @@
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.attributes.SafeType
import space.kscience.kmath.PerformancePitfall import space.kscience.kmath.PerformancePitfall
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.VirtualBuffer import space.kscience.kmath.structures.VirtualBuffer
import space.kscience.kmath.structures.indices import space.kscience.kmath.structures.indices
import kotlin.reflect.KType
import kotlin.reflect.typeOf
public class BufferedLinearSpace<T, out A : Ring<T>>( public class BufferedLinearSpace<T, out A : Ring<T>>(

View File

@ -12,6 +12,8 @@ import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
import kotlin.reflect.KType
import kotlin.reflect.typeOf
public object DoubleLinearSpace : LinearSpace<Double, DoubleField> { public object DoubleLinearSpace : LinearSpace<Double, DoubleField> {
@ -20,7 +22,7 @@ public object DoubleLinearSpace : LinearSpace<Double, DoubleField> {
override fun buildMatrix( override fun buildMatrix(
rows: Int, rows: Int,
columns: Int, columns: Int,
initializer: DoubleField.(i: Int, j: Int) -> Double initializer: DoubleField.(i: Int, j: Int) -> Double,
): Matrix<Double> = DoubleFieldOpsND.structureND(ShapeND(rows, columns)) { (i, j) -> ): Matrix<Double> = DoubleFieldOpsND.structureND(ShapeND(rows, columns)) { (i, j) ->
DoubleField.initializer(i, j) DoubleField.initializer(i, j)
}.as2D() }.as2D()

View File

@ -5,16 +5,15 @@
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.attributes.SafeType
import space.kscience.kmath.UnstableKMathAPI import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.nd.MutableStructure2D import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.nd.StructureFeature
import space.kscience.kmath.nd.as1D
import space.kscience.kmath.operations.BufferRingOps import space.kscience.kmath.operations.BufferRingOps
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import kotlin.reflect.KClass import kotlin.reflect.KType
import kotlin.reflect.typeOf
/** /**
* Alias for [Structure2D] with more familiar name. * Alias for [Structure2D] with more familiar name.
@ -31,13 +30,19 @@ public typealias MutableMatrix<T> = MutableStructure2D<T>
*/ */
public typealias Point<T> = Buffer<T> public typealias Point<T> = Buffer<T>
/**
* A marker interface for algebras that operate on matrices
* @param T type of matrix element
*/
public interface MatrixOperations<T>
/** /**
* Basic operations on matrices and vectors. * Basic operations on matrices and vectors.
* *
* @param T the type of items in the matrices. * @param T the type of items in the matrices.
* @param A the type of ring over [T]. * @param A the type of ring over [T].
*/ */
public interface LinearSpace<T, out A : Ring<T>> { public interface LinearSpace<T, out A : Ring<T>> : MatrixOperations<T> {
public val elementAlgebra: A public val elementAlgebra: A
/** /**
@ -167,16 +172,16 @@ public interface LinearSpace<T, out A : Ring<T>> {
public operator fun T.times(v: Point<T>): Point<T> = v * this public operator fun T.times(v: Point<T>): Point<T> = v * this
/** /**
* Compute a feature of the structure in this scope. Structure features take precedence other context features. * Get an attribute value for the structure in this scope. Structure features take precedence other context features.
* *
* @param F the type of feature. * @param A the type of feature.
* @param structure the structure. * @param structure the structure.
* @param type the [KClass] instance of [F]. * @param attribute to be computed
* @return a feature object or `null` if it isn't present. * @return a feature object or `null` if it isn't present.
*/ */
@UnstableKMathAPI @UnstableKMathAPI
public fun <F : StructureFeature> computeFeature(structure: Matrix<T>, type: KClass<out F>): F? = public fun <T, A : StructureAttribute<T>> attributeFor(structure: StructureND<*>, attribute: A): T? =
structure.getFeature(type) structure.attributes[attribute]
public companion object { public companion object {
@ -184,23 +189,12 @@ public interface LinearSpace<T, out A : Ring<T>> {
* A structured matrix with custom buffer * A structured matrix with custom buffer
*/ */
public fun <T : Any, A : Ring<T>> buffered( public fun <T : Any, A : Ring<T>> buffered(
algebra: A algebra: A,
): LinearSpace<T, A> = BufferedLinearSpace(BufferRingOps(algebra)) ): LinearSpace<T, A> = BufferedLinearSpace(BufferRingOps(algebra))
} }
} }
/**
* Get a feature of the structure in this scope. Structure features take precedence other context features.
*
* @param T the type of items in the matrices.
* @param F the type of feature.
* @return a feature object or `null` if it isn't present.
*/
@UnstableKMathAPI
public inline fun <T : Any, reified F : StructureFeature> LinearSpace<T, *>.computeFeature(structure: Matrix<T>): F? =
computeFeature(structure, F::class)
public inline operator fun <LS : LinearSpace<*, *>, R> LS.invoke(block: LS.() -> R): R = run(block) public inline operator fun <LS : LinearSpace<*, *>, R> LS.invoke(block: LS.() -> R): R = run(block)

View File

@ -3,67 +3,92 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/ */
@file:Suppress("UnusedReceiverParameter")
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.attributes.PolymorphicAttribute
import space.kscience.attributes.SafeType
import space.kscience.attributes.safeTypeOf
import space.kscience.kmath.UnstableKMathAPI import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.BufferAccessor2D import space.kscience.kmath.structures.*
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.MutableBufferFactory
/** /**
* Common implementation of [LupDecompositionFeature]. * Matrices with this feature support LU factorization with partial pivoting: *[p] &middot; a = [l] &middot; [u]* where
*/ * *a* is the owning matrix.
public class LupDecomposition<T : Any>(
public val context: LinearSpace<T, *>,
public val elementContext: Field<T>,
public val lu: Matrix<T>,
public val pivot: IntArray,
private val even: Boolean,
) : LupDecompositionFeature<T>, DeterminantFeature<T> {
/**
* Returns the matrix L of the decomposition.
* *
* L is a lower-triangular matrix with [Ring.one] in diagonal * @param T the type of matrices' items.
* @param l The lower triangular matrix in this decomposition. It may have [LowerTriangular].
* @param u The upper triangular matrix in this decomposition. It may have [UpperTriangular].
* @param p he permutation matrix in this decomposition. May have [Determinant] attribute
*/ */
override val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j -> public data class LupDecomposition<T>(
when { public val l: Matrix<T>,
j < i -> lu[i, j] public val u: Matrix<T>,
j == i -> elementContext.one public val p: Matrix<T>,
else -> elementContext.zero )
}
}.withFeature(LFeature)
/** public class LupDecompositionAttribute<T>(type: SafeType<LupDecomposition<T>>) :
* Returns the matrix U of the decomposition. PolymorphicAttribute<LupDecomposition<T>>(type),
* MatrixAttribute<LupDecomposition<T>>
* U is an upper-triangular matrix including the diagonal
*/
override val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
if (j >= i) lu[i, j] else elementContext.zero
}.withFeature(UFeature)
/** public val <T> MatrixOperations<T>.LUP: LupDecompositionAttribute<T>
* Returns the P rows permutation matrix. get() = LupDecompositionAttribute(safeTypeOf())
*
* P is a sparse matrix with exactly one element set to [Ring.one] in
* each row and each column, all other elements being set to [Ring.zero].
*/
override val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
if (j == pivot[i]) elementContext.one else elementContext.zero
}
/**
* Return the determinant of the matrix
* @return determinant of the matrix
*/
override val determinant: T by lazy {
elementContext { (0 until lu.shape[0]).fold(if (even) one else -one) { value, i -> value * lu[i, i] } }
}
} ///**
// * Common implementation of [LupDecomposition].
// */
//private class LupDecompositionImpl<T : Any>(
// public val elementContext: Field<T>,
// public val lu: Matrix<T>,
// public val pivot: IntBuffer,
// private val even: Boolean,
//) : LupDecomposition<T> {
// /**
// * Returns the matrix L of the decomposition.
// *
// * L is a lower-triangular matrix with [Ring.one] in diagonal
// */
// override val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
// when {
// j < i -> lu[i, j]
// j == i -> elementContext.one
// else -> elementContext.zero
// }
// }.withFeature(LowerTriangular)
//
//
// /**
// * Returns the matrix U of the decomposition.
// *
// * U is an upper-triangular matrix including the diagonal
// */
// override val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
// if (j >= i) lu[i, j] else elementContext.zero
// }.withFeature(UpperTriangular)
//
// /**
// * Returns the P rows permutation matrix.
// *
// * P is a sparse matrix with exactly one element set to [Ring.one] in
// * each row and each column, all other elements being set to [Ring.zero].
// */
// override val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
// if (j == pivot[i]) elementContext.one else elementContext.zero
// }
//
// /**
// * Return the determinant of the matrix
// * @return determinant of the matrix
// */
// override val determinant: T by lazy {
// elementContext { (0 until lu.shape[0]).fold(if(even) one else -one) { value, i -> value * lu[i, i] } }
// }
//
//}
@PublishedApi @PublishedApi
internal fun <T : Comparable<T>> LinearSpace<T, Ring<T>>.abs(value: T): T = internal fun <T : Comparable<T>> LinearSpace<T, Ring<T>>.abs(value: T): T =
@ -73,7 +98,6 @@ internal fun <T : Comparable<T>> LinearSpace<T, Ring<T>>.abs(value: T): T =
* Create a lup decomposition of generic matrix. * Create a lup decomposition of generic matrix.
*/ */
public fun <T : Comparable<T>> LinearSpace<T, Field<T>>.lup( public fun <T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
factory: MutableBufferFactory<T>,
matrix: Matrix<T>, matrix: Matrix<T>,
checkSingular: (T) -> Boolean, checkSingular: (T) -> Boolean,
): LupDecomposition<T> { ): LupDecomposition<T> {
@ -82,15 +106,15 @@ public fun <T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
val pivot = IntArray(matrix.rowNum) val pivot = IntArray(matrix.rowNum)
//TODO just waits for multi-receivers //TODO just waits for multi-receivers
BufferAccessor2D(matrix.rowNum, matrix.colNum, factory).run { BufferAccessor2D(matrix.rowNum, matrix.colNum, elementAlgebra.bufferFactory).run {
elementAlgebra { elementAlgebra {
val lu = create(matrix) val lu = create(matrix)
// Initialize permutation array and parity // Initialize the permutation array and parity
for (row in 0 until m) pivot[row] = row for (row in 0 until m) pivot[row] = row
var even = true var even = true
// Initialize permutation array and parity // Initialize the permutation array and parity
for (row in 0 until m) pivot[row] = row for (row in 0 until m) pivot[row] = row
// Loop over columns // Loop over columns
@ -145,46 +169,57 @@ public fun <T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
for (row in col + 1 until m) lu[row, col] /= luDiag for (row in col + 1 until m) lu[row, col] /= luDiag
} }
return LupDecomposition(this@lup, elementAlgebra, lu.collect(), pivot, even) val l: MatrixWrapper<T> = VirtualMatrix(rowNum, colNum) { i, j ->
when {
j < i -> lu[i, j]
j == i -> one
else -> zero
}
}.withAttribute(LowerTriangular)
val u = VirtualMatrix(rowNum, colNum) { i, j ->
if (j >= i) lu[i, j] else zero
}.withAttribute(UpperTriangular)
val p = VirtualMatrix(rowNum, colNum) { i, j ->
if (j == pivot[i]) one else zero
}.withAttribute(Determinant, if (even) one else -one)
return LupDecomposition(l, u, p)
} }
} }
} }
public inline fun <reified T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
matrix: Matrix<T>,
noinline checkSingular: (T) -> Boolean,
): LupDecomposition<T> = lup(MutableBuffer.Companion::auto, matrix, checkSingular)
public fun LinearSpace<Double, DoubleField>.lup( public fun LinearSpace<Double, DoubleField>.lup(
matrix: Matrix<Double>, matrix: Matrix<Double>,
singularityThreshold: Double = 1e-11, singularityThreshold: Double = 1e-11,
): LupDecomposition<Double> = ): LupDecomposition<Double> = lup(matrix) { it < singularityThreshold }
lup(::DoubleBuffer, matrix) { it < singularityThreshold }
internal fun <T : Any> LupDecomposition<T>.solve( internal fun <T : Any, A : Field<T>> LinearSpace<T, A>.solve(
factory: MutableBufferFactory<T>, lup: LupDecomposition<T>,
matrix: Matrix<T>, matrix: Matrix<T>,
): Matrix<T> { ): Matrix<T> {
require(matrix.rowNum == pivot.size) { "Matrix dimension mismatch. Expected ${pivot.size}, but got ${matrix.colNum}" } require(matrix.rowNum == lup.l.rowNum) { "Matrix dimension mismatch. Expected ${lup.l.rowNum}, but got ${matrix.colNum}" }
BufferAccessor2D(matrix.rowNum, matrix.colNum, factory).run { BufferAccessor2D(matrix.rowNum, matrix.colNum, elementAlgebra.bufferFactory).run {
elementContext { elementAlgebra {
// Apply permutations to b // Apply permutations to b
val bp = create { _, _ -> zero } val bp = create { _, _ -> zero }
for (row in pivot.indices) { for (row in 0 until rowNum) {
val bpRow = bp.row(row) val bpRow = bp.row(row)
val pRow = pivot[row] val pRow = pivot[row]
for (col in 0 until matrix.colNum) bpRow[col] = matrix[pRow, col] for (col in 0 until matrix.colNum) bpRow[col] = matrix[pRow, col]
} }
// Solve LY = b // Solve LY = b
for (col in pivot.indices) { for (col in 0 until colNum) {
val bpCol = bp.row(col) val bpCol = bp.row(col)
for (i in col + 1 until pivot.size) { for (i in col + 1 until colNum) {
val bpI = bp.row(i) val bpI = bp.row(i)
val luICol = lu[i, col] val luICol = lup.l[i, col]
for (j in 0 until matrix.colNum) { for (j in 0 until matrix.colNum) {
bpI[j] -= bpCol[j] * luICol bpI[j] -= bpCol[j] * luICol
} }
@ -192,19 +227,19 @@ internal fun <T : Any> LupDecomposition<T>.solve(
} }
// Solve UX = Y // Solve UX = Y
for (col in pivot.size - 1 downTo 0) { for (col in colNum - 1 downTo 0) {
val bpCol = bp.row(col) val bpCol = bp.row(col)
val luDiag = lu[col, col] val luDiag = lup.u[col, col]
for (j in 0 until matrix.colNum) bpCol[j] /= luDiag for (j in 0 until matrix.colNum) bpCol[j] /= luDiag
for (i in 0 until col) { for (i in 0 until col) {
val bpI = bp.row(i) val bpI = bp.row(i)
val luICol = lu[i, col] val luICol = lup.u[i, col]
for (j in 0 until matrix.colNum) bpI[j] -= bpCol[j] * luICol for (j in 0 until matrix.colNum) bpI[j] -= bpCol[j] * luICol
} }
} }
return context.buildMatrix(pivot.size, matrix.colNum) { i, j -> bp[i, j] } return buildMatrix(matrix.rowNum, matrix.colNum) { i, j -> bp[i, j] }
} }
} }
} }
@ -214,17 +249,16 @@ internal fun <T : Any> LupDecomposition<T>.solve(
*/ */
@OptIn(UnstableKMathAPI::class) @OptIn(UnstableKMathAPI::class)
public fun <T : Comparable<T>, F : Field<T>> LinearSpace<T, F>.lupSolver( public fun <T : Comparable<T>, F : Field<T>> LinearSpace<T, F>.lupSolver(
bufferFactory: MutableBufferFactory<T>,
singularityCheck: (T) -> Boolean, singularityCheck: (T) -> Boolean,
): LinearSolver<T> = object : LinearSolver<T> { ): LinearSolver<T> = object : LinearSolver<T> {
override fun solve(a: Matrix<T>, b: Matrix<T>): Matrix<T> { override fun solve(a: Matrix<T>, b: Matrix<T>): Matrix<T> {
// Use existing decomposition if it is provided by matrix // Use existing decomposition if it is provided by matrix
val decomposition = computeFeature(a) ?: lup(bufferFactory, a, singularityCheck) val decomposition = attributeFor(a, LUP) ?: lup(a, singularityCheck)
return decomposition.solve(bufferFactory, b) return solve(decomposition, b)
} }
override fun inverse(matrix: Matrix<T>): Matrix<T> = solve(matrix, one(matrix.rowNum, matrix.colNum)) override fun inverse(matrix: Matrix<T>): Matrix<T> = solve(matrix, one(matrix.rowNum, matrix.colNum))
} }
public fun LinearSpace<Double, DoubleField>.lupSolver(singularityThreshold: Double = 1e-11): LinearSolver<Double> = public fun LinearSpace<Double, DoubleField>.lupSolver(singularityThreshold: Double = 1e-11): LinearSolver<Double> =
lupSolver(::DoubleBuffer) { it < singularityThreshold } lupSolver { it < singularityThreshold }

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.attributes.FlagAttribute
import space.kscience.kmath.UnstableKMathAPI import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.structures.BufferAccessor2D import space.kscience.kmath.structures.BufferAccessor2D
@ -49,10 +50,10 @@ public inline fun <T : Any> LinearSpace<T, Ring<T>>.column(
public fun <T : Any> LinearSpace<T, Ring<T>>.column(vararg values: T): Matrix<T> = column(values.size, values::get) public fun <T : Any> LinearSpace<T, Ring<T>>.column(vararg values: T): Matrix<T> = column(values.size, values::get)
public object SymmetricMatrixFeature : MatrixFeature public object Symmetric : MatrixAttribute<Unit>, FlagAttribute
/** /**
* Naive implementation of a symmetric matrix builder, that adds a [SymmetricMatrixFeature] tag. The resulting matrix contains * Naive implementation of a symmetric matrix builder, that adds a [Symmetric] tag. The resulting matrix contains
* full `size^2` number of elements, but caches elements during calls to save [builder] calls. [builder] is always called in the * full `size^2` number of elements, but caches elements during calls to save [builder] calls. [builder] is always called in the
* upper triangle region meaning that `i <= j` * upper triangle region meaning that `i <= j`
*/ */
@ -72,6 +73,6 @@ public fun <T : Any, A : Ring<T>> MatrixBuilder<T, A>.symmetric(
} else { } else {
cached cached
} }
}.withFeature(SymmetricMatrixFeature) }.withAttribute(Symmetric)
} }
} }

View File

@ -3,20 +3,27 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/ */
@file:OptIn(UnstableKMathAPI::class)
@file:Suppress("UnusedReceiverParameter")
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.attributes.Attribute import space.kscience.attributes.*
import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.nd.StructureAttribute
import kotlin.reflect.KType
import kotlin.reflect.typeOf
/** /**
* A marker interface representing some properties of matrices or additional transformations of them. Features are used * A marker interface representing some properties of matrices or additional transformations of them. Features are used
* to optimize matrix operations performance in some cases or retrieve the APIs. * to optimize matrix operations performance in some cases or retrieve the APIs.
*/ */
public interface MatrixFeature<T> : Attribute<T> public interface MatrixAttribute<T> : StructureAttribute<T>
/** /**
* Matrices with this feature are considered to have only diagonal non-zero elements. * Matrices with this feature are considered to have only diagonal non-zero elements.
*/ */
public interface IsDiagonal : MatrixFeature<Unit> { public interface IsDiagonal : MatrixAttribute<Unit>, FlagAttribute {
public companion object : IsDiagonal public companion object : IsDiagonal
} }
@ -31,130 +38,110 @@ public object IsZero : IsDiagonal
public object IsUnit : IsDiagonal public object IsUnit : IsDiagonal
/** /**
* Matrices with this feature can be inverted: *[inverse] = a<sup>&minus;1</sup>* where *a* is the owning matrix. * Matrices with this feature can be inverted.
* *
* @param T the type of matrices' items. * @param T the type of matrices' items.
*/ */
public class Inverted<T> private constructor() : MatrixFeature<Matrix<T>> { public class Inverted<T>(type: SafeType<Matrix<T>>) :
internal val instance: Inverted<Nothing> = Inverted() PolymorphicAttribute<Matrix<T>>(type),
} MatrixAttribute<Matrix<T>>
@Suppress("UNCHECKED_CAST") public val <T> MatrixOperations<T>.Inverted: Inverted<T> get() = Inverted(safeTypeOf())
public val <T> LinearSpace<T, *>.Inverted: Inverted<T> get() = Inverted.instance as Inverted<T>
/** /**
* Matrices with this feature can compute their determinant. * Matrices with this feature can compute their determinant.
* *
* @param T the type of matrices' items. * @param T the type of matrices' items.
*/ */
public class DeterminantFeature<T : Any> : MatrixFeature<T> public class Determinant<T>(type: SafeType<T>) :
PolymorphicAttribute<T>(type),
MatrixAttribute<T>
/** public inline val <reified T> MatrixOperations<T>.Determinant: Determinant<T> get() = Determinant(safeTypeOf())
* Produces a [DeterminantFeature] where the [DeterminantFeature.determinant] is [determinant].
*
* @param determinant the value of determinant.
* @return a new [DeterminantFeature].
*/
@Suppress("FunctionName")
public fun <T : Any> DeterminantFeature(determinant: T): DeterminantFeature<T> = object : DeterminantFeature<T> {
override val determinant: T = determinant
}
/** /**
* Matrices with this feature are lower triangular ones. * Matrices with this feature are lower triangular ones.
*/ */
public object LFeature : MatrixFeature<Unit> public object LowerTriangular : MatrixAttribute<Unit>, FlagAttribute
/** /**
* Matrices with this feature are upper triangular ones. * Matrices with this feature are upper triangular ones.
*/ */
public object UFeature : MatrixFeature<Unit> public object UpperTriangular : MatrixAttribute<Unit>, FlagAttribute
/**
* Matrices with this feature support LU factorization: *a = [l] &middot; [u]* where *a* is the owning matrix.
* @param l The lower triangular matrix in this decomposition. It may have [LowerTriangular].
* @param u The upper triangular matrix in this decomposition. It may have [UpperTriangular].
*/
public data class LUDecomposition<T>(val l: Matrix<T>, val u: Matrix<T>)
/** /**
* Matrices with this feature support LU factorization: *a = [l] &middot; [u]* where *a* is the owning matrix. * Matrices with this feature support LU factorization: *a = [l] &middot; [u]* where *a* is the owning matrix.
* *
* @param T the type of matrices' items. * @param T the type of matrices' items.
*/ */
public interface LUDecompositionFeature<out T : Any> : MatrixFeature { public class LuDecompositionAttribute<T>(type: SafeType<LUDecomposition<T>>) :
/** PolymorphicAttribute<LUDecomposition<T>>(type),
* The lower triangular matrix in this decomposition. It may have [LFeature]. MatrixAttribute<LUDecomposition<T>>
*/
public val l: Matrix<T>
/** public val <T> MatrixOperations<T>.LU: LuDecompositionAttribute<T> get() = LuDecompositionAttribute(safeTypeOf())
* The upper triangular matrix in this decomposition. It may have [UFeature].
*/
public val u: Matrix<T>
}
/**
* Matrices with this feature support LU factorization with partial pivoting: *[p] &middot; a = [l] &middot; [u]* where
* *a* is the owning matrix.
*
* @param T the type of matrices' items.
*/
public interface LupDecompositionFeature<out T : Any> : MatrixFeature {
/**
* The lower triangular matrix in this decomposition. It may have [LFeature].
*/
public val l: Matrix<T>
/**
* The upper triangular matrix in this decomposition. It may have [UFeature].
*/
public val u: Matrix<T>
/**
* The permutation matrix in this decomposition.
*/
public val p: Matrix<T>
}
/** /**
* Matrices with this feature are orthogonal ones: *a &middot; a<sup>T</sup> = u* where *a* is the owning matrix, *u* * Matrices with this feature are orthogonal ones: *a &middot; a<sup>T</sup> = u* where *a* is the owning matrix, *u*
* is the unit matrix ([IsUnit]). * is the unit matrix ([IsUnit]).
*/ */
public object OrthogonalFeature : MatrixFeature public object OrthogonalAttribute : MatrixAttribute<Unit>, FlagAttribute
public interface QRDecomposition<out T> {
/** /**
* Matrices with this feature support QR factorization: *a = [q] &middot; [r]* where *a* is the owning matrix. * The orthogonal matrix in this decomposition. It may have [OrthogonalAttribute].
*
* @param T the type of matrices' items.
*/
public interface QRDecompositionFeature<out T : Any> : MatrixFeature {
/**
* The orthogonal matrix in this decomposition. It may have [OrthogonalFeature].
*/ */
public val q: Matrix<T> public val q: Matrix<T>
/** /**
* The upper triangular matrix in this decomposition. It may have [UFeature]. * The upper triangular matrix in this decomposition. It may have [UpperTriangular].
*/ */
public val r: Matrix<T> public val r: Matrix<T>
} }
/**
* Matrices with this feature support QR factorization: *a = [QR.q] &middot; [QR.r]* where *a* is the owning matrix.
*
* @param T the type of matrices' items.
*/
public class QRDecompositionAttribute<T>(type: SafeType<QRDecomposition<T>>) :
PolymorphicAttribute<QRDecomposition<T>>(type),
MatrixAttribute<QRDecomposition<T>>
public val <T> MatrixOperations<T>.QR: QRDecompositionAttribute<T>
get() = QRDecompositionAttribute(safeTypeOf())
public interface CholeskyDecomposition<T> {
/**
* The triangular matrix in this decomposition. It may have either [UpperTriangular] or [LowerTriangular].
*/
public val l: Matrix<T>
}
/** /**
* Matrices with this feature support Cholesky factorization: *a = [l] &middot; [l]<sup>H</sup>* where *a* is the * Matrices with this feature support Cholesky factorization: *a = [l] &middot; [l]<sup>H</sup>* where *a* is the
* owning matrix. * owning matrix.
* *
* @param T the type of matrices' items. * @param T the type of matrices' items.
*/ */
public interface CholeskyDecompositionFeature<out T : Any> : MatrixFeature { public class CholeskyDecompositionAttribute<T>(type: SafeType<CholeskyDecomposition<T>>) :
/** PolymorphicAttribute<CholeskyDecomposition<T>>(type),
* The triangular matrix in this decomposition. It may have either [UFeature] or [LFeature]. MatrixAttribute<CholeskyDecomposition<T>>
*/
public val l: Matrix<T>
}
public val <T> MatrixOperations<T>.Cholesky: CholeskyDecompositionAttribute<T>
get() = CholeskyDecompositionAttribute(safeTypeOf())
public interface SingularValueDecomposition<T> {
/** /**
* Matrices with this feature support SVD: *a = [u] &middot; [s] &middot; [v]<sup>H</sup>* where *a* is the owning * The matrix in this decomposition. It is unitary, and it consists of left singular vectors.
* matrix.
*
* @param T the type of matrices' items.
*/
public interface SingularValueDecompositionFeature<out T : Any> : MatrixFeature {
/**
* The matrix in this decomposition. It is unitary, and it consists from left singular vectors.
*/ */
public val u: Matrix<T> public val u: Matrix<T>
@ -164,14 +151,27 @@ public interface SingularValueDecompositionFeature<out T : Any> : MatrixFeature
public val s: Matrix<T> public val s: Matrix<T>
/** /**
* The matrix in this decomposition. It is unitary, and it consists from right singular vectors. * The matrix in this decomposition. It is unitary, and it consists of right singular vectors.
*/ */
public val v: Matrix<T> public val v: Matrix<T>
/** /**
* The buffer of singular values of this SVD. * The buffer of singular values for this SVD.
*/ */
public val singularValues: Point<T> public val singularValues: Point<T>
} }
/**
* Matrices with this feature support SVD: *a = [u] &middot; [s] &middot; [v]<sup>H</sup>* where *a* is the owning
* matrix.
*
* @param T the type of matrices' items.
*/
public class SingularValueDecompositionAttribute<T>(type: SafeType<SingularValueDecomposition<T>>) :
PolymorphicAttribute<SingularValueDecomposition<T>>(type),
MatrixAttribute<SingularValueDecomposition<T>>
public val <T> MatrixOperations<T>.SVD: SingularValueDecompositionAttribute<T>
get() = SingularValueDecompositionAttribute(safeTypeOf())
//TODO add sparse matrix feature //TODO add sparse matrix feature

View File

@ -5,19 +5,20 @@
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.attributes.Attribute
import space.kscience.attributes.Attributes import space.kscience.attributes.Attributes
import space.kscience.attributes.withAttribute
import space.kscience.kmath.UnstableKMathAPI import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.misc.FeatureSet
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
/** /**
* A [Matrix] that holds [MatrixFeature] objects. * A [Matrix] that holds [MatrixAttribute] objects.
* *
* @param T the type of items. * @param T the type of items.
*/ */
public class MatrixWrapper<out T : Any> internal constructor( public class MatrixWrapper<out T : Any> internal constructor(
public val origin: Matrix<T>, public val origin: Matrix<T>,
public val attributes: Attributes, override val attributes: Attributes,
) : Matrix<T> by origin { ) : Matrix<T> by origin {
override fun toString(): String = "MatrixWrapper(matrix=$origin, features=$attributes)" override fun toString(): String = "MatrixWrapper(matrix=$origin, features=$attributes)"
@ -34,23 +35,31 @@ public val <T : Any> Matrix<T>.origin: Matrix<T>
/** /**
* Add a single feature to a [Matrix] * Add a single feature to a [Matrix]
*/ */
public fun <T : Any> Matrix<T>.withFeature(newFeature: MatrixFeature): MatrixWrapper<T> = if (this is MatrixWrapper) { public fun <T : Any, A : Attribute<T>> Matrix<T>.withAttribute(
MatrixWrapper(origin, attributes.with(newFeature)) attribute: A,
attrValue: T,
): MatrixWrapper<T> = if (this is MatrixWrapper) {
MatrixWrapper(origin, attributes.withAttribute(attribute,attrValue))
} else { } else {
MatrixWrapper(this, FeatureSet.of(newFeature)) MatrixWrapper(this, Attributes(attribute, attrValue))
} }
@Deprecated("To be replaced by withFeature") public fun <T : Any, A : Attribute<Unit>> Matrix<T>.withAttribute(
public operator fun <T : Any> Matrix<T>.plus(newFeature: MatrixFeature): MatrixWrapper<T> = withFeature(newFeature) attribute: A,
): MatrixWrapper<T> = if (this is MatrixWrapper) {
MatrixWrapper(origin, attributes.withAttribute(attribute))
} else {
MatrixWrapper(this, Attributes(attribute, Unit))
}
/** /**
* Add a collection of features to a [Matrix] * Modify matrix attributes
*/ */
public fun <T : Any> Matrix<T>.withFeatures(newFeatures: Iterable<MatrixFeature>): MatrixWrapper<T> = public fun <T : Any> Matrix<T>.modifyAttributes(modifier: (Attributes) -> Attributes): MatrixWrapper<T> =
if (this is MatrixWrapper) { if (this is MatrixWrapper) {
MatrixWrapper(origin, attributes.with(newFeatures)) MatrixWrapper(origin, modifier(attributes))
} else { } else {
MatrixWrapper(this, FeatureSet.of(newFeatures)) MatrixWrapper(this, modifier(Attributes.EMPTY))
} }
/** /**
@ -59,9 +68,9 @@ public fun <T : Any> Matrix<T>.withFeatures(newFeatures: Iterable<MatrixFeature>
public fun <T : Any> LinearSpace<T, Ring<T>>.one( public fun <T : Any> LinearSpace<T, Ring<T>>.one(
rows: Int, rows: Int,
columns: Int, columns: Int,
): Matrix<T> = VirtualMatrix(rows, columns) { i, j -> ): MatrixWrapper<T> = VirtualMatrix(rows, columns) { i, j ->
if (i == j) elementAlgebra.one else elementAlgebra.zero if (i == j) elementAlgebra.one else elementAlgebra.zero
}.withFeature(IsUnit) }.withAttribute(IsUnit)
/** /**
@ -70,16 +79,16 @@ public fun <T : Any> LinearSpace<T, Ring<T>>.one(
public fun <T : Any> LinearSpace<T, Ring<T>>.zero( public fun <T : Any> LinearSpace<T, Ring<T>>.zero(
rows: Int, rows: Int,
columns: Int, columns: Int,
): Matrix<T> = VirtualMatrix(rows, columns) { _, _ -> ): MatrixWrapper<T> = VirtualMatrix(rows, columns) { _, _ ->
elementAlgebra.zero elementAlgebra.zero
}.withFeature(IsZero) }.withAttribute(IsZero)
public class TransposedFeature<out T : Any>(public val original: Matrix<T>) : MatrixFeature public class TransposedAttribute<out T : Any>(public val original: Matrix<T>) : MatrixAttribute
/** /**
* Create a virtual transposed matrix without copying anything. `A.transpose().transpose() === A` * Create a virtual transposed matrix without copying anything. `A.transpose().transpose() === A`
*/ */
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
@OptIn(UnstableKMathAPI::class) @OptIn(UnstableKMathAPI::class)
public fun <T : Any> Matrix<T>.transpose(): Matrix<T> = getFeature(TransposedFeature::class)?.original as? Matrix<T> public fun <T : Any> Matrix<T>.transpose(): Matrix<T> = getFeature(TransposedAttribute::class)?.original as? Matrix<T>
?: VirtualMatrix(colNum, rowNum) { i, j -> get(j, i) }.withFeature(TransposedFeature(this)) ?: VirtualMatrix(colNum, rowNum) { i, j -> get(j, i) }.withAttribute(TransposedAttribute(this))

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.linear package space.kscience.kmath.linear
import space.kscience.attributes.Attributes
import space.kscience.kmath.nd.ShapeND import space.kscience.kmath.nd.ShapeND
@ -16,6 +17,7 @@ import space.kscience.kmath.nd.ShapeND
public class VirtualMatrix<out T : Any>( public class VirtualMatrix<out T : Any>(
override val rowNum: Int, override val rowNum: Int,
override val colNum: Int, override val colNum: Int,
override val attributes: Attributes = Attributes.EMPTY,
public val generator: (i: Int, j: Int) -> T, public val generator: (i: Int, j: Int) -> T,
) : Matrix<T> { ) : Matrix<T> {
@ -24,5 +26,8 @@ public class VirtualMatrix<out T : Any>(
override operator fun get(i: Int, j: Int): T = generator(i, j) override operator fun get(i: Int, j: Int): T = generator(i, j)
} }
public fun <T : Any> MatrixBuilder<T, *>.virtual(generator: (i: Int, j: Int) -> T): VirtualMatrix<T> = public fun <T : Any> MatrixBuilder<T, *>.virtual(
VirtualMatrix(rows, columns, generator) attributes: Attributes = Attributes.EMPTY,
generator: (i: Int, j: Int) -> T,
): VirtualMatrix<T> =
VirtualMatrix(rows, columns, attributes, generator)

View File

@ -79,7 +79,7 @@ public interface AlgebraND<T, out C : Algebra<T>> : Algebra<StructureND<T>> {
* @return a feature object or `null` if it isn't present. * @return a feature object or `null` if it isn't present.
*/ */
@UnstableKMathAPI @UnstableKMathAPI
public fun <F : StructureFeature> getFeature(structure: StructureND<T>, type: KClass<out F>): F? = public fun <F : StructureAttribute> getFeature(structure: StructureND<T>, type: KClass<out F>): F? =
structure.getFeature(type) structure.getFeature(type)
public companion object public companion object
@ -93,7 +93,7 @@ public interface AlgebraND<T, out C : Algebra<T>> : Algebra<StructureND<T>> {
* @return a feature object or `null` if it isn't present. * @return a feature object or `null` if it isn't present.
*/ */
@UnstableKMathAPI @UnstableKMathAPI
public inline fun <T : Any, reified F : StructureFeature> AlgebraND<T, *>.getFeature(structure: StructureND<T>): F? = public inline fun <T : Any, reified F : StructureAttribute> AlgebraND<T, *>.getFeature(structure: StructureND<T>): F? =
getFeature(structure, F::class) getFeature(structure, F::class)
/** /**

View File

@ -34,9 +34,9 @@ public open class BufferND<out T>(
/** /**
* Create a generic [BufferND] using provided [initializer] * Create a generic [BufferND] using provided [initializer]
*/ */
public fun <T> BufferND( public inline fun <reified T> BufferND(
shape: ShapeND, shape: ShapeND,
bufferFactory: BufferFactory<T> = BufferFactory.boxing(), bufferFactory: BufferFactory<T> = BufferFactory.auto(),
initializer: (IntArray) -> T, initializer: (IntArray) -> T,
): BufferND<T> { ): BufferND<T> {
val strides = Strides(shape) val strides = Strides(shape)

View File

@ -110,7 +110,7 @@ private value class Structure2DWrapper<out T>(val structure: StructureND<T>) : S
@PerformancePitfall @PerformancePitfall
override operator fun get(i: Int, j: Int): T = structure[i, j] override operator fun get(i: Int, j: Int): T = structure[i, j]
override fun <F : StructureFeature> getFeature(type: KClass<out F>): F? = structure.getFeature(type) override fun <F : StructureAttribute> getFeature(type: KClass<out F>): F? = structure.getFeature(type)
@PerformancePitfall @PerformancePitfall
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements() override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()

View File

@ -7,6 +7,7 @@ package space.kscience.kmath.nd
import space.kscience.attributes.Attribute import space.kscience.attributes.Attribute
import space.kscience.attributes.AttributeContainer import space.kscience.attributes.AttributeContainer
import space.kscience.attributes.SafeType
import space.kscience.kmath.PerformancePitfall import space.kscience.kmath.PerformancePitfall
import space.kscience.kmath.linear.LinearSpace import space.kscience.kmath.linear.LinearSpace
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
@ -15,9 +16,8 @@ import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory import space.kscience.kmath.structures.BufferFactory
import kotlin.jvm.JvmName import kotlin.jvm.JvmName
import kotlin.math.abs import kotlin.math.abs
import kotlin.reflect.KClass
public interface StructureFeature<T> : Attribute<T> public interface StructureAttribute<T> : Attribute<T>
/** /**
* Represents n-dimensional structure i.e., multidimensional container of items of the same type and size. The number * Represents n-dimensional structure i.e., multidimensional container of items of the same type and size. The number
@ -122,9 +122,14 @@ public interface StructureND<out T> : AttributeContainer, WithShape {
*/ */
public fun <T> buffered( public fun <T> buffered(
strides: Strides, strides: Strides,
bufferFactory: BufferFactory<T> = BufferFactory.boxing(),
initializer: (IntArray) -> T, initializer: (IntArray) -> T,
): BufferND<T> = BufferND(strides, bufferFactory(strides.linearSize) { i -> initializer(strides.index(i)) }) ): BufferND<T> = BufferND(strides, Buffer.boxing(strides.linearSize) { i -> initializer(strides.index(i)) })
public fun <T> buffered(
shape: ShapeND,
initializer: (IntArray) -> T,
): BufferND<T> = buffered(ColumnStrides(shape), initializer)
/** /**
* Inline create NDStructure with non-boxing buffer implementation if it is possible * Inline create NDStructure with non-boxing buffer implementation if it is possible
@ -135,16 +140,11 @@ public interface StructureND<out T> : AttributeContainer, WithShape {
): BufferND<T> = BufferND(strides, Buffer.auto(strides.linearSize) { i -> initializer(strides.index(i)) }) ): BufferND<T> = BufferND(strides, Buffer.auto(strides.linearSize) { i -> initializer(strides.index(i)) })
public inline fun <T : Any> auto( public inline fun <T : Any> auto(
type: KClass<T>, type: SafeType<T>,
strides: Strides, strides: Strides,
crossinline initializer: (IntArray) -> T, crossinline initializer: (IntArray) -> T,
): BufferND<T> = BufferND(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) }) ): BufferND<T> = BufferND(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) })
public fun <T> buffered(
shape: ShapeND,
bufferFactory: BufferFactory<T> = BufferFactory.boxing(),
initializer: (IntArray) -> T,
): BufferND<T> = buffered(ColumnStrides(shape), bufferFactory, initializer)
public inline fun <reified T : Any> auto( public inline fun <reified T : Any> auto(
shape: ShapeND, shape: ShapeND,
@ -159,7 +159,7 @@ public interface StructureND<out T> : AttributeContainer, WithShape {
auto(ColumnStrides(ShapeND(shape)), initializer) auto(ColumnStrides(ShapeND(shape)), initializer)
public inline fun <T : Any> auto( public inline fun <T : Any> auto(
type: KClass<T>, type: SafeType<T>,
vararg shape: Int, vararg shape: Int,
crossinline initializer: (IntArray) -> T, crossinline initializer: (IntArray) -> T,
): BufferND<T> = auto(type, ColumnStrides(ShapeND(shape)), initializer) ): BufferND<T> = auto(type, ColumnStrides(ShapeND(shape)), initializer)

View File

@ -9,14 +9,14 @@ import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.expressions.Symbol import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.operations.Ring.Companion.optimizedPower import space.kscience.kmath.operations.Ring.Companion.optimizedPower
import space.kscience.kmath.structures.MutableBufferFactory import space.kscience.kmath.structures.MutableBufferFactory
import kotlin.reflect.KType
/** /**
* Represents an algebraic structure. * Represents an algebraic structure.
* *
* @param T the type of element of this structure. * @param T the type of element which Algebra operates on.
*/ */
public interface Algebra<T> { public interface Algebra<T> {
/** /**
* Provide a factory for buffers, associated with this [Algebra] * Provide a factory for buffers, associated with this [Algebra]
*/ */
@ -67,12 +67,12 @@ public interface Algebra<T> {
* *
* @param operation the name of operation. * @param operation the name of operation.
* @param arg the argument of operation. * @param arg the argument of operation.
* @return a result of operation. * @return the result of the operation.
*/ */
public fun unaryOperation(operation: String, arg: T): T = unaryOperationFunction(operation)(arg) public fun unaryOperation(operation: String, arg: T): T = unaryOperationFunction(operation)(arg)
/** /**
* Dynamically dispatches a binary operation with the certain name. * Dynamically dispatches a binary operation with a certain name.
* *
* Implementations must fulfil the following requirements: * Implementations must fulfil the following requirements:
* *
@ -87,7 +87,7 @@ public interface Algebra<T> {
error("Binary operation '$operation' not defined in $this") error("Binary operation '$operation' not defined in $this")
/** /**
* Dynamically invokes a binary operation with the certain name. * Dynamically invokes a binary operation with a certain name.
* *
* Implementations must fulfil the following requirements: * Implementations must fulfil the following requirements:
* *

View File

@ -8,6 +8,7 @@ package space.kscience.kmath.operations
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.MutableBuffer import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.MutableBufferFactory import space.kscience.kmath.structures.MutableBufferFactory
import kotlin.reflect.KType
public interface WithSize { public interface WithSize {
public val size: Int public val size: Int
@ -18,6 +19,9 @@ public interface WithSize {
*/ */
public interface BufferAlgebra<T, out A : Algebra<T>> : Algebra<Buffer<T>> { public interface BufferAlgebra<T, out A : Algebra<T>> : Algebra<Buffer<T>> {
public val elementAlgebra: A public val elementAlgebra: A
public val elementType: KType
public val elementBufferFactory: MutableBufferFactory<T> get() = elementAlgebra.bufferFactory public val elementBufferFactory: MutableBufferFactory<T> get() = elementAlgebra.bufferFactory
public fun buffer(size: Int, vararg elements: T): Buffer<T> { public fun buffer(size: Int, vararg elements: T): Buffer<T> {

View File

@ -5,10 +5,12 @@
package space.kscience.kmath.structures package space.kscience.kmath.structures
import space.kscience.attributes.SafeType
import space.kscience.attributes.safeTypeOf
import space.kscience.kmath.operations.WithSize import space.kscience.kmath.operations.WithSize
import space.kscience.kmath.operations.asSequence import space.kscience.kmath.operations.asSequence
import kotlin.jvm.JvmInline import kotlin.jvm.JvmInline
import kotlin.reflect.KClass import kotlin.reflect.typeOf
/** /**
* Function that produces [Buffer] from its size and function that supplies values. * Function that produces [Buffer] from its size and function that supplies values.
@ -99,13 +101,13 @@ public interface Buffer<out T> : WithSize {
* The [size] is specified, and each element is calculated by calling the specified [initializer] function. * The [size] is specified, and each element is calculated by calling the specified [initializer] function.
*/ */
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
public inline fun <T : Any> auto(type: KClass<T>, size: Int, initializer: (Int) -> T): Buffer<T> = public inline fun <T> auto(type: SafeType<T>, size: Int, initializer: (Int) -> T): Buffer<T> =
when (type) { when (type.kType) {
Double::class -> MutableBuffer.double(size) { initializer(it) as Double } as Buffer<T> typeOf<Double>() -> MutableBuffer.double(size) { initializer(it) as Double } as Buffer<T>
Short::class -> MutableBuffer.short(size) { initializer(it) as Short } as Buffer<T> typeOf<Short>() -> MutableBuffer.short(size) { initializer(it) as Short } as Buffer<T>
Int::class -> MutableBuffer.int(size) { initializer(it) as Int } as Buffer<T> typeOf<Int>() -> MutableBuffer.int(size) { initializer(it) as Int } as Buffer<T>
Long::class -> MutableBuffer.long(size) { initializer(it) as Long } as Buffer<T> typeOf<Long>() -> MutableBuffer.long(size) { initializer(it) as Long } as Buffer<T>
Float::class -> MutableBuffer.float(size) { initializer(it) as Float } as Buffer<T> typeOf<Float>() -> MutableBuffer.float(size) { initializer(it) as Float } as Buffer<T>
else -> boxing(size, initializer) else -> boxing(size, initializer)
} }
@ -115,8 +117,8 @@ public interface Buffer<out T> : WithSize {
* *
* The [size] is specified, and each element is calculated by calling the specified [initializer] function. * The [size] is specified, and each element is calculated by calling the specified [initializer] function.
*/ */
public inline fun <reified T : Any> auto(size: Int, initializer: (Int) -> T): Buffer<T> = public inline fun <reified T> auto(size: Int, initializer: (Int) -> T): Buffer<T> =
auto(T::class, size, initializer) auto(safeTypeOf<T>(), size, initializer)
} }
} }

View File

@ -27,12 +27,9 @@ internal class BufferAccessor2D<T>(
fun create(mat: Structure2D<T>): MutableBuffer<T> = create { i, j -> mat[i, j] } fun create(mat: Structure2D<T>): MutableBuffer<T> = create { i, j -> mat[i, j] }
//TODO optimize wrapper //TODO optimize wrapper
fun MutableBuffer<T>.collect(): Structure2D<T> = StructureND.buffered( fun MutableBuffer<T>.toStructure2D(): Structure2D<T> = StructureND.buffered(
ColumnStrides(ShapeND(rowNum, colNum)), ColumnStrides(ShapeND(rowNum, colNum))
factory ) { (i, j) -> get(i, j) }.as2D()
) { (i, j) ->
get(i, j)
}.as2D()
inner class Row(val buffer: MutableBuffer<T>, val rowIndex: Int) : MutableBuffer<T> { inner class Row(val buffer: MutableBuffer<T>, val rowIndex: Int) : MutableBuffer<T> {
override val size: Int get() = colNum override val size: Int get() = colNum

View File

@ -5,7 +5,9 @@
package space.kscience.kmath.structures package space.kscience.kmath.structures
import kotlin.reflect.KClass import space.kscience.attributes.SafeType
import space.kscience.attributes.safeTypeOf
import kotlin.reflect.typeOf
/** /**
* A generic mutable random-access structure for both primitives and objects. * A generic mutable random-access structure for both primitives and objects.
@ -74,13 +76,13 @@ public interface MutableBuffer<T> : Buffer<T> {
* The [size] is specified, and each element is calculated by calling the specified [initializer] function. * The [size] is specified, and each element is calculated by calling the specified [initializer] function.
*/ */
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
public inline fun <T : Any> auto(type: KClass<out T>, size: Int, initializer: (Int) -> T): MutableBuffer<T> = public inline fun <T> auto(type: SafeType<T>, size: Int, initializer: (Int) -> T): MutableBuffer<T> =
when (type) { when (type.kType) {
Double::class -> double(size) { initializer(it) as Double } as MutableBuffer<T> typeOf<Double>() -> double(size) { initializer(it) as Double } as MutableBuffer<T>
Short::class -> short(size) { initializer(it) as Short } as MutableBuffer<T> typeOf<Short>() -> short(size) { initializer(it) as Short } as MutableBuffer<T>
Int::class -> int(size) { initializer(it) as Int } as MutableBuffer<T> typeOf<Int>() -> int(size) { initializer(it) as Int } as MutableBuffer<T>
Float::class -> float(size) { initializer(it) as Float } as MutableBuffer<T> typeOf<Float>() -> float(size) { initializer(it) as Float } as MutableBuffer<T>
Long::class -> long(size) { initializer(it) as Long } as MutableBuffer<T> typeOf<Long>() -> long(size) { initializer(it) as Long } as MutableBuffer<T>
else -> boxing(size, initializer) else -> boxing(size, initializer)
} }
@ -90,9 +92,8 @@ public interface MutableBuffer<T> : Buffer<T> {
* *
* The [size] is specified, and each element is calculated by calling the specified [initializer] function. * The [size] is specified, and each element is calculated by calling the specified [initializer] function.
*/ */
@Suppress("UNCHECKED_CAST") public inline fun <reified T> auto(size: Int, initializer: (Int) -> T): MutableBuffer<T> =
public inline fun <reified T : Any> auto(size: Int, initializer: (Int) -> T): MutableBuffer<T> = auto(safeTypeOf<T>(), size, initializer)
auto(T::class, size, initializer)
} }
} }

View File

@ -12,6 +12,8 @@ import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.linear.Point import space.kscience.kmath.linear.Point
import space.kscience.kmath.nd.Structure2D import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import kotlin.reflect.KType
import kotlin.reflect.typeOf
/** /**
* [LinearSpace] implementation specialized for a certain EJML type. * [LinearSpace] implementation specialized for a certain EJML type.
@ -43,5 +45,5 @@ public abstract class EjmlLinearSpace<T : Any, out A : Ring<T>, out M : org.ejml
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
@UnstableKMathAPI @UnstableKMathAPI
public fun EjmlMatrix<T, *>.inverse(): Structure2D<Double> = public fun EjmlMatrix<T, *>.inverse(): Structure2D<Double> =
computeFeature(this, InverseMatrixFeature::class)?.inverse as Structure2D<Double> attributeFor(this, InverseMatrixFeature::class)?.inverse as Structure2D<Double>
} }

View File

@ -61,9 +61,9 @@ internal class EjmlMatrixTest {
fun features() { fun features() {
val m = randomMatrix val m = randomMatrix
val w = EjmlDoubleMatrix(m) val w = EjmlDoubleMatrix(m)
val det: DeterminantFeature<Double> = EjmlLinearSpaceDDRM.computeFeature(w) ?: fail() val det: Determinant<Double> = EjmlLinearSpaceDDRM.attributeFor(w) ?: fail()
assertEquals(CommonOps_DDRM.det(m), det.determinant) assertEquals(CommonOps_DDRM.det(m), det.determinant)
val lup: LupDecompositionFeature<Double> = EjmlLinearSpaceDDRM.computeFeature(w) ?: fail() val lup: LupDecompositionAttribute<Double> = EjmlLinearSpaceDDRM.attributeFor(w) ?: fail()
val ludecompositionF64 = DecompositionFactory_DDRM.lu(m.numRows, m.numCols) val ludecompositionF64 = DecompositionFactory_DDRM.lu(m.numRows, m.numCols)
.also { it.decompose(m.copy()) } .also { it.decompose(m.copy()) }

View File

@ -16,7 +16,6 @@ import kotlin.math.pow
public typealias DoubleVector = Point<Double> public typealias DoubleVector = Point<Double>
@Suppress("FunctionName")
public fun DoubleVector(vararg doubles: Double): DoubleVector = doubles.asBuffer() public fun DoubleVector(vararg doubles: Double): DoubleVector = doubles.asBuffer()
/** /**

View File

@ -7,11 +7,14 @@
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.ScaleOperations import space.kscience.kmath.operations.ScaleOperations
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import kotlin.math.max import kotlin.math.max
import kotlin.math.min import kotlin.math.min
import kotlin.reflect.KType
import kotlin.reflect.typeOf
/** /**
@ -48,7 +51,7 @@ public data class Polynomial<out C>(
* *
* @usesMathJax * @usesMathJax
*/ */
public val coefficients: List<C> public val coefficients: List<C>,
) { ) {
override fun toString(): String = "Polynomial$coefficients" override fun toString(): String = "Polynomial$coefficients"
} }
@ -62,16 +65,17 @@ public data class Polynomial<out C>(
* @param ring underlying ring of constants of type [A]. * @param ring underlying ring of constants of type [A].
*/ */
public open class PolynomialSpace<C, A>( public open class PolynomialSpace<C, A>(
/**
* Underlying ring of constants. Its operations on constants are used by local operations on constants and polynomials.
*/
public val ring: A, public val ring: A,
) : Ring<Polynomial<C>>, ScaleOperations<Polynomial<C>> where A : Ring<C>, A : ScaleOperations<C> { ) : Ring<Polynomial<C>>, ScaleOperations<Polynomial<C>> where A : Ring<C>, A : ScaleOperations<C> {
@UnstableKMathAPI
override val elementType: KType get() = typeOf<Polynomial<C>>()
/** /**
* Instance of zero constant (zero of the underlying ring). * Instance of zero constant (zero of the underlying ring).
*/ */
public val constantZero: C get() = ring.zero public val constantZero: C get() = ring.zero
/** /**
* Instance of unit constant (unit of the underlying ring). * Instance of unit constant (unit of the underlying ring).
*/ */
@ -95,6 +99,7 @@ public open class PolynomialSpace<C, A>(
) )
} }
} }
/** /**
* Returns difference between the constant represented as a polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
@ -115,6 +120,7 @@ public open class PolynomialSpace<C, A>(
) )
} }
} }
/** /**
* Returns product of the constant represented as a polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
@ -147,6 +153,7 @@ public open class PolynomialSpace<C, A>(
) )
} }
} }
/** /**
* Returns difference between the constant represented as a polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
@ -165,6 +172,7 @@ public open class PolynomialSpace<C, A>(
) )
} }
} }
/** /**
* Returns product of the constant represented as a polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
@ -183,6 +191,7 @@ public open class PolynomialSpace<C, A>(
* Converts the constant [value] to polynomial. * Converts the constant [value] to polynomial.
*/ */
public fun number(value: C): Polynomial<C> = Polynomial(listOf(value)) public fun number(value: C): Polynomial<C> = Polynomial(listOf(value))
/** /**
* Converts the constant to polynomial. * Converts the constant to polynomial.
*/ */
@ -194,6 +203,7 @@ public open class PolynomialSpace<C, A>(
public override operator fun Polynomial<C>.unaryMinus(): Polynomial<C> = ring { public override operator fun Polynomial<C>.unaryMinus(): Polynomial<C> = ring {
Polynomial(coefficients.map { -it }) Polynomial(coefficients.map { -it })
} }
/** /**
* Returns sum of the polynomials. * Returns sum of the polynomials.
*/ */
@ -210,6 +220,7 @@ public open class PolynomialSpace<C, A>(
} }
) )
} }
/** /**
* Returns difference of the polynomials. * Returns difference of the polynomials.
*/ */
@ -226,6 +237,7 @@ public open class PolynomialSpace<C, A>(
} }
) )
} }
/** /**
* Returns product of the polynomials. * Returns product of the polynomials.
*/ */
@ -245,6 +257,7 @@ public open class PolynomialSpace<C, A>(
* Instance of zero polynomial (zero of the polynomial ring). * Instance of zero polynomial (zero of the polynomial ring).
*/ */
override val zero: Polynomial<C> = Polynomial(emptyList()) override val zero: Polynomial<C> = Polynomial(emptyList())
/** /**
* Instance of unit polynomial (unit of the polynomial ring). * Instance of unit polynomial (unit of the polynomial ring).
*/ */

View File

@ -5,13 +5,12 @@
package space.kscience.kmath.distributions package space.kscience.kmath.distributions
import space.kscience.kmath.chains.BlockingDoubleChain
import space.kscience.kmath.chains.Chain import space.kscience.kmath.chains.Chain
import space.kscience.kmath.operations.DoubleField.pow import space.kscience.kmath.operations.DoubleField.pow
import space.kscience.kmath.random.RandomGenerator import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.samplers.GaussianSampler import space.kscience.kmath.samplers.*
import space.kscience.kmath.samplers.InternalErf import space.kscience.kmath.samplers.InternalErf
import space.kscience.kmath.samplers.NormalizedGaussianSampler
import space.kscience.kmath.samplers.ZigguratNormalizedGaussianSampler
import kotlin.math.* import kotlin.math.*
/** /**
@ -24,7 +23,7 @@ public class NormalDistribution(public val sampler: GaussianSampler) : Distribut
return exp(-0.5 * x1 * x1 - (ln(sampler.standardDeviation) + 0.5 * ln(2 * PI))) return exp(-0.5 * x1 * x1 - (ln(sampler.standardDeviation) + 0.5 * ln(2 * PI)))
} }
override fun sample(generator: RandomGenerator): Chain<Double> = sampler.sample(generator) override fun sample(generator: RandomGenerator): BlockingDoubleChain = sampler.sample(generator)
override fun cumulative(arg: Double): Double { override fun cumulative(arg: Double): Double {
val dev = arg - sampler.mean val dev = arg - sampler.mean