forked from kscience/kmath
Merge branch 'dev' into gsl-experiment
# Conflicts: # kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrix.kt
This commit is contained in:
commit
5003cca2cd
@ -7,10 +7,16 @@ import kscience.kmath.structures.asBuffer
|
||||
import kotlin.math.sqrt
|
||||
|
||||
/**
|
||||
* A 2d structure plus optional matrix-specific features
|
||||
* A [Matrix] that holds [MatrixFeature] objects.
|
||||
*
|
||||
* @param T the type of items.
|
||||
*/
|
||||
public interface FeaturedMatrix<T : Any> : Matrix<T> {
|
||||
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
|
||||
public override val shape: IntArray get() = intArrayOf(rowNum, colNum)
|
||||
|
||||
/**
|
||||
* The set of features this matrix possesses.
|
||||
*/
|
||||
public val features: Set<MatrixFeature>
|
||||
|
||||
/**
|
||||
|
@ -4,16 +4,15 @@ import kscience.kmath.operations.*
|
||||
import kscience.kmath.structures.*
|
||||
|
||||
/**
|
||||
* Common implementation of [LUPDecompositionFeature]
|
||||
* Common implementation of [LupDecompositionFeature].
|
||||
*/
|
||||
public class LUPDecomposition<T : Any>(
|
||||
public val context: MatrixContext<T, FeaturedMatrix<T>>,
|
||||
public val elementContext: Field<T>,
|
||||
public val lu: Structure2D<T>,
|
||||
public val lu: Matrix<T>,
|
||||
public val pivot: IntArray,
|
||||
private val even: Boolean,
|
||||
) : LUPDecompositionFeature<T>, DeterminantFeature<T> {
|
||||
|
||||
) : LupDecompositionFeature<T>, DeterminantFeature<T> {
|
||||
/**
|
||||
* Returns the matrix L of the decomposition.
|
||||
*
|
||||
@ -151,7 +150,10 @@ public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext
|
||||
public fun MatrixContext<Double, FeaturedMatrix<Double>>.lup(matrix: Matrix<Double>): LUPDecomposition<Double> =
|
||||
lup(Buffer.Companion::real, RealField, matrix) { it < 1e-11 }
|
||||
|
||||
public fun <T : Any> LUPDecomposition<T>.solveWithLUP(factory: MutableBufferFactory<T>, matrix: Matrix<T>): FeaturedMatrix<T> {
|
||||
public fun <T : Any> LUPDecomposition<T>.solveWithLUP(
|
||||
factory: MutableBufferFactory<T>,
|
||||
matrix: Matrix<T>
|
||||
): FeaturedMatrix<T> {
|
||||
require(matrix.rowNum == pivot.size) { "Matrix dimension mismatch. Expected ${pivot.size}, but got ${matrix.colNum}" }
|
||||
|
||||
BufferAccessor2D(matrix.rowNum, matrix.colNum, factory).run {
|
||||
@ -217,4 +219,4 @@ public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext
|
||||
matrix: Matrix<T>,
|
||||
noinline bufferFactory: MutableBufferFactory<T> = MutableBuffer.Companion::auto,
|
||||
noinline checkSingular: (T) -> Boolean,
|
||||
): FeaturedMatrix<T> = solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), bufferFactory, checkSingular)
|
||||
): FeaturedMatrix<T> = solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), bufferFactory, checkSingular)
|
||||
|
@ -1,62 +1,154 @@
|
||||
package kscience.kmath.linear
|
||||
|
||||
/**
|
||||
* A marker interface representing some matrix feature like diagonal, sparse, zero, etc. Features used to optimize matrix
|
||||
* operations performance in some cases.
|
||||
* A marker interface representing some properties of matrices or additional transformations of them. Features are used
|
||||
* to optimize matrix operations performance in some cases or retrieve the APIs.
|
||||
*/
|
||||
public interface MatrixFeature
|
||||
|
||||
/**
|
||||
* The matrix with this feature is considered to have only diagonal non-null elements
|
||||
* Matrices with this feature are considered to have only diagonal non-null elements.
|
||||
*/
|
||||
public object DiagonalFeature : MatrixFeature
|
||||
|
||||
/**
|
||||
* Matrix with this feature has all zero elements
|
||||
* Matrices with this feature have all zero elements.
|
||||
*/
|
||||
public object ZeroFeature : MatrixFeature
|
||||
|
||||
/**
|
||||
* Matrix with this feature have unit elements on diagonal and zero elements in all other places
|
||||
* Matrices with this feature have unit elements on diagonal and zero elements in all other places.
|
||||
*/
|
||||
public object UnitFeature : MatrixFeature
|
||||
|
||||
/**
|
||||
* Inverted matrix feature
|
||||
* Matrices with this feature can be inverted: [inverse] = `a`<sup>-1</sup> where `a` is the owning matrix.
|
||||
*
|
||||
* @param T the type of matrices' items.
|
||||
*/
|
||||
public interface InverseMatrixFeature<T : Any> : MatrixFeature {
|
||||
/**
|
||||
* The inverse matrix of the matrix that owns this feature.
|
||||
*/
|
||||
public val inverse: FeaturedMatrix<T>
|
||||
}
|
||||
|
||||
/**
|
||||
* A determinant container
|
||||
* Matrices with this feature can compute their determinant.
|
||||
*/
|
||||
public interface DeterminantFeature<T : Any> : MatrixFeature {
|
||||
/**
|
||||
* The determinant of the matrix that owns this feature.
|
||||
*/
|
||||
public val determinant: T
|
||||
}
|
||||
|
||||
/**
|
||||
* Produces a [DeterminantFeature] where the [DeterminantFeature.determinant] is [determinant].
|
||||
*
|
||||
* @param determinant the value of determinant.
|
||||
* @return a new [DeterminantFeature].
|
||||
*/
|
||||
@Suppress("FunctionName")
|
||||
public fun <T : Any> DeterminantFeature(determinant: T): DeterminantFeature<T> = object : DeterminantFeature<T> {
|
||||
override val determinant: T = determinant
|
||||
}
|
||||
|
||||
/**
|
||||
* Lower triangular matrix
|
||||
* Matrices with this feature are lower triangular ones.
|
||||
*/
|
||||
public object LFeature : MatrixFeature
|
||||
|
||||
/**
|
||||
* Upper triangular feature
|
||||
* Matrices with this feature are upper triangular ones.
|
||||
*/
|
||||
public object UFeature : MatrixFeature
|
||||
|
||||
/**
|
||||
* TODO add documentation
|
||||
* Matrices with this feature support LU factorization with partial pivoting: *[p] · a = [l] · [u]* where
|
||||
* *a* is the owning matrix.
|
||||
*
|
||||
* @param T the type of matrices' items.
|
||||
*/
|
||||
public interface LUPDecompositionFeature<T : Any> : MatrixFeature {
|
||||
public interface LupDecompositionFeature<T : Any> : MatrixFeature {
|
||||
/**
|
||||
* The lower triangular matrix in this decomposition. It may have [LFeature].
|
||||
*/
|
||||
public val l: FeaturedMatrix<T>
|
||||
|
||||
/**
|
||||
* The upper triangular matrix in this decomposition. It may have [UFeature].
|
||||
*/
|
||||
public val u: FeaturedMatrix<T>
|
||||
|
||||
/**
|
||||
* The permutation matrix in this decomposition.
|
||||
*/
|
||||
public val p: FeaturedMatrix<T>
|
||||
}
|
||||
|
||||
/**
|
||||
* Matrices with this feature are orthogonal ones: *a · a<sup>T</sup> = u* where *a* is the owning matrix, *u*
|
||||
* is the unit matrix ([UnitFeature]).
|
||||
*/
|
||||
public object OrthogonalFeature : MatrixFeature
|
||||
|
||||
/**
|
||||
* Matrices with this feature support QR factorization: *a = [q] · [r]* where *a* is the owning matrix.
|
||||
*
|
||||
* @param T the type of matrices' items.
|
||||
*/
|
||||
public interface QRDecompositionFeature<T : Any> : MatrixFeature {
|
||||
/**
|
||||
* The orthogonal matrix in this decomposition. It may have [OrthogonalFeature].
|
||||
*/
|
||||
public val q: FeaturedMatrix<T>
|
||||
|
||||
/**
|
||||
* The upper triangular matrix in this decomposition. It may have [UFeature].
|
||||
*/
|
||||
public val r: FeaturedMatrix<T>
|
||||
}
|
||||
|
||||
/**
|
||||
* Matrices with this feature support Cholesky factorization: *a = [l] · [l]<sup>H</sup>* where *a* is the
|
||||
* owning matrix.
|
||||
*
|
||||
* @param T the type of matrices' items.
|
||||
*/
|
||||
public interface CholeskyDecompositionFeature<T : Any> : MatrixFeature {
|
||||
/**
|
||||
* The triangular matrix in this decomposition. It may have either [UFeature] or [LFeature].
|
||||
*/
|
||||
public val l: FeaturedMatrix<T>
|
||||
}
|
||||
|
||||
/**
|
||||
* Matrices with this feature support SVD: *a = [u] · [s] · [v]<sup>H</sup>* where *a* is the owning
|
||||
* matrix.
|
||||
*
|
||||
* @param T the type of matrices' items.
|
||||
*/
|
||||
public interface SingularValueDecompositionFeature<T : Any> : MatrixFeature {
|
||||
/**
|
||||
* The matrix in this decomposition. It is unitary, and it consists from left singular vectors.
|
||||
*/
|
||||
public val u: FeaturedMatrix<T>
|
||||
|
||||
/**
|
||||
* The matrix in this decomposition. Its main diagonal elements are singular values.
|
||||
*/
|
||||
public val s: FeaturedMatrix<T>
|
||||
|
||||
/**
|
||||
* The matrix in this decomposition. It is unitary, and it consists from right singular vectors.
|
||||
*/
|
||||
public val v: FeaturedMatrix<T>
|
||||
|
||||
/**
|
||||
* The buffer of singular values of this SVD.
|
||||
*/
|
||||
public val singularValues: Point<T>
|
||||
}
|
||||
|
||||
//TODO add sparse matrix feature
|
||||
|
@ -1,12 +1,40 @@
|
||||
package kscience.kmath.structures
|
||||
|
||||
/**
|
||||
* A structure that is guaranteed to be two-dimensional
|
||||
* A structure that is guaranteed to be two-dimensional.
|
||||
*
|
||||
* @param T the type of items.
|
||||
*/
|
||||
public interface Structure2D<T> : NDStructure<T> {
|
||||
/**
|
||||
* The number of rows in this structure.
|
||||
*/
|
||||
public val rowNum: Int get() = shape[0]
|
||||
|
||||
/**
|
||||
* The number of columns in this structure.
|
||||
*/
|
||||
public val colNum: Int get() = shape[1]
|
||||
|
||||
/**
|
||||
* The buffer of rows of this structure. It gets elements from the structure dynamically.
|
||||
*/
|
||||
public val rows: Buffer<Buffer<T>>
|
||||
get() = VirtualBuffer(rowNum) { i -> VirtualBuffer(colNum) { j -> get(i, j) } }
|
||||
|
||||
/**
|
||||
* The buffer of columns of this structure. It gets elements from the structure dynamically.
|
||||
*/
|
||||
public val columns: Buffer<Buffer<T>>
|
||||
get() = VirtualBuffer(colNum) { j -> VirtualBuffer(rowNum) { i -> get(i, j) } }
|
||||
|
||||
/**
|
||||
* Retrieves an element from the structure by two indices.
|
||||
*
|
||||
* @param i the first index.
|
||||
* @param j the second index.
|
||||
* @return an element.
|
||||
*/
|
||||
public operator fun get(i: Int, j: Int): T
|
||||
|
||||
override operator fun get(index: IntArray): T {
|
||||
@ -14,15 +42,9 @@ public interface Structure2D<T> : NDStructure<T> {
|
||||
return get(index[0], index[1])
|
||||
}
|
||||
|
||||
public val rows: Buffer<Buffer<T>>
|
||||
get() = VirtualBuffer(rowNum) { i -> VirtualBuffer(colNum) { j -> get(i, j) } }
|
||||
|
||||
public val columns: Buffer<Buffer<T>>
|
||||
get() = VirtualBuffer(colNum) { j -> VirtualBuffer(rowNum) { i -> get(i, j) } }
|
||||
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> = sequence {
|
||||
for (i in (0 until rowNum))
|
||||
for (j in (0 until colNum)) yield(intArrayOf(i, j) to get(i, j))
|
||||
for (i in 0 until rowNum)
|
||||
for (j in 0 until colNum) yield(intArrayOf(i, j) to get(i, j))
|
||||
}
|
||||
|
||||
public companion object
|
||||
@ -47,4 +69,9 @@ public fun <T> NDStructure<T>.as2D(): Structure2D<T> = if (shape.size == 2)
|
||||
else
|
||||
error("Can't create 2d-structure from ${shape.size}d-structure")
|
||||
|
||||
/**
|
||||
* Alias for [Structure2D] with more familiar name.
|
||||
*
|
||||
* @param T the type of items.
|
||||
*/
|
||||
public typealias Matrix<T> = Structure2D<T>
|
||||
|
@ -1,10 +1,8 @@
|
||||
package kscience.kmath.ejml
|
||||
|
||||
import kscience.kmath.linear.DeterminantFeature
|
||||
import kscience.kmath.linear.FeaturedMatrix
|
||||
import kscience.kmath.linear.LUPDecompositionFeature
|
||||
import kscience.kmath.linear.MatrixFeature
|
||||
import kscience.kmath.linear.*
|
||||
import kscience.kmath.structures.NDStructure
|
||||
import kscience.kmath.structures.RealBuffer
|
||||
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
|
||||
import org.ejml.simple.SimpleMatrix
|
||||
|
||||
@ -14,7 +12,7 @@ import org.ejml.simple.SimpleMatrix
|
||||
* @property origin the underlying [SimpleMatrix].
|
||||
* @author Iaroslav Postovalov
|
||||
*/
|
||||
public class EjmlMatrix(public val origin: SimpleMatrix, features: Set<MatrixFeature>? = null) :
|
||||
public class EjmlMatrix(public val origin: SimpleMatrix, features: Set<MatrixFeature> = emptySet()) :
|
||||
FeaturedMatrix<Double> {
|
||||
public override val rowNum: Int
|
||||
get() = origin.numRows()
|
||||
@ -22,32 +20,63 @@ public class EjmlMatrix(public val origin: SimpleMatrix, features: Set<MatrixFea
|
||||
public override val colNum: Int
|
||||
get() = origin.numCols()
|
||||
|
||||
public override val features: Set<MatrixFeature> = setOf(
|
||||
object : LUPDecompositionFeature<Double>, DeterminantFeature<Double> {
|
||||
override val determinant: Double
|
||||
get() = origin.determinant()
|
||||
public override val shape: IntArray by lazy { intArrayOf(rowNum, colNum) }
|
||||
|
||||
private val lup by lazy {
|
||||
val ludecompositionF64 = DecompositionFactory_DDRM.lu(origin.numRows(), origin.numCols())
|
||||
.also { it.decompose(origin.ddrm.copy()) }
|
||||
public override val features: Set<MatrixFeature> = hashSetOf(
|
||||
object : InverseMatrixFeature<Double> {
|
||||
override val inverse: FeaturedMatrix<Double> by lazy { EjmlMatrix(origin.invert()) }
|
||||
},
|
||||
|
||||
Triple(
|
||||
EjmlMatrix(SimpleMatrix(ludecompositionF64.getRowPivot(null))),
|
||||
EjmlMatrix(SimpleMatrix(ludecompositionF64.getLower(null))),
|
||||
EjmlMatrix(SimpleMatrix(ludecompositionF64.getUpper(null))),
|
||||
)
|
||||
object : DeterminantFeature<Double> {
|
||||
override val determinant: Double by lazy(origin::determinant)
|
||||
},
|
||||
|
||||
object : SingularValueDecompositionFeature<Double> {
|
||||
private val svd by lazy {
|
||||
DecompositionFactory_DDRM.svd(origin.numRows(), origin.numCols(), true, true, false)
|
||||
.apply { decompose(origin.ddrm.copy()) }
|
||||
}
|
||||
|
||||
override val l: FeaturedMatrix<Double>
|
||||
get() = lup.second
|
||||
override val u: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getU(null, false))) }
|
||||
override val s: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getW(null))) }
|
||||
override val v: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getV(null, false))) }
|
||||
override val singularValues: Point<Double> by lazy { RealBuffer(svd.singularValues) }
|
||||
},
|
||||
|
||||
override val u: FeaturedMatrix<Double>
|
||||
get() = lup.third
|
||||
object : QRDecompositionFeature<Double> {
|
||||
private val qr by lazy {
|
||||
DecompositionFactory_DDRM.qr().apply { decompose(origin.ddrm.copy()) }
|
||||
}
|
||||
|
||||
override val p: FeaturedMatrix<Double>
|
||||
get() = lup.first
|
||||
}
|
||||
) union features.orEmpty()
|
||||
override val q: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(qr.getQ(null, false))) }
|
||||
override val r: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(qr.getR(null, false))) }
|
||||
},
|
||||
|
||||
object : CholeskyDecompositionFeature<Double> {
|
||||
override val l: FeaturedMatrix<Double> by lazy {
|
||||
val cholesky =
|
||||
DecompositionFactory_DDRM.chol(rowNum, true).apply { decompose(origin.ddrm.copy()) }
|
||||
|
||||
EjmlMatrix(SimpleMatrix(cholesky.getT(null)), setOf(LFeature))
|
||||
}
|
||||
},
|
||||
|
||||
object : LupDecompositionFeature<Double> {
|
||||
private val lup by lazy {
|
||||
DecompositionFactory_DDRM.lu(origin.numRows(), origin.numCols()).apply { decompose(origin.ddrm.copy()) }
|
||||
}
|
||||
|
||||
override val l: FeaturedMatrix<Double> by lazy {
|
||||
EjmlMatrix(SimpleMatrix(lup.getLower(null)), setOf(LFeature))
|
||||
}
|
||||
|
||||
override val u: FeaturedMatrix<Double> by lazy {
|
||||
EjmlMatrix(SimpleMatrix(lup.getUpper(null)), setOf(UFeature))
|
||||
}
|
||||
|
||||
override val p: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(lup.getRowPivot(null))) }
|
||||
},
|
||||
) union features
|
||||
|
||||
public override fun suggestFeature(vararg features: MatrixFeature): EjmlMatrix =
|
||||
EjmlMatrix(origin, this.features + features)
|
||||
|
@ -17,7 +17,6 @@ public fun Matrix<Double>.toEjml(): EjmlMatrix =
|
||||
* @author Iaroslav Postovalov
|
||||
*/
|
||||
public object EjmlMatrixContext : MatrixContext<Double, EjmlMatrix> {
|
||||
|
||||
/**
|
||||
* Converts this vector to EJML one.
|
||||
*/
|
||||
@ -33,6 +32,11 @@ public object EjmlMatrixContext : MatrixContext<Double, EjmlMatrix> {
|
||||
}
|
||||
})
|
||||
|
||||
override fun point(size: Int, initializer: (Int) -> Double): Point<Double> =
|
||||
EjmlVector(SimpleMatrix(size, 1).also {
|
||||
(0 until it.numRows()).forEach { row -> it[row, 0] = initializer(row) }
|
||||
})
|
||||
|
||||
public override fun Matrix<Double>.dot(other: Matrix<Double>): EjmlMatrix =
|
||||
EjmlMatrix(toEjml().origin.mult(other.toEjml().origin))
|
||||
|
||||
@ -73,12 +77,3 @@ public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Matrix<Double>): EjmlMa
|
||||
*/
|
||||
public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Point<Double>): EjmlVector =
|
||||
EjmlVector(a.toEjml().origin.solve(b.toEjml().origin))
|
||||
|
||||
/**
|
||||
* Returns the inverse of given matrix: b = a^(-1).
|
||||
*
|
||||
* @param a the matrix.
|
||||
* @return the inverse of this matrix.
|
||||
* @author Iaroslav Postovalov
|
||||
*/
|
||||
public fun EjmlMatrixContext.inverse(a: Matrix<Double>): EjmlMatrix = EjmlMatrix(a.toEjml().origin.invert())
|
||||
|
@ -1,7 +1,7 @@
|
||||
package kscience.kmath.ejml
|
||||
|
||||
import kscience.kmath.linear.DeterminantFeature
|
||||
import kscience.kmath.linear.LUPDecompositionFeature
|
||||
import kscience.kmath.linear.LupDecompositionFeature
|
||||
import kscience.kmath.linear.MatrixFeature
|
||||
import kscience.kmath.linear.getFeature
|
||||
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
|
||||
@ -44,7 +44,7 @@ internal class EjmlMatrixTest {
|
||||
val w = EjmlMatrix(m)
|
||||
val det = w.getFeature<DeterminantFeature<Double>>() ?: fail()
|
||||
assertEquals(m.determinant(), det.determinant)
|
||||
val lup = w.getFeature<LUPDecompositionFeature<Double>>() ?: fail()
|
||||
val lup = w.getFeature<LupDecompositionFeature<Double>>() ?: fail()
|
||||
|
||||
val ludecompositionF64 = DecompositionFactory_DDRM.lu(m.numRows(), m.numCols())
|
||||
.also { it.decompose(m.ddrm.copy()) }
|
||||
|
Loading…
Reference in New Issue
Block a user