forked from kscience/kmath
Merge remote-tracking branch 'space/dev' into dev
This commit is contained in:
commit
4dbcaca87c
@ -19,9 +19,9 @@ import org.ejml.sparse.csc.factory.DecompositionFactory_DSCC
|
||||
import org.ejml.sparse.csc.factory.DecompositionFactory_FSCC
|
||||
import org.ejml.sparse.csc.factory.LinearSolverFactory_DSCC
|
||||
import org.ejml.sparse.csc.factory.LinearSolverFactory_FSCC
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.linear.*
|
||||
import space.kscience.kmath.linear.Matrix
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.nd.StructureFeature
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.FloatField
|
||||
|
@ -0,0 +1,24 @@
|
||||
/*
|
||||
* Copyright 2018-2023 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.distributions
|
||||
|
||||
import space.kscience.kmath.operations.DoubleField.pow
|
||||
import kotlin.math.PI
|
||||
import kotlin.math.absoluteValue
|
||||
import kotlin.math.exp
|
||||
|
||||
|
||||
/**
|
||||
* Zelen & Severo approximation for the standard normal CDF.
|
||||
* The error is bounded by 7.5 * 10e-8.
|
||||
* */
|
||||
public fun zSNormalCDF(x: Double): Double {
|
||||
|
||||
val t = 1 / (1 + 0.2316419 * x.absoluteValue)
|
||||
val summ = 0.319381530*t - 0.356563782*t.pow(2) + 1.781477937*t.pow(3) - 1.821255978*t.pow(4) + 1.330274429*t.pow(5)
|
||||
val temp = summ * exp(-x.absoluteValue.pow(2) / 2) / (2 * PI).pow(0.5)
|
||||
return if (x >= 0) 1 - temp else temp
|
||||
}
|
@ -191,7 +191,7 @@ public open class SeriesAlgebra<T, out A : Ring<T>, out BA : BufferAlgebra<T, A>
|
||||
crossinline operation: A.(left: T, right: T) -> T,
|
||||
): Series<T> {
|
||||
val newRange = offsetIndices.intersect(other.offsetIndices)
|
||||
return seriesByOffset(startOffset = newRange.first, size = newRange.last - newRange.first) { offset ->
|
||||
return seriesByOffset(startOffset = newRange.first, size = newRange.last + 1 - newRange.first) { offset ->
|
||||
elementAlgebra.operation(
|
||||
getByOffset(offset),
|
||||
other.getByOffset(offset)
|
||||
@ -199,12 +199,25 @@ public open class SeriesAlgebra<T, out A : Ring<T>, out BA : BufferAlgebra<T, A>
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Zip buffer with itself, but shifted
|
||||
* */
|
||||
public inline fun Buffer<T>.zipWithShift(
|
||||
shift: Int = 1,
|
||||
crossinline operation: A.(left: T, right: T) -> T
|
||||
): Buffer<T> {
|
||||
val shifted = this.moveBy(shift)
|
||||
return zip(shifted, operation)
|
||||
}
|
||||
|
||||
override fun Buffer<T>.unaryMinus(): Buffer<T> = map { -it }
|
||||
|
||||
override fun add(left: Buffer<T>, right: Buffer<T>): Series<T> = left.zip(right) { l, r -> l + r }
|
||||
|
||||
override fun multiply(left: Buffer<T>, right: Buffer<T>): Buffer<T> = left.zip(right) { l, r -> l * r }
|
||||
|
||||
public fun Buffer<T>.difference(shift: Int=1): Buffer<T> = this.zipWithShift(shift) {l, r -> r - l}
|
||||
|
||||
public companion object
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,72 @@
|
||||
/*
|
||||
* Copyright 2018-2023 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.series
|
||||
|
||||
import space.kscience.kmath.distributions.zSNormalCDF
|
||||
import space.kscience.kmath.operations.DoubleField.pow
|
||||
import space.kscience.kmath.operations.fold
|
||||
import kotlin.math.absoluteValue
|
||||
|
||||
|
||||
/**
|
||||
* Container class for Variance Ratio Test result:
|
||||
* ratio itself, corresponding Z-score, also it's p-value
|
||||
* **/
|
||||
public data class VarianceRatioTestResult(val varianceRatio: Double=1.0, val zScore: Double=0.0, val pValue: Double=0.5)
|
||||
|
||||
|
||||
/**
|
||||
* Calculates the Z-statistic and the p-value for the Lo and MacKinlay's Variance Ratio test (1987)
|
||||
* under Homoscedastic or Heteroscedstic assumptions
|
||||
* with two-sided p-value test
|
||||
* https://ssrn.com/abstract=346975
|
||||
* **/
|
||||
public fun SeriesAlgebra<Double, *, *, *>.varianceRatioTest(series: Series<Double>, shift: Int, homoscedastic: Boolean=true): VarianceRatioTestResult {
|
||||
|
||||
require(shift > 1) {"Shift must be greater than one"}
|
||||
require(shift < series.size) {"Shift must be smaller than sample size"}
|
||||
val sum = { x: Double, y: Double -> x + y }
|
||||
|
||||
|
||||
val mean = series.fold(0.0, sum) / series.size
|
||||
val demeanedSquares = series.map { (it - mean).pow(2) }
|
||||
val variance = demeanedSquares.fold(0.0, sum)
|
||||
if (variance == 0.0) return VarianceRatioTestResult()
|
||||
|
||||
|
||||
var seriesAgg = series
|
||||
for (i in 1..<shift) {
|
||||
seriesAgg = seriesAgg.zip(series.moveTo(i)) { v1, v2 -> v1 + v2 }
|
||||
}
|
||||
|
||||
val demeanedSquaresAgg = seriesAgg.map { (it - shift * mean).pow(2) }
|
||||
val varianceAgg = demeanedSquaresAgg.fold(0.0, sum)
|
||||
|
||||
val varianceRatio =
|
||||
varianceAgg * (series.size.toDouble() - 1) / variance / (series.size.toDouble() - shift.toDouble() + 1) / (1 - shift.toDouble()/series.size.toDouble()) / shift.toDouble()
|
||||
|
||||
|
||||
// calculating asymptotic variance
|
||||
val phi = if (homoscedastic) { // under homoscedastic null hypothesis
|
||||
2 * (2 * shift - 1.0) * (shift - 1.0) / (3 * shift * series.size)
|
||||
} else { // under heteroscedastic null hypothesis
|
||||
var accumulator = 0.0
|
||||
for (j in 1..<shift) {
|
||||
val temp = demeanedSquares
|
||||
val delta = series.size * temp.zipWithShift(j) { v1, v2 -> v1 * v2 }.fold(0.0, sum) / variance.pow(2)
|
||||
accumulator += delta * 4 * (shift - j).toDouble().pow(2) / shift.toDouble().pow(2)
|
||||
}
|
||||
accumulator
|
||||
}
|
||||
|
||||
val zScore = (varianceRatio - 1) / phi.pow(0.5)
|
||||
val pValue = 2*(1 - zSNormalCDF(zScore.absoluteValue))
|
||||
return VarianceRatioTestResult(varianceRatio, zScore, pValue)
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,72 @@
|
||||
/*
|
||||
* Copyright 2018-2023 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.series
|
||||
|
||||
import space.kscience.kmath.operations.algebra
|
||||
import space.kscience.kmath.operations.bufferAlgebra
|
||||
import kotlin.math.PI
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
|
||||
class TestVarianceRatioTest {
|
||||
|
||||
@Test
|
||||
fun monotonicData() {
|
||||
with(Double.algebra.bufferAlgebra.seriesAlgebra()) {
|
||||
val monotonicData = series(10) { it * 1.0 }
|
||||
val resultHomo = varianceRatioTest(monotonicData, 2, homoscedastic = true)
|
||||
assertEquals(1.818181, resultHomo.varianceRatio, 1e-6)
|
||||
// homoscedastic zScore
|
||||
assertEquals(2.587318, resultHomo.zScore, 1e-6)
|
||||
assertEquals(.0096, resultHomo.pValue, 1e-4)
|
||||
val resultHetero = varianceRatioTest(monotonicData, 2, homoscedastic = false)
|
||||
// heteroscedastic zScore
|
||||
assertEquals(0.819424, resultHetero.zScore, 1e-6)
|
||||
assertEquals(.4125, resultHetero.pValue, 1e-4)
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
fun volatileData() {
|
||||
with(Double.algebra.bufferAlgebra.seriesAlgebra()) {
|
||||
val volatileData = series(10) { sin(PI * it + PI/2) + 1.0}
|
||||
val resultHomo = varianceRatioTest(volatileData, 2)
|
||||
assertEquals(0.0, resultHomo.varianceRatio, 1e-6)
|
||||
// homoscedastic zScore
|
||||
assertEquals(-3.162277, resultHomo.zScore, 1e-6)
|
||||
assertEquals(.0015, resultHomo.pValue, 1e-4)
|
||||
val resultHetero = varianceRatioTest(volatileData, 2, homoscedastic = false)
|
||||
// heteroscedastic zScore
|
||||
assertEquals(-1.0540925, resultHetero.zScore, 1e-6)
|
||||
assertEquals(.2918, resultHetero.pValue, 1e-4)
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
fun negativeData() {
|
||||
with(Double.algebra.bufferAlgebra.seriesAlgebra()) {
|
||||
val negativeData = series(10) { sin(it * 1.2)}
|
||||
val resultHomo = varianceRatioTest(negativeData, 3)
|
||||
assertEquals(1.240031, resultHomo.varianceRatio, 1e-6)
|
||||
// homoscedastic zScore
|
||||
assertEquals(0.509183, resultHomo.zScore, 1e-6)
|
||||
val resultHetero = varianceRatioTest(negativeData, 3, homoscedastic = false)
|
||||
// heteroscedastic zScore
|
||||
assertEquals(0.209202, resultHetero.zScore, 1e-6)
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
fun zeroVolatility() {
|
||||
with(Double.algebra.bufferAlgebra.seriesAlgebra()) {
|
||||
val zeroVolData = series(10) { 0.0 }
|
||||
val result = varianceRatioTest(zeroVolData, 4)
|
||||
assertEquals(1.0, result.varianceRatio, 1e-6)
|
||||
assertEquals(0.0, result.zScore, 1e-6)
|
||||
assertEquals(0.5, result.pValue, 1e-4)
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user