forked from kscience/kmath
Merge SCI-MR-180: feature/vector-product
This commit is contained in:
commit
5625800fc9
@ -9,7 +9,7 @@ kotlin.native.ignoreDisabledTargets=true
|
|||||||
org.gradle.configureondemand=true
|
org.gradle.configureondemand=true
|
||||||
org.gradle.jvmargs=-Xmx4096m
|
org.gradle.jvmargs=-Xmx4096m
|
||||||
|
|
||||||
toolsVersion=0.14.2-kotlin-1.8.10
|
toolsVersion=0.14.3-kotlin-1.8.20-RC
|
||||||
|
|
||||||
|
|
||||||
org.gradle.parallel=true
|
org.gradle.parallel=true
|
||||||
|
@ -78,8 +78,11 @@ public object Euclidean3DSpace : GeometrySpace<DoubleVector3D>, ScaleOperations<
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public fun vector(x: Double, y: Double, z: Double): DoubleVector3D =
|
||||||
|
Vector3DImpl(x, y, z)
|
||||||
|
|
||||||
public fun vector(x: Number, y: Number, z: Number): DoubleVector3D =
|
public fun vector(x: Number, y: Number, z: Number): DoubleVector3D =
|
||||||
Vector3DImpl(x.toDouble(), y.toDouble(), z.toDouble())
|
vector(x.toDouble(), y.toDouble(), z.toDouble())
|
||||||
|
|
||||||
override val zero: DoubleVector3D by lazy { vector(0.0, 0.0, 0.0) }
|
override val zero: DoubleVector3D by lazy { vector(0.0, 0.0, 0.0) }
|
||||||
|
|
||||||
@ -100,6 +103,24 @@ public object Euclidean3DSpace : GeometrySpace<DoubleVector3D>, ScaleOperations<
|
|||||||
override fun DoubleVector3D.dot(other: DoubleVector3D): Double =
|
override fun DoubleVector3D.dot(other: DoubleVector3D): Double =
|
||||||
x * other.x + y * other.y + z * other.z
|
x * other.x + y * other.y + z * other.z
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compute vector product of [first] and [second]. The basis assumed to be right-handed.
|
||||||
|
*/
|
||||||
|
public fun vectorProduct(
|
||||||
|
first: DoubleVector3D,
|
||||||
|
second: DoubleVector3D,
|
||||||
|
): DoubleVector3D {
|
||||||
|
val (x1, y1, z1) = first
|
||||||
|
val (x2, y2, z2) = second
|
||||||
|
|
||||||
|
return vector(y1 * z2 - y2 * z2, z1 * x2 - z2 * x2, x1 * y2 - x2 * y2)
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Vector product with a right basis
|
||||||
|
*/
|
||||||
|
public infix fun DoubleVector3D.cross(other: DoubleVector3D): Vector3D<Double> = vectorProduct(this, other)
|
||||||
|
|
||||||
public val xAxis: DoubleVector3D = vector(1.0, 0.0, 0.0)
|
public val xAxis: DoubleVector3D = vector(1.0, 0.0, 0.0)
|
||||||
public val yAxis: DoubleVector3D = vector(0.0, 1.0, 0.0)
|
public val yAxis: DoubleVector3D = vector(0.0, 1.0, 0.0)
|
||||||
public val zAxis: DoubleVector3D = vector(0.0, 0.0, 1.0)
|
public val zAxis: DoubleVector3D = vector(0.0, 0.0, 1.0)
|
||||||
|
@ -57,8 +57,7 @@ internal class Euclidean3DSpaceTest {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
fun add() {
|
fun add() = with(Euclidean3DSpace) {
|
||||||
with(Euclidean3DSpace) {
|
|
||||||
assertVectorEquals(
|
assertVectorEquals(
|
||||||
vector(1.0, -2.0, 0.001),
|
vector(1.0, -2.0, 0.001),
|
||||||
vector(1.0, -2.0, 0.001) + zero
|
vector(1.0, -2.0, 0.001) + zero
|
||||||
@ -68,12 +67,29 @@ internal class Euclidean3DSpaceTest {
|
|||||||
vector(1.0, 2.0, 3.0) + vector(7.0, -5.0, 0.001)
|
vector(1.0, 2.0, 3.0) + vector(7.0, -5.0, 0.001)
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
fun multiply() = with(Euclidean3DSpace) {
|
||||||
|
assertVectorEquals(vector(2.0, -4.0, 0.0), vector(1.0, -2.0, 0.0) * 2)
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
fun multiply() {
|
fun vectorProduct() = with(Euclidean3DSpace) {
|
||||||
with(Euclidean3DSpace) {
|
assertVectorEquals(zAxis, vectorProduct(xAxis, yAxis))
|
||||||
assertVectorEquals(vector(2.0, -4.0, 0.0), vector(1.0, -2.0, 0.0) * 2)
|
assertVectorEquals(zAxis, xAxis cross yAxis)
|
||||||
|
assertVectorEquals(-zAxis, vectorProduct(yAxis, xAxis))
|
||||||
|
assertVectorEquals(zAxis, vectorProduct(yAxis, xAxis, rightBasis = false))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
fun doubleVectorProduct() = with(Euclidean3DSpace) {
|
||||||
|
val a = vector(1, 2, -3)
|
||||||
|
val b = vector(-1, 0, 1)
|
||||||
|
val c = vector(4, 5, 6)
|
||||||
|
|
||||||
|
val res = a cross (b cross c)
|
||||||
|
val expected = b * (a dot c) - c * (a dot b)
|
||||||
|
assertVectorEquals(expected, res)
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user