forked from kscience/kmath
rework structure + fixes
This commit is contained in:
parent
cc11df6174
commit
559e8b24ab
@ -1,4 +1,9 @@
|
||||
package space.kscience.kmath.tensors
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
|
||||
public interface AnalyticTensorAlgebra<T> :
|
@ -1,4 +1,9 @@
|
||||
package space.kscience.kmath.tensors
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
|
||||
public interface LinearOpsTensorAlgebra<T> :
|
@ -1,4 +1,9 @@
|
||||
package space.kscience.kmath.tensors
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
// https://proofwiki.org/wiki/Definition:Algebra_over_Ring
|
||||
public interface TensorAlgebra<T> {
|
||||
@ -40,7 +45,9 @@ public interface TensorAlgebra<T> {
|
||||
//https://pytorch.org/docs/stable/generated/torch.diag_embed.html
|
||||
public fun diagonalEmbedding(
|
||||
diagonalEntries: TensorStructure<T>,
|
||||
offset: Int = 0, dim1: Int = -2, dim2: Int = -1
|
||||
offset: Int = 0,
|
||||
dim1: Int = -2,
|
||||
dim2: Int = -1
|
||||
): TensorStructure<T>
|
||||
|
||||
}
|
@ -1,4 +1,9 @@
|
||||
package space.kscience.kmath.tensors
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
// https://proofwiki.org/wiki/Definition:Division_Algebra
|
||||
public interface TensorPartialDivisionAlgebra<T> :
|
@ -1,4 +1,4 @@
|
||||
package space.kscience.kmath.tensors
|
||||
package space.kscience.kmath.tensors.api
|
||||
|
||||
import space.kscience.kmath.nd.MutableStructureND
|
||||
|
@ -1,7 +1,8 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.structures.*
|
||||
import space.kscience.kmath.tensors.TensorStructure
|
||||
import space.kscience.kmath.tensors.api.TensorStructure
|
||||
import space.kscience.kmath.tensors.core.algebras.TensorLinearStructure
|
||||
|
||||
|
||||
public open class BufferedTensor<T>(
|
||||
|
@ -0,0 +1,89 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.algebras
|
||||
|
||||
import space.kscience.kmath.tensors.api.TensorStructure
|
||||
import space.kscience.kmath.tensors.core.*
|
||||
import space.kscience.kmath.tensors.core.broadcastTensors
|
||||
import space.kscience.kmath.tensors.core.broadcastTo
|
||||
|
||||
public class BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
|
||||
|
||||
override fun TensorStructure<Double>.plus(other: TensorStructure<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.size) { i ->
|
||||
newThis.buffer.array()[i] + newOther.buffer.array()[i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.plusAssign(other: TensorStructure<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.size) {
|
||||
tensor.buffer.array()[tensor.bufferStart + i] +=
|
||||
newOther.buffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.minus(other: TensorStructure<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.size) { i ->
|
||||
newThis.buffer.array()[i] - newOther.buffer.array()[i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.minusAssign(other: TensorStructure<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.size) {
|
||||
tensor.buffer.array()[tensor.bufferStart + i] -=
|
||||
newOther.buffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.times(other: TensorStructure<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.size) { i ->
|
||||
newThis.buffer.array()[newThis.bufferStart + i] *
|
||||
newOther.buffer.array()[newOther.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.timesAssign(other: TensorStructure<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.size) {
|
||||
tensor.buffer.array()[tensor.bufferStart + i] *=
|
||||
newOther.buffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.div(other: TensorStructure<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.size) { i ->
|
||||
newThis.buffer.array()[newOther.bufferStart + i] /
|
||||
newOther.buffer.array()[newOther.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.divAssign(other: TensorStructure<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.size) {
|
||||
tensor.buffer.array()[tensor.bufferStart + i] /=
|
||||
newOther.buffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -1,7 +1,14 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
import space.kscience.kmath.tensors.AnalyticTensorAlgebra
|
||||
import space.kscience.kmath.tensors.TensorStructure
|
||||
package space.kscience.kmath.tensors.core.algebras
|
||||
|
||||
import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra
|
||||
import space.kscience.kmath.tensors.api.TensorStructure
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.tensor
|
||||
import kotlin.math.*
|
||||
|
||||
public class DoubleAnalyticTensorAlgebra:
|
@ -1,9 +1,23 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
import space.kscience.kmath.tensors.LinearOpsTensorAlgebra
|
||||
package space.kscience.kmath.tensors.core.algebras
|
||||
|
||||
import space.kscience.kmath.tensors.api.LinearOpsTensorAlgebra
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.tensors.TensorStructure
|
||||
import space.kscience.kmath.tensors.api.TensorStructure
|
||||
import space.kscience.kmath.tensors.core.*
|
||||
import space.kscience.kmath.tensors.core.checkSquareMatrix
|
||||
import space.kscience.kmath.tensors.core.choleskyHelper
|
||||
import space.kscience.kmath.tensors.core.cleanSymHelper
|
||||
import space.kscience.kmath.tensors.core.luHelper
|
||||
import space.kscience.kmath.tensors.core.luMatrixDet
|
||||
import space.kscience.kmath.tensors.core.luMatrixInv
|
||||
import space.kscience.kmath.tensors.core.luPivotHelper
|
||||
import space.kscience.kmath.tensors.core.pivInit
|
||||
import kotlin.math.min
|
||||
|
||||
|
||||
@ -25,12 +39,11 @@ public class DoubleLinearOpsTensorAlgebra :
|
||||
luTensor: TensorStructure<Double>,
|
||||
pivotsTensor: TensorStructure<Int>
|
||||
): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
|
||||
//todo checks
|
||||
checkSquareMatrix(luTensor.shape)
|
||||
check(
|
||||
luTensor.shape.dropLast(2).toIntArray() contentEquals pivotsTensor.shape.dropLast(1).toIntArray() ||
|
||||
luTensor.shape.last() == pivotsTensor.shape.last() - 1
|
||||
) { "Bad shapes ((" } //todo rewrite
|
||||
) { "Inappropriate shapes of input tensors" }
|
||||
|
||||
val n = luTensor.shape.last()
|
||||
val pTensor = luTensor.zeroesLike()
|
||||
@ -90,10 +103,10 @@ public class DoubleLinearOpsTensorAlgebra :
|
||||
|
||||
for ((matrix, USV) in tensor.matrixSequence()
|
||||
.zip(resU.matrixSequence().zip(resS.vectorSequence().zip(resV.matrixSequence())))) {
|
||||
val size = matrix.shape.reduce { acc, i -> acc * i }
|
||||
val matrixSize = matrix.shape.reduce { acc, i -> acc * i }
|
||||
val curMatrix = DoubleTensor(
|
||||
matrix.shape,
|
||||
matrix.buffer.array().slice(matrix.bufferStart until matrix.bufferStart + size).toDoubleArray()
|
||||
matrix.buffer.array().slice(matrix.bufferStart until matrix.bufferStart + matrixSize).toDoubleArray()
|
||||
)
|
||||
svdHelper(curMatrix, USV, m, n, epsilon)
|
||||
}
|
@ -1,8 +1,24 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.algebras
|
||||
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.tensors.TensorPartialDivisionAlgebra
|
||||
import space.kscience.kmath.tensors.TensorStructure
|
||||
import space.kscience.kmath.tensors.api.TensorPartialDivisionAlgebra
|
||||
import space.kscience.kmath.tensors.api.TensorStructure
|
||||
import space.kscience.kmath.tensors.core.*
|
||||
import space.kscience.kmath.tensors.core.broadcastOuterTensors
|
||||
import space.kscience.kmath.tensors.core.checkBufferShapeConsistency
|
||||
import space.kscience.kmath.tensors.core.checkEmptyDoubleBuffer
|
||||
import space.kscience.kmath.tensors.core.checkEmptyShape
|
||||
import space.kscience.kmath.tensors.core.checkShapesCompatible
|
||||
import space.kscience.kmath.tensors.core.checkTranspose
|
||||
import space.kscience.kmath.tensors.core.checkView
|
||||
import space.kscience.kmath.tensors.core.dotHelper
|
||||
import space.kscience.kmath.tensors.core.getRandomNormals
|
||||
import space.kscience.kmath.tensors.core.minusIndexFrom
|
||||
import kotlin.math.abs
|
||||
|
||||
public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
||||
@ -263,7 +279,6 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
||||
if (m1 != m2) {
|
||||
throw RuntimeException("Tensors dot operation dimension mismatch: ($l, $m1) x ($m2, $n)")
|
||||
}
|
||||
val m = m1
|
||||
|
||||
val resShape = newThis.shape.sliceArray(0..(newThis.shape.size - 2)) + intArrayOf(newOther.shape.last())
|
||||
val resSize = resShape.reduce { acc, i -> acc * i }
|
||||
@ -271,7 +286,7 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
||||
|
||||
for ((res, ab) in resTensor.matrixSequence().zip(newThis.matrixSequence().zip(newOther.matrixSequence()))) {
|
||||
val (a, b) = ab
|
||||
dotHelper(a.as2D(), b.as2D(), res.as2D(), l, m, n)
|
||||
dotHelper(a.as2D(), b.as2D(), res.as2D(), l, m1, n)
|
||||
}
|
||||
|
||||
if (penultimateDim) {
|
||||
@ -347,7 +362,7 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
|
||||
return tensor.eq(other) { x, y -> abs(x - y) < delta }
|
||||
}
|
||||
|
||||
public fun TensorStructure<Double>.eq(other: TensorStructure<Double>): Boolean = tensor.eq(other, 1e-5)
|
||||
public infix fun TensorStructure<Double>.eq(other: TensorStructure<Double>): Boolean = tensor.eq(other, 1e-5)
|
||||
|
||||
private fun TensorStructure<Double>.eq(
|
||||
other: TensorStructure<Double>,
|
@ -1,4 +1,9 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors.core.algebras
|
||||
|
||||
import kotlin.math.max
|
||||
|
@ -1,89 +1,31 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.tensors.TensorStructure
|
||||
import space.kscience.kmath.tensors.core.algebras.BroadcastDoubleTensorAlgebra
|
||||
import kotlin.math.max
|
||||
|
||||
public class BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
|
||||
|
||||
override fun TensorStructure<Double>.plus(other: TensorStructure<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.size) { i ->
|
||||
newThis.buffer.array()[i] + newOther.buffer.array()[i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.plusAssign(other: TensorStructure<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.size) {
|
||||
tensor.buffer.array()[tensor.bufferStart + i] +=
|
||||
newOther.buffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.minus(other: TensorStructure<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.size) { i ->
|
||||
newThis.buffer.array()[i] - newOther.buffer.array()[i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.minusAssign(other: TensorStructure<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.size) {
|
||||
tensor.buffer.array()[tensor.bufferStart + i] -=
|
||||
newOther.buffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.times(other: TensorStructure<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.size) { i ->
|
||||
newThis.buffer.array()[newThis.bufferStart + i] *
|
||||
newOther.buffer.array()[newOther.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.timesAssign(other: TensorStructure<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.size) {
|
||||
tensor.buffer.array()[tensor.bufferStart + i] *=
|
||||
newOther.buffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.div(other: TensorStructure<Double>): DoubleTensor {
|
||||
val broadcast = broadcastTensors(tensor, other.tensor)
|
||||
val newThis = broadcast[0]
|
||||
val newOther = broadcast[1]
|
||||
val resBuffer = DoubleArray(newThis.linearStructure.size) { i ->
|
||||
newThis.buffer.array()[newOther.bufferStart + i] /
|
||||
newOther.buffer.array()[newOther.bufferStart + i]
|
||||
}
|
||||
return DoubleTensor(newThis.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun TensorStructure<Double>.divAssign(other: TensorStructure<Double>) {
|
||||
val newOther = broadcastTo(other.tensor, tensor.shape)
|
||||
for (i in 0 until tensor.linearStructure.size) {
|
||||
tensor.buffer.array()[tensor.bufferStart + i] /=
|
||||
newOther.buffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
public inline fun <R> BroadcastDoubleTensorAlgebra(block: BroadcastDoubleTensorAlgebra.() -> R): R =
|
||||
BroadcastDoubleTensorAlgebra().block()
|
||||
|
||||
internal inline fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: DoubleTensor, linearSize: Int) {
|
||||
for (linearIndex in 0 until linearSize) {
|
||||
val totalMultiIndex = resTensor.linearStructure.index(linearIndex)
|
||||
val curMultiIndex = tensor.shape.copyOf()
|
||||
|
||||
val offset = totalMultiIndex.size - curMultiIndex.size
|
||||
|
||||
for (i in curMultiIndex.indices) {
|
||||
if (curMultiIndex[i] != 1) {
|
||||
curMultiIndex[i] = totalMultiIndex[i + offset]
|
||||
} else {
|
||||
curMultiIndex[i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
val curLinearIndex = tensor.linearStructure.offset(curMultiIndex)
|
||||
resTensor.buffer.array()[linearIndex] =
|
||||
tensor.buffer.array()[tensor.bufferStart + curLinearIndex]
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun broadcastShapes(vararg shapes: IntArray): IntArray {
|
||||
var totalDim = 0
|
||||
@ -129,24 +71,7 @@ internal inline fun broadcastTo(tensor: DoubleTensor, newShape: IntArray): Doubl
|
||||
}
|
||||
}
|
||||
|
||||
for (linearIndex in 0 until n) {
|
||||
val totalMultiIndex = resTensor.linearStructure.index(linearIndex)
|
||||
val curMultiIndex = tensor.shape.copyOf()
|
||||
|
||||
val offset = totalMultiIndex.size - curMultiIndex.size
|
||||
|
||||
for (i in curMultiIndex.indices) {
|
||||
if (curMultiIndex[i] != 1) {
|
||||
curMultiIndex[i] = totalMultiIndex[i + offset]
|
||||
} else {
|
||||
curMultiIndex[i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
val curLinearIndex = tensor.linearStructure.offset(curMultiIndex)
|
||||
resTensor.buffer.array()[linearIndex] =
|
||||
tensor.buffer.array()[tensor.bufferStart + curLinearIndex]
|
||||
}
|
||||
multiIndexBroadCasting(tensor, resTensor, n)
|
||||
return resTensor
|
||||
}
|
||||
|
||||
@ -157,25 +82,7 @@ internal inline fun broadcastTensors(vararg tensors: DoubleTensor): List<DoubleT
|
||||
val res = ArrayList<DoubleTensor>(0)
|
||||
for (tensor in tensors) {
|
||||
val resTensor = DoubleTensor(totalShape, DoubleArray(n))
|
||||
|
||||
for (linearIndex in 0 until n) {
|
||||
val totalMultiIndex = resTensor.linearStructure.index(linearIndex)
|
||||
val curMultiIndex = tensor.shape.copyOf()
|
||||
|
||||
val offset = totalMultiIndex.size - curMultiIndex.size
|
||||
|
||||
for (i in curMultiIndex.indices) {
|
||||
if (curMultiIndex[i] != 1) {
|
||||
curMultiIndex[i] = totalMultiIndex[i + offset]
|
||||
} else {
|
||||
curMultiIndex[i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
val curLinearIndex = tensor.linearStructure.offset(curMultiIndex)
|
||||
resTensor.buffer.array()[linearIndex] =
|
||||
tensor.buffer.array()[tensor.bufferStart + curLinearIndex]
|
||||
}
|
||||
multiIndexBroadCasting(tensor, resTensor, n)
|
||||
res.add(resTensor)
|
||||
}
|
||||
|
||||
@ -221,10 +128,14 @@ internal inline fun broadcastOuterTensors(vararg tensors: DoubleTensor): List<Do
|
||||
}
|
||||
|
||||
for (i in 0 until matrixSize) {
|
||||
val curLinearIndex = newTensor.linearStructure.offset(curMultiIndex +
|
||||
matrix.linearStructure.index(i))
|
||||
val newLinearIndex = resTensor.linearStructure.offset(totalMultiIndex +
|
||||
matrix.linearStructure.index(i))
|
||||
val curLinearIndex = newTensor.linearStructure.offset(
|
||||
curMultiIndex +
|
||||
matrix.linearStructure.index(i)
|
||||
)
|
||||
val newLinearIndex = resTensor.linearStructure.offset(
|
||||
totalMultiIndex +
|
||||
matrix.linearStructure.index(i)
|
||||
)
|
||||
|
||||
resTensor.buffer.array()[resTensor.bufferStart + newLinearIndex] =
|
||||
newTensor.buffer.array()[newTensor.bufferStart + curLinearIndex]
|
@ -1,6 +1,8 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.tensors.TensorStructure
|
||||
import space.kscience.kmath.tensors.api.TensorStructure
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
|
||||
|
||||
|
||||
internal inline fun checkEmptyShape(shape: IntArray): Unit =
|
||||
|
@ -4,6 +4,8 @@ import space.kscience.kmath.nd.MutableStructure1D
|
||||
import space.kscience.kmath.nd.MutableStructure2D
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
|
||||
import kotlin.math.abs
|
||||
import kotlin.math.min
|
||||
import kotlin.math.sign
|
||||
@ -31,13 +33,13 @@ internal inline fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTen
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun <T> BufferedTensor<T>.forEachVector(vectorAction: (BufferedTensor<T>) -> Unit): Unit {
|
||||
internal inline fun <T> BufferedTensor<T>.forEachVector(vectorAction: (BufferedTensor<T>) -> Unit) {
|
||||
for (vector in vectorSequence()) {
|
||||
vectorAction(vector)
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun <T> BufferedTensor<T>.forEachMatrix(matrixAction: (BufferedTensor<T>) -> Unit): Unit {
|
||||
internal inline fun <T> BufferedTensor<T>.forEachMatrix(matrixAction: (BufferedTensor<T>) -> Unit) {
|
||||
for (matrix in matrixSequence()) {
|
||||
matrixAction(matrix)
|
||||
}
|
||||
@ -284,7 +286,7 @@ internal inline fun DoubleLinearOpsTensorAlgebra.svdHelper(
|
||||
matrix: DoubleTensor,
|
||||
USV: Pair<BufferedTensor<Double>, Pair<BufferedTensor<Double>, BufferedTensor<Double>>>,
|
||||
m: Int, n: Int, epsilon: Double
|
||||
): Unit {
|
||||
) {
|
||||
val res = ArrayList<Triple<Double, DoubleTensor, DoubleTensor>>(0)
|
||||
val (matrixU, SV) = USV
|
||||
val (matrixS, matrixV) = SV
|
||||
@ -332,7 +334,7 @@ internal inline fun DoubleLinearOpsTensorAlgebra.svdHelper(
|
||||
}
|
||||
}
|
||||
|
||||
internal inline fun cleanSymHelper(matrix: MutableStructure2D<Double>, n: Int): Unit {
|
||||
internal inline fun cleanSymHelper(matrix: MutableStructure2D<Double>, n: Int) {
|
||||
for (i in 0 until n)
|
||||
for (j in 0 until n) {
|
||||
if (i == j) {
|
@ -110,7 +110,6 @@ internal inline fun DoubleTensor.toPrettyString(): String = buildString {
|
||||
charOffset -=1
|
||||
}
|
||||
offset += vectorSize
|
||||
// todo refactor
|
||||
if (this@toPrettyString.numElements == offset) {
|
||||
break
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
|
||||
import kotlin.math.abs
|
||||
import kotlin.math.exp
|
||||
import kotlin.test.Test
|
||||
|
@ -1,5 +1,6 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
|
||||
import kotlin.math.abs
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
@ -125,8 +126,6 @@ class TestDoubleLinearOpsTensorAlgebra {
|
||||
|
||||
val (lu, pivots) = tensor.lu()
|
||||
|
||||
// todo check lu
|
||||
|
||||
val (p, l, u) = luPivot(lu, pivots)
|
||||
|
||||
assertTrue { p.shape contentEquals shape }
|
||||
|
@ -3,7 +3,7 @@ package space.kscience.kmath.tensors.core
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.structures.toDoubleArray
|
||||
import kotlin.test.Ignore
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
import kotlin.test.assertTrue
|
||||
|
@ -1,7 +1,9 @@
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
|
||||
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertFalse
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
class TestDoubleTensorAlgebra {
|
||||
@ -133,9 +135,9 @@ class TestDoubleTensorAlgebra {
|
||||
assertTrue(diagonal1.buffer.array() contentEquals
|
||||
doubleArrayOf(10.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 30.0))
|
||||
|
||||
val diagonal1_offset = diagonalEmbedding(tensor1, 1, 1, 0)
|
||||
assertTrue(diagonal1_offset.shape contentEquals intArrayOf(4, 4))
|
||||
assertTrue(diagonal1_offset.buffer.array() contentEquals
|
||||
val diagonal1Offset = diagonalEmbedding(tensor1, 1, 1, 0)
|
||||
assertTrue(diagonal1Offset.shape contentEquals intArrayOf(4, 4))
|
||||
assertTrue(diagonal1Offset.buffer.array() contentEquals
|
||||
doubleArrayOf(0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 0.0, 30.0, 0.0))
|
||||
|
||||
val diagonal2 = diagonalEmbedding(tensor2, 1, 0, 2)
|
||||
@ -149,7 +151,15 @@ class TestDoubleTensorAlgebra {
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testContentEqual() = DoubleTensorAlgebra {
|
||||
//TODO()
|
||||
fun testEq() = DoubleTensorAlgebra {
|
||||
val tensor1 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
val tensor3 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 5.0))
|
||||
val tensor4 = fromArray(intArrayOf(6, 1), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
|
||||
|
||||
assertTrue(tensor1 eq tensor1)
|
||||
assertTrue(tensor1 eq tensor2)
|
||||
assertFalse(tensor1.eq(tensor3))
|
||||
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user