forked from kscience/kmath
Int Tensor Algebra implementation
This commit is contained in:
parent
ad97751327
commit
5042fda751
@ -14,7 +14,7 @@ allprojects {
|
||||
}
|
||||
|
||||
group = "space.kscience"
|
||||
version = "0.3.1-dev-2"
|
||||
version = "0.3.1-dev-3"
|
||||
}
|
||||
|
||||
subprojects {
|
||||
|
@ -1,8 +1,7 @@
|
||||
plugins {
|
||||
kotlin("jvm") version "1.7.20-Beta"
|
||||
`kotlin-dsl`
|
||||
`version-catalog`
|
||||
alias(npmlibs.plugins.kotlin.plugin.serialization)
|
||||
kotlin("plugin.serialization") version "1.6.21"
|
||||
}
|
||||
|
||||
java.targetCompatibility = JavaVersion.VERSION_11
|
||||
|
@ -56,7 +56,7 @@ public inline fun <T, reified R : Any> StructureND<T>.mapToBuffer(
|
||||
* @param strides The strides to access elements of [MutableBuffer] by linear indices.
|
||||
* @param buffer The underlying buffer.
|
||||
*/
|
||||
public class MutableBufferND<T>(
|
||||
public open class MutableBufferND<T>(
|
||||
strides: ShapeIndexer,
|
||||
override val buffer: MutableBuffer<T>,
|
||||
) : MutableStructureND<T>, BufferND<T>(strides, buffer) {
|
||||
|
@ -16,7 +16,7 @@ import kotlin.math.pow as kpow
|
||||
public class DoubleBufferND(
|
||||
indexes: ShapeIndexer,
|
||||
override val buffer: DoubleBuffer,
|
||||
) : BufferND<Double>(indexes, buffer)
|
||||
) : MutableBufferND<Double>(indexes, buffer)
|
||||
|
||||
|
||||
public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(DoubleField.bufferAlgebra),
|
||||
|
@ -0,0 +1,50 @@
|
||||
/*
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.nd
|
||||
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.IntRing
|
||||
import space.kscience.kmath.operations.NumbersAddOps
|
||||
import space.kscience.kmath.operations.bufferAlgebra
|
||||
import space.kscience.kmath.structures.IntBuffer
|
||||
import kotlin.contracts.InvocationKind
|
||||
import kotlin.contracts.contract
|
||||
|
||||
public class IntBufferND(
|
||||
indexes: ShapeIndexer,
|
||||
override val buffer: IntBuffer,
|
||||
) : MutableBufferND<Int>(indexes, buffer)
|
||||
|
||||
public sealed class IntRingOpsND : BufferedRingOpsND<Int, IntRing>(IntRing.bufferAlgebra) {
|
||||
|
||||
override fun structureND(shape: Shape, initializer: IntRing.(IntArray) -> Int): IntBufferND {
|
||||
val indexer = indexerBuilder(shape)
|
||||
return IntBufferND(
|
||||
indexer,
|
||||
IntBuffer(indexer.linearSize) { offset ->
|
||||
elementAlgebra.initializer(indexer.index(offset))
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
public companion object : IntRingOpsND()
|
||||
}
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
public class IntRingND(
|
||||
override val shape: Shape
|
||||
) : IntRingOpsND(), RingND<Int, IntRing>, NumbersAddOps<StructureND<Int>> {
|
||||
|
||||
override fun number(value: Number): BufferND<Int> {
|
||||
val int = value.toInt() // minimize conversions
|
||||
return structureND(shape) { int }
|
||||
}
|
||||
}
|
||||
|
||||
public inline fun <R> IntRing.withNdAlgebra(vararg shape: Int, action: IntRingND.() -> R): R {
|
||||
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
|
||||
return IntRingND(shape).run(action)
|
||||
}
|
@ -22,8 +22,9 @@ public class ShortRingND(
|
||||
) : ShortRingOpsND(), RingND<Short, ShortRing>, NumbersAddOps<StructureND<Short>> {
|
||||
|
||||
override fun number(value: Number): BufferND<Short> {
|
||||
val d = value.toShort() // minimize conversions
|
||||
return structureND(shape) { d }
|
||||
val short
|
||||
= value.toShort() // minimize conversions
|
||||
return structureND(shape) { short }
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -82,7 +82,7 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
|
||||
public fun contentEquals(
|
||||
st1: StructureND<Double>,
|
||||
st2: StructureND<Double>,
|
||||
tolerance: Double = 1e-11
|
||||
tolerance: Double = 1e-11,
|
||||
): Boolean {
|
||||
if (st1 === st2) return true
|
||||
|
||||
@ -101,11 +101,17 @@ public interface StructureND<out T> : Featured<StructureFeature>, WithShape {
|
||||
val bufferRepr: String = when (structure.shape.size) {
|
||||
1 -> (0 until structure.shape[0]).map { structure[it] }
|
||||
.joinToString(prefix = "[", postfix = "]", separator = ", ")
|
||||
2 -> (0 until structure.shape[0]).joinToString(prefix = "[\n", postfix = "\n]", separator = ",\n") { i ->
|
||||
|
||||
2 -> (0 until structure.shape[0]).joinToString(
|
||||
prefix = "[\n",
|
||||
postfix = "\n]",
|
||||
separator = ",\n"
|
||||
) { i ->
|
||||
(0 until structure.shape[1]).joinToString(prefix = " [", postfix = "]", separator = ", ") { j ->
|
||||
structure[i, j].toString()
|
||||
}
|
||||
}
|
||||
|
||||
else -> "..."
|
||||
}
|
||||
val className = structure::class.simpleName ?: "StructureND"
|
||||
@ -226,6 +232,13 @@ public interface MutableStructureND<T> : StructureND<T> {
|
||||
public operator fun set(index: IntArray, value: T)
|
||||
}
|
||||
|
||||
/**
|
||||
* Set value at specified indices
|
||||
*/
|
||||
public operator fun <T> MutableStructureND<T>.set(vararg index: Int, value: T) {
|
||||
set(index, value)
|
||||
}
|
||||
|
||||
/**
|
||||
* Transform a structure element-by element in place.
|
||||
*/
|
||||
|
@ -142,6 +142,9 @@ public open class BufferRingOps<T, A : Ring<T>>(
|
||||
super<BufferAlgebra>.binaryOperationFunction(operation)
|
||||
}
|
||||
|
||||
public val IntRing.bufferAlgebra: BufferRingOps<Int, IntRing>
|
||||
get() = BufferRingOps(IntRing)
|
||||
|
||||
public val ShortRing.bufferAlgebra: BufferRingOps<Short, ShortRing>
|
||||
get() = BufferRingOps(ShortRing)
|
||||
|
||||
|
@ -4,18 +4,12 @@ plugins {
|
||||
|
||||
kscience{
|
||||
native()
|
||||
}
|
||||
|
||||
kotlin.sourceSets.commonMain {
|
||||
withContextReceivers()
|
||||
dependencies{
|
||||
api(projects.kmath.kmathComplex)
|
||||
}
|
||||
}
|
||||
|
||||
kscience {
|
||||
withContextReceivers()
|
||||
}
|
||||
|
||||
readme {
|
||||
maturity = space.kscience.gradle.Maturity.PROTOTYPE
|
||||
}
|
||||
|
@ -4,6 +4,10 @@ plugins {
|
||||
|
||||
kscience{
|
||||
native()
|
||||
dependencies {
|
||||
api(projects.kmathCore)
|
||||
api(projects.kmathStat)
|
||||
}
|
||||
}
|
||||
|
||||
kotlin.sourceSets {
|
||||
|
@ -31,8 +31,7 @@ public open class DoubleTensorAlgebra :
|
||||
|
||||
public companion object : DoubleTensorAlgebra()
|
||||
|
||||
override val elementAlgebra: DoubleField
|
||||
get() = DoubleField
|
||||
override val elementAlgebra: DoubleField get() = DoubleField
|
||||
|
||||
|
||||
/**
|
||||
@ -622,7 +621,8 @@ public open class DoubleTensorAlgebra :
|
||||
}
|
||||
val resNumElements = resShape.reduce(Int::times)
|
||||
val init = foldFunction(DoubleArray(1) { 0.0 })
|
||||
val resTensor = BufferedTensor(resShape,
|
||||
val resTensor = BufferedTensor(
|
||||
resShape,
|
||||
MutableBuffer.auto(resNumElements) { init }, 0
|
||||
)
|
||||
for (index in resTensor.indices) {
|
||||
|
@ -11,10 +11,10 @@ import space.kscience.kmath.tensors.core.internal.array
|
||||
/**
|
||||
* Default [BufferedTensor] implementation for [Int] values
|
||||
*/
|
||||
public class IntTensor internal constructor(
|
||||
public class IntTensor @PublishedApi internal constructor(
|
||||
shape: IntArray,
|
||||
buffer: IntArray,
|
||||
offset: Int = 0
|
||||
offset: Int = 0,
|
||||
) : BufferedTensor<Int>(shape, IntBuffer(buffer), offset) {
|
||||
public fun asDouble(): DoubleTensor =
|
||||
DoubleTensor(shape, mutableBuffer.array().map { it.toDouble() }.toDoubleArray(), bufferStart)
|
||||
|
@ -0,0 +1,493 @@
|
||||
/*
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
|
||||
@file:OptIn(PerformancePitfall::class)
|
||||
|
||||
package space.kscience.kmath.tensors.core
|
||||
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.operations.IntRing
|
||||
import space.kscience.kmath.structures.MutableBuffer
|
||||
import space.kscience.kmath.tensors.api.*
|
||||
import space.kscience.kmath.tensors.core.internal.*
|
||||
import kotlin.math.*
|
||||
|
||||
/**
|
||||
* Implementation of basic operations over double tensors and basic algebra operations on them.
|
||||
*/
|
||||
public open class IntTensorAlgebra : TensorAlgebra<Int, IntRing> {
|
||||
|
||||
public companion object : IntTensorAlgebra()
|
||||
|
||||
override fun StructureND<Int>.dot(other: StructureND<Int>): Tensor<Int> {
|
||||
TODO("Not yet implemented")
|
||||
}
|
||||
|
||||
override val elementAlgebra: IntRing get() = IntRing
|
||||
|
||||
|
||||
/**
|
||||
* Applies the [transform] function to each element of the tensor and returns the resulting modified tensor.
|
||||
*
|
||||
* @param transform the function to be applied to each element of the tensor.
|
||||
* @return the resulting tensor after applying the function.
|
||||
*/
|
||||
@PerformancePitfall
|
||||
@Suppress("OVERRIDE_BY_INLINE")
|
||||
final override inline fun StructureND<Int>.map(transform: IntRing.(Int) -> Int): IntTensor {
|
||||
val tensor = this.tensor
|
||||
//TODO remove additional copy
|
||||
val sourceArray = tensor.copyArray()
|
||||
val array = IntArray(tensor.numElements) { IntRing.transform(sourceArray[it]) }
|
||||
return IntTensor(
|
||||
tensor.shape,
|
||||
array,
|
||||
tensor.bufferStart
|
||||
)
|
||||
}
|
||||
|
||||
@PerformancePitfall
|
||||
@Suppress("OVERRIDE_BY_INLINE")
|
||||
final override inline fun StructureND<Int>.mapIndexed(transform: IntRing.(index: IntArray, Int) -> Int): IntTensor {
|
||||
val tensor = this.tensor
|
||||
//TODO remove additional copy
|
||||
val sourceArray = tensor.copyArray()
|
||||
val array = IntArray(tensor.numElements) { IntRing.transform(tensor.indices.index(it), sourceArray[it]) }
|
||||
return IntTensor(
|
||||
tensor.shape,
|
||||
array,
|
||||
tensor.bufferStart
|
||||
)
|
||||
}
|
||||
|
||||
@PerformancePitfall
|
||||
override fun zip(
|
||||
left: StructureND<Int>,
|
||||
right: StructureND<Int>,
|
||||
transform: IntRing.(Int, Int) -> Int,
|
||||
): IntTensor {
|
||||
require(left.shape.contentEquals(right.shape)) {
|
||||
"The shapes in zip are not equal: left - ${left.shape}, right - ${right.shape}"
|
||||
}
|
||||
val leftTensor = left.tensor
|
||||
val leftArray = leftTensor.copyArray()
|
||||
val rightTensor = right.tensor
|
||||
val rightArray = rightTensor.copyArray()
|
||||
val array = IntArray(leftTensor.numElements) { IntRing.transform(leftArray[it], rightArray[it]) }
|
||||
return IntTensor(
|
||||
leftTensor.shape,
|
||||
array
|
||||
)
|
||||
}
|
||||
|
||||
override fun StructureND<Int>.valueOrNull(): Int? = if (tensor.shape contentEquals intArrayOf(1))
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart] else null
|
||||
|
||||
override fun StructureND<Int>.value(): Int = valueOrNull()
|
||||
?: throw IllegalArgumentException("The tensor shape is $shape, but value method is allowed only for shape [1]")
|
||||
|
||||
/**
|
||||
* Constructs a tensor with the specified shape and data.
|
||||
*
|
||||
* @param shape the desired shape for the tensor.
|
||||
* @param buffer one-dimensional data array.
|
||||
* @return tensor with the [shape] shape and [buffer] data.
|
||||
*/
|
||||
public fun fromArray(shape: IntArray, buffer: IntArray): IntTensor {
|
||||
checkEmptyShape(shape)
|
||||
check(buffer.isNotEmpty()) { "Illegal empty buffer provided" }
|
||||
check(buffer.size == shape.reduce(Int::times)) {
|
||||
"Inconsistent shape ${shape.toList()} for buffer of size ${buffer.size} provided"
|
||||
}
|
||||
return IntTensor(shape, buffer, 0)
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a tensor with the specified shape and initializer.
|
||||
*
|
||||
* @param shape the desired shape for the tensor.
|
||||
* @param initializer mapping tensor indices to values.
|
||||
* @return tensor with the [shape] shape and data generated by the [initializer].
|
||||
*/
|
||||
override fun structureND(shape: IntArray, initializer: IntRing.(IntArray) -> Int): IntTensor = fromArray(
|
||||
shape,
|
||||
TensorLinearStructure(shape).asSequence().map { IntRing.initializer(it) }.toMutableList().toIntArray()
|
||||
)
|
||||
|
||||
override operator fun Tensor<Int>.get(i: Int): IntTensor {
|
||||
val lastShape = tensor.shape.drop(1).toIntArray()
|
||||
val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1)
|
||||
val newStart = newShape.reduce(Int::times) * i + tensor.bufferStart
|
||||
return IntTensor(newShape, tensor.mutableBuffer.array(), newStart)
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a tensor of a given shape and fills all elements with a given value.
|
||||
*
|
||||
* @param value the value to fill the output tensor with.
|
||||
* @param shape array of integers defining the shape of the output tensor.
|
||||
* @return tensor with the [shape] shape and filled with [value].
|
||||
*/
|
||||
public fun full(value: Int, shape: IntArray): IntTensor {
|
||||
checkEmptyShape(shape)
|
||||
val buffer = IntArray(shape.reduce(Int::times)) { value }
|
||||
return IntTensor(shape, buffer)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a tensor with the same shape as `input` filled with [value].
|
||||
*
|
||||
* @param value the value to fill the output tensor with.
|
||||
* @return tensor with the `input` tensor shape and filled with [value].
|
||||
*/
|
||||
public fun Tensor<Int>.fullLike(value: Int): IntTensor {
|
||||
val shape = tensor.shape
|
||||
val buffer = IntArray(tensor.numElements) { value }
|
||||
return IntTensor(shape, buffer)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a tensor filled with the scalar value `0`, with the shape defined by the variable argument [shape].
|
||||
*
|
||||
* @param shape array of integers defining the shape of the output tensor.
|
||||
* @return tensor filled with the scalar value `0`, with the [shape] shape.
|
||||
*/
|
||||
public fun zeros(shape: IntArray): IntTensor = full(0, shape)
|
||||
|
||||
/**
|
||||
* Returns a tensor filled with the scalar value `0`, with the same shape as a given array.
|
||||
*
|
||||
* @return tensor filled with the scalar value `0`, with the same shape as `input` tensor.
|
||||
*/
|
||||
public fun StructureND<Int>.zeroesLike(): IntTensor = tensor.fullLike(0)
|
||||
|
||||
/**
|
||||
* Returns a tensor filled with the scalar value `1`, with the shape defined by the variable argument [shape].
|
||||
*
|
||||
* @param shape array of integers defining the shape of the output tensor.
|
||||
* @return tensor filled with the scalar value `1`, with the [shape] shape.
|
||||
*/
|
||||
public fun ones(shape: IntArray): IntTensor = full(1, shape)
|
||||
|
||||
/**
|
||||
* Returns a tensor filled with the scalar value `1`, with the same shape as a given array.
|
||||
*
|
||||
* @return tensor filled with the scalar value `1`, with the same shape as `input` tensor.
|
||||
*/
|
||||
public fun Tensor<Int>.onesLike(): IntTensor = tensor.fullLike(1)
|
||||
|
||||
/**
|
||||
* Returns a 2D tensor with shape ([n], [n]), with ones on the diagonal and zeros elsewhere.
|
||||
*
|
||||
* @param n the number of rows and columns
|
||||
* @return a 2-D tensor with ones on the diagonal and zeros elsewhere.
|
||||
*/
|
||||
public fun eye(n: Int): IntTensor {
|
||||
val shape = intArrayOf(n, n)
|
||||
val buffer = IntArray(n * n) { 0 }
|
||||
val res = IntTensor(shape, buffer)
|
||||
for (i in 0 until n) {
|
||||
res[intArrayOf(i, i)] = 1
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a copy of the tensor.
|
||||
*
|
||||
* @return a copy of the `input` tensor with a copied buffer.
|
||||
*/
|
||||
public fun StructureND<Int>.copy(): IntTensor =
|
||||
IntTensor(tensor.shape, tensor.mutableBuffer.array().copyOf(), tensor.bufferStart)
|
||||
|
||||
override fun Int.plus(arg: StructureND<Int>): IntTensor {
|
||||
val resBuffer = IntArray(arg.tensor.numElements) { i ->
|
||||
arg.tensor.mutableBuffer.array()[arg.tensor.bufferStart + i] + this
|
||||
}
|
||||
return IntTensor(arg.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun StructureND<Int>.plus(arg: Int): IntTensor = arg + tensor
|
||||
|
||||
override fun StructureND<Int>.plus(arg: StructureND<Int>): IntTensor {
|
||||
checkShapesCompatible(tensor, arg.tensor)
|
||||
val resBuffer = IntArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[i] + arg.tensor.mutableBuffer.array()[i]
|
||||
}
|
||||
return IntTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.plusAssign(value: Int) {
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] += value
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.plusAssign(arg: StructureND<Int>) {
|
||||
checkShapesCompatible(tensor, arg.tensor)
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] +=
|
||||
arg.tensor.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Int.minus(arg: StructureND<Int>): IntTensor {
|
||||
val resBuffer = IntArray(arg.tensor.numElements) { i ->
|
||||
this - arg.tensor.mutableBuffer.array()[arg.tensor.bufferStart + i]
|
||||
}
|
||||
return IntTensor(arg.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun StructureND<Int>.minus(arg: Int): IntTensor {
|
||||
val resBuffer = IntArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] - arg
|
||||
}
|
||||
return IntTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun StructureND<Int>.minus(arg: StructureND<Int>): IntTensor {
|
||||
checkShapesCompatible(tensor, arg)
|
||||
val resBuffer = IntArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[i] - arg.tensor.mutableBuffer.array()[i]
|
||||
}
|
||||
return IntTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.minusAssign(value: Int) {
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] -= value
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.minusAssign(arg: StructureND<Int>) {
|
||||
checkShapesCompatible(tensor, arg)
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] -=
|
||||
arg.tensor.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun Int.times(arg: StructureND<Int>): IntTensor {
|
||||
val resBuffer = IntArray(arg.tensor.numElements) { i ->
|
||||
arg.tensor.mutableBuffer.array()[arg.tensor.bufferStart + i] * this
|
||||
}
|
||||
return IntTensor(arg.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun StructureND<Int>.times(arg: Int): IntTensor = arg * tensor
|
||||
|
||||
override fun StructureND<Int>.times(arg: StructureND<Int>): IntTensor {
|
||||
checkShapesCompatible(tensor, arg)
|
||||
val resBuffer = IntArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] *
|
||||
arg.tensor.mutableBuffer.array()[arg.tensor.bufferStart + i]
|
||||
}
|
||||
return IntTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.timesAssign(value: Int) {
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] *= value
|
||||
}
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.timesAssign(arg: StructureND<Int>) {
|
||||
checkShapesCompatible(tensor, arg)
|
||||
for (i in 0 until tensor.numElements) {
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i] *=
|
||||
arg.tensor.mutableBuffer.array()[tensor.bufferStart + i]
|
||||
}
|
||||
}
|
||||
|
||||
override fun StructureND<Int>.unaryMinus(): IntTensor {
|
||||
val resBuffer = IntArray(tensor.numElements) { i ->
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + i].unaryMinus()
|
||||
}
|
||||
return IntTensor(tensor.shape, resBuffer)
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.transpose(i: Int, j: Int): IntTensor {
|
||||
val ii = tensor.minusIndex(i)
|
||||
val jj = tensor.minusIndex(j)
|
||||
checkTranspose(tensor.dimension, ii, jj)
|
||||
val n = tensor.numElements
|
||||
val resBuffer = IntArray(n)
|
||||
|
||||
val resShape = tensor.shape.copyOf()
|
||||
resShape[ii] = resShape[jj].also { resShape[jj] = resShape[ii] }
|
||||
|
||||
val resTensor = IntTensor(resShape, resBuffer)
|
||||
|
||||
for (offset in 0 until n) {
|
||||
val oldMultiIndex = tensor.indices.index(offset)
|
||||
val newMultiIndex = oldMultiIndex.copyOf()
|
||||
newMultiIndex[ii] = newMultiIndex[jj].also { newMultiIndex[jj] = newMultiIndex[ii] }
|
||||
|
||||
val linearIndex = resTensor.indices.offset(newMultiIndex)
|
||||
resTensor.mutableBuffer.array()[linearIndex] =
|
||||
tensor.mutableBuffer.array()[tensor.bufferStart + offset]
|
||||
}
|
||||
return resTensor
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.view(shape: IntArray): IntTensor {
|
||||
checkView(tensor, shape)
|
||||
return IntTensor(shape, tensor.mutableBuffer.array(), tensor.bufferStart)
|
||||
}
|
||||
|
||||
override fun Tensor<Int>.viewAs(other: StructureND<Int>): IntTensor =
|
||||
tensor.view(other.shape)
|
||||
|
||||
override fun diagonalEmbedding(
|
||||
diagonalEntries: Tensor<Int>,
|
||||
offset: Int,
|
||||
dim1: Int,
|
||||
dim2: Int,
|
||||
): IntTensor {
|
||||
val n = diagonalEntries.shape.size
|
||||
val d1 = minusIndexFrom(n + 1, dim1)
|
||||
val d2 = minusIndexFrom(n + 1, dim2)
|
||||
|
||||
check(d1 != d2) {
|
||||
"Diagonal dimensions cannot be identical $d1, $d2"
|
||||
}
|
||||
check(d1 <= n && d2 <= n) {
|
||||
"Dimension out of range"
|
||||
}
|
||||
|
||||
var lessDim = d1
|
||||
var greaterDim = d2
|
||||
var realOffset = offset
|
||||
if (lessDim > greaterDim) {
|
||||
realOffset *= -1
|
||||
lessDim = greaterDim.also { greaterDim = lessDim }
|
||||
}
|
||||
|
||||
val resShape = diagonalEntries.shape.slice(0 until lessDim).toIntArray() +
|
||||
intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) +
|
||||
diagonalEntries.shape.slice(lessDim until greaterDim - 1).toIntArray() +
|
||||
intArrayOf(diagonalEntries.shape[n - 1] + abs(realOffset)) +
|
||||
diagonalEntries.shape.slice(greaterDim - 1 until n - 1).toIntArray()
|
||||
val resTensor = zeros(resShape)
|
||||
|
||||
for (i in 0 until diagonalEntries.tensor.numElements) {
|
||||
val multiIndex = diagonalEntries.tensor.indices.index(i)
|
||||
|
||||
var offset1 = 0
|
||||
var offset2 = abs(realOffset)
|
||||
if (realOffset < 0) {
|
||||
offset1 = offset2.also { offset2 = offset1 }
|
||||
}
|
||||
val diagonalMultiIndex = multiIndex.slice(0 until lessDim).toIntArray() +
|
||||
intArrayOf(multiIndex[n - 1] + offset1) +
|
||||
multiIndex.slice(lessDim until greaterDim - 1).toIntArray() +
|
||||
intArrayOf(multiIndex[n - 1] + offset2) +
|
||||
multiIndex.slice(greaterDim - 1 until n - 1).toIntArray()
|
||||
|
||||
resTensor[diagonalMultiIndex] = diagonalEntries[multiIndex]
|
||||
}
|
||||
|
||||
return resTensor.tensor
|
||||
}
|
||||
|
||||
private infix fun Tensor<Int>.eq(
|
||||
other: Tensor<Int>,
|
||||
): Boolean {
|
||||
checkShapesCompatible(tensor, other)
|
||||
val n = tensor.numElements
|
||||
if (n != other.tensor.numElements) {
|
||||
return false
|
||||
}
|
||||
for (i in 0 until n) {
|
||||
if (tensor.mutableBuffer[tensor.bufferStart + i] != other.tensor.mutableBuffer[other.tensor.bufferStart + i]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
/**
|
||||
* Concatenates a sequence of tensors with equal shapes along the first dimension.
|
||||
*
|
||||
* @param tensors the [List] of tensors with same shapes to concatenate
|
||||
* @return tensor with concatenation result
|
||||
*/
|
||||
public fun stack(tensors: List<Tensor<Int>>): IntTensor {
|
||||
check(tensors.isNotEmpty()) { "List must have at least 1 element" }
|
||||
val shape = tensors[0].shape
|
||||
check(tensors.all { it.shape contentEquals shape }) { "Tensors must have same shapes" }
|
||||
val resShape = intArrayOf(tensors.size) + shape
|
||||
val resBuffer = tensors.flatMap {
|
||||
it.tensor.mutableBuffer.array().drop(it.tensor.bufferStart).take(it.tensor.numElements)
|
||||
}.toIntArray()
|
||||
return IntTensor(resShape, resBuffer, 0)
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds tensor from rows of the input tensor.
|
||||
*
|
||||
* @param indices the [IntArray] of 1-dimensional indices
|
||||
* @return tensor with rows corresponding to row by [indices]
|
||||
*/
|
||||
public fun Tensor<Int>.rowsByIndices(indices: IntArray): IntTensor = stack(indices.map { this[it] })
|
||||
|
||||
private inline fun StructureND<Int>.fold(foldFunction: (IntArray) -> Int): Int =
|
||||
foldFunction(tensor.copyArray())
|
||||
|
||||
private inline fun <reified R : Any> StructureND<Int>.foldDim(
|
||||
dim: Int,
|
||||
keepDim: Boolean,
|
||||
foldFunction: (IntArray) -> R,
|
||||
): BufferedTensor<R> {
|
||||
check(dim < dimension) { "Dimension $dim out of range $dimension" }
|
||||
val resShape = if (keepDim) {
|
||||
shape.take(dim).toIntArray() + intArrayOf(1) + shape.takeLast(dimension - dim - 1).toIntArray()
|
||||
} else {
|
||||
shape.take(dim).toIntArray() + shape.takeLast(dimension - dim - 1).toIntArray()
|
||||
}
|
||||
val resNumElements = resShape.reduce(Int::times)
|
||||
val init = foldFunction(IntArray(1) { 0 })
|
||||
val resTensor = BufferedTensor(
|
||||
resShape,
|
||||
MutableBuffer.auto(resNumElements) { init }, 0
|
||||
)
|
||||
for (index in resTensor.indices) {
|
||||
val prefix = index.take(dim).toIntArray()
|
||||
val suffix = index.takeLast(dimension - dim - 1).toIntArray()
|
||||
resTensor[index] = foldFunction(IntArray(shape[dim]) { i ->
|
||||
tensor[prefix + intArrayOf(i) + suffix]
|
||||
})
|
||||
}
|
||||
return resTensor
|
||||
}
|
||||
|
||||
override fun StructureND<Int>.sum(): Int = tensor.fold { it.sum() }
|
||||
|
||||
override fun StructureND<Int>.sum(dim: Int, keepDim: Boolean): IntTensor =
|
||||
foldDim(dim, keepDim) { x -> x.sum() }.toIntTensor()
|
||||
|
||||
override fun StructureND<Int>.min(): Int = this.fold { it.minOrNull()!! }
|
||||
|
||||
override fun StructureND<Int>.min(dim: Int, keepDim: Boolean): IntTensor =
|
||||
foldDim(dim, keepDim) { x -> x.minOrNull()!! }.toIntTensor()
|
||||
|
||||
override fun StructureND<Int>.max(): Int = this.fold { it.maxOrNull()!! }
|
||||
|
||||
override fun StructureND<Int>.max(dim: Int, keepDim: Boolean): IntTensor =
|
||||
foldDim(dim, keepDim) { x -> x.maxOrNull()!! }.toIntTensor()
|
||||
|
||||
|
||||
override fun StructureND<Int>.argMax(dim: Int, keepDim: Boolean): IntTensor =
|
||||
foldDim(dim, keepDim) { x ->
|
||||
x.withIndex().maxByOrNull { it.value }?.index!!
|
||||
}.toIntTensor()
|
||||
}
|
||||
|
||||
public val Int.Companion.tensorAlgebra: IntTensorAlgebra.Companion get() = IntTensorAlgebra
|
||||
public val IntRing.tensorAlgebra: IntTensorAlgebra.Companion get() = IntTensorAlgebra
|
||||
|
||||
|
@ -16,8 +16,7 @@ internal fun checkEmptyShape(shape: IntArray) =
|
||||
"Illegal empty shape provided"
|
||||
}
|
||||
|
||||
internal fun checkEmptyDoubleBuffer(buffer: DoubleArray) =
|
||||
check(buffer.isNotEmpty()) {
|
||||
internal fun checkEmptyDoubleBuffer(buffer: DoubleArray) = check(buffer.isNotEmpty()) {
|
||||
"Illegal empty buffer provided"
|
||||
}
|
||||
|
||||
@ -50,7 +49,7 @@ internal fun checkSquareMatrix(shape: IntArray) {
|
||||
}
|
||||
|
||||
internal fun DoubleTensorAlgebra.checkSymmetric(
|
||||
tensor: Tensor<Double>, epsilon: Double = 1e-6
|
||||
tensor: Tensor<Double>, epsilon: Double = 1e-6,
|
||||
) =
|
||||
check(tensor.eq(tensor.transpose(), epsilon)) {
|
||||
"Tensor is not symmetric about the last 2 dimensions at precision $epsilon"
|
||||
|
@ -8,7 +8,6 @@ package space.kscience.kmath.tensors.core.internal
|
||||
import space.kscience.kmath.nd.MutableBufferND
|
||||
import space.kscience.kmath.nd.StructureND
|
||||
import space.kscience.kmath.structures.asMutableBuffer
|
||||
import space.kscience.kmath.tensors.api.Tensor
|
||||
import space.kscience.kmath.tensors.core.BufferedTensor
|
||||
import space.kscience.kmath.tensors.core.DoubleTensor
|
||||
import space.kscience.kmath.tensors.core.IntTensor
|
||||
@ -43,7 +42,8 @@ internal val StructureND<Double>.tensor: DoubleTensor
|
||||
else -> this.toBufferedTensor().asTensor()
|
||||
}
|
||||
|
||||
internal val Tensor<Int>.tensor: IntTensor
|
||||
@PublishedApi
|
||||
internal val StructureND<Int>.tensor: IntTensor
|
||||
get() = when (this) {
|
||||
is IntTensor -> this
|
||||
else -> this.toBufferedTensor().asTensor()
|
||||
|
@ -13,7 +13,10 @@ import kotlin.jvm.JvmName
|
||||
|
||||
@JvmName("varArgOne")
|
||||
public fun DoubleTensorAlgebra.one(vararg shape: Int): DoubleTensor = ones(intArrayOf(*shape))
|
||||
|
||||
public fun DoubleTensorAlgebra.one(shape: Shape): DoubleTensor = ones(shape)
|
||||
|
||||
@JvmName("varArgZero")
|
||||
public fun DoubleTensorAlgebra.zero(vararg shape: Int): DoubleTensor = zeros(intArrayOf(*shape))
|
||||
|
||||
public fun DoubleTensorAlgebra.zero(shape: Shape): DoubleTensor = zeros(shape)
|
@ -4,9 +4,7 @@ plugins {
|
||||
|
||||
kscience{
|
||||
native()
|
||||
}
|
||||
|
||||
kotlin.sourceSets.commonMain {
|
||||
withContextReceivers()
|
||||
dependencies {
|
||||
api(projects.kmath.kmathGeometry)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user