Features refactoring.

This commit is contained in:
Alexander Nozik 2021-01-19 19:32:13 +03:00
parent ab32cd9561
commit 4c256a9f14
19 changed files with 236 additions and 244 deletions

View File

@ -33,6 +33,7 @@
- EjmlMatrix context is an object
- Matrix LUP `inverse` renamed to `inverseWithLUP`
- `NumericAlgebra` moved outside of regular algebra chain (`Ring` no longer implements it).
- Features moved to NDStructure and became transparent.
### Deprecated

View File

@ -1,42 +1,28 @@
package kscience.kmath.commons.linear
import kscience.kmath.linear.*
import kscience.kmath.linear.DiagonalFeature
import kscience.kmath.linear.MatrixContext
import kscience.kmath.linear.MatrixWrapper
import kscience.kmath.linear.Point
import kscience.kmath.misc.UnstableKMathAPI
import kscience.kmath.structures.Matrix
import kscience.kmath.structures.NDStructure
import org.apache.commons.math3.linear.*
import kotlin.reflect.KClass
import kotlin.reflect.cast
public class CMMatrix(public val origin: RealMatrix, features: Set<MatrixFeature>? = null) : FeaturedMatrix<Double> {
public inline class CMMatrix(public val origin: RealMatrix) : Matrix<Double> {
public override val rowNum: Int get() = origin.rowDimension
public override val colNum: Int get() = origin.columnDimension
public override val features: Set<MatrixFeature> = features ?: sequence<MatrixFeature> {
if (origin is DiagonalMatrix) yield(DiagonalFeature)
}.toHashSet()
public override fun suggestFeature(vararg features: MatrixFeature): CMMatrix =
CMMatrix(origin, this.features + features)
@UnstableKMathAPI
override fun <T : Any> getFeature(type: KClass<T>): T? = when (type) {
DiagonalFeature::class -> if (origin is DiagonalMatrix) DiagonalFeature else null
else -> null
}?.let { type.cast(it) }
public override operator fun get(i: Int, j: Int): Double = origin.getEntry(i, j)
public override fun equals(other: Any?): Boolean {
return NDStructure.equals(this, other as? NDStructure<*> ?: return false)
}
public override fun hashCode(): Int {
var result = origin.hashCode()
result = 31 * result + features.hashCode()
return result
}
}
//TODO move inside context
public fun Matrix<Double>.toCM(): CMMatrix = if (this is CMMatrix) {
this
} else {
//TODO add feature analysis
val array = Array(rowNum) { i -> DoubleArray(colNum) { j -> get(i, j) } }
CMMatrix(Array2DRowRealMatrix(array))
}
public fun RealMatrix.asMatrix(): CMMatrix = CMMatrix(this)
@ -61,6 +47,16 @@ public object CMMatrixContext : MatrixContext<Double, CMMatrix> {
return CMMatrix(Array2DRowRealMatrix(array))
}
public fun Matrix<Double>.toCM(): CMMatrix = when {
this is CMMatrix -> this
this is MatrixWrapper && matrix is CMMatrix -> matrix as CMMatrix
else -> {
//TODO add feature analysis
val array = Array(rowNum) { i -> DoubleArray(colNum) { j -> get(i, j) } }
CMMatrix(Array2DRowRealMatrix(array))
}
}
public override fun Matrix<Double>.dot(other: Matrix<Double>): CMMatrix =
CMMatrix(toCM().origin.multiply(other.toCM().origin))

View File

@ -1,10 +1,7 @@
package kscience.kmath.linear
import kscience.kmath.operations.Ring
import kscience.kmath.structures.Buffer
import kscience.kmath.structures.BufferFactory
import kscience.kmath.structures.NDStructure
import kscience.kmath.structures.asSequence
import kscience.kmath.structures.*
/**
* Basic implementation of Matrix space based on [NDStructure]
@ -27,8 +24,7 @@ public class BufferMatrix<T : Any>(
public override val rowNum: Int,
public override val colNum: Int,
public val buffer: Buffer<out T>,
public override val features: Set<MatrixFeature> = emptySet(),
) : FeaturedMatrix<T> {
) : Matrix<T> {
init {
require(buffer.size == rowNum * colNum) { "Dimension mismatch for matrix structure" }
@ -36,9 +32,6 @@ public class BufferMatrix<T : Any>(
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
public override fun suggestFeature(vararg features: MatrixFeature): BufferMatrix<T> =
BufferMatrix(rowNum, colNum, buffer, this.features + features)
public override operator fun get(index: IntArray): T = get(index[0], index[1])
public override operator fun get(i: Int, j: Int): T = buffer[i * colNum + j]
@ -50,23 +43,26 @@ public class BufferMatrix<T : Any>(
if (this === other) return true
return when (other) {
is NDStructure<*> -> return NDStructure.equals(this, other)
is NDStructure<*> -> NDStructure.equals(this, other)
else -> false
}
}
public override fun hashCode(): Int {
var result = buffer.hashCode()
result = 31 * result + features.hashCode()
override fun hashCode(): Int {
var result = rowNum
result = 31 * result + colNum
result = 31 * result + buffer.hashCode()
return result
}
public override fun toString(): String {
return if (rowNum <= 5 && colNum <= 5)
"Matrix(rowsNum = $rowNum, colNum = $colNum, features=$features)\n" +
"Matrix(rowsNum = $rowNum, colNum = $colNum)\n" +
rows.asSequence().joinToString(prefix = "(", postfix = ")", separator = "\n ") { buffer ->
buffer.asSequence().joinToString(separator = "\t") { it.toString() }
}
else "Matrix(rowsNum = $rowNum, colNum = $colNum, features=$features)"
else "Matrix(rowsNum = $rowNum, colNum = $colNum)"
}
}

View File

@ -1,13 +1,14 @@
package kscience.kmath.linear
import kscience.kmath.misc.UnstableKMathAPI
import kscience.kmath.operations.*
import kscience.kmath.structures.*
/**
* Common implementation of [LupDecompositionFeature].
*/
public class LUPDecomposition<T : Any>(
public val context: MatrixContext<T, FeaturedMatrix<T>>,
public class LupDecomposition<T : Any>(
public val context: MatrixContext<T, Matrix<T>>,
public val elementContext: Field<T>,
public val lu: Matrix<T>,
public val pivot: IntArray,
@ -18,13 +19,13 @@ public class LUPDecomposition<T : Any>(
*
* L is a lower-triangular matrix with [Ring.one] in diagonal
*/
override val l: FeaturedMatrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(LFeature)) { i, j ->
override val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
when {
j < i -> lu[i, j]
j == i -> elementContext.one
else -> elementContext.zero
}
}
} + LFeature
/**
@ -32,9 +33,9 @@ public class LUPDecomposition<T : Any>(
*
* U is an upper-triangular matrix including the diagonal
*/
override val u: FeaturedMatrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(UFeature)) { i, j ->
override val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
if (j >= i) lu[i, j] else elementContext.zero
}
} + UFeature
/**
* Returns the P rows permutation matrix.
@ -42,7 +43,7 @@ public class LUPDecomposition<T : Any>(
* P is a sparse matrix with exactly one element set to [Ring.one] in
* each row and each column, all other elements being set to [Ring.zero].
*/
override val p: FeaturedMatrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
override val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
if (j == pivot[i]) elementContext.one else elementContext.zero
}
@ -63,12 +64,12 @@ internal fun <T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, *>.abs
/**
* Create a lup decomposition of generic matrix.
*/
public fun <T : Comparable<T>> MatrixContext<T, FeaturedMatrix<T>>.lup(
public fun <T : Comparable<T>> MatrixContext<T, Matrix<T>>.lup(
factory: MutableBufferFactory<T>,
elementContext: Field<T>,
matrix: Matrix<T>,
checkSingular: (T) -> Boolean,
): LUPDecomposition<T> {
): LupDecomposition<T> {
require(matrix.rowNum == matrix.colNum) { "LU decomposition supports only square matrices" }
val m = matrix.colNum
val pivot = IntArray(matrix.rowNum)
@ -137,23 +138,23 @@ public fun <T : Comparable<T>> MatrixContext<T, FeaturedMatrix<T>>.lup(
for (row in col + 1 until m) lu[row, col] /= luDiag
}
return LUPDecomposition(this@lup, elementContext, lu.collect(), pivot, even)
return LupDecomposition(this@lup, elementContext, lu.collect(), pivot, even)
}
}
}
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, FeaturedMatrix<T>>.lup(
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.lup(
matrix: Matrix<T>,
noinline checkSingular: (T) -> Boolean,
): LUPDecomposition<T> = lup(MutableBuffer.Companion::auto, elementContext, matrix, checkSingular)
): LupDecomposition<T> = lup(MutableBuffer.Companion::auto, elementContext, matrix, checkSingular)
public fun MatrixContext<Double, FeaturedMatrix<Double>>.lup(matrix: Matrix<Double>): LUPDecomposition<Double> =
public fun MatrixContext<Double, Matrix<Double>>.lup(matrix: Matrix<Double>): LupDecomposition<Double> =
lup(Buffer.Companion::real, RealField, matrix) { it < 1e-11 }
public fun <T : Any> LUPDecomposition<T>.solveWithLUP(
public fun <T : Any> LupDecomposition<T>.solveWithLUP(
factory: MutableBufferFactory<T>,
matrix: Matrix<T>
): FeaturedMatrix<T> {
matrix: Matrix<T>,
): Matrix<T> {
require(matrix.rowNum == pivot.size) { "Matrix dimension mismatch. Expected ${pivot.size}, but got ${matrix.colNum}" }
BufferAccessor2D(matrix.rowNum, matrix.colNum, factory).run {
@ -198,25 +199,40 @@ public fun <T : Any> LUPDecomposition<T>.solveWithLUP(
}
}
public inline fun <reified T : Any> LUPDecomposition<T>.solveWithLUP(matrix: Matrix<T>): Matrix<T> =
public inline fun <reified T : Any> LupDecomposition<T>.solveWithLUP(matrix: Matrix<T>): Matrix<T> =
solveWithLUP(MutableBuffer.Companion::auto, matrix)
/**
* Solve a linear equation **a*x = b** using LUP decomposition
*/
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, FeaturedMatrix<T>>.solveWithLUP(
@OptIn(UnstableKMathAPI::class)
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.solveWithLUP(
a: Matrix<T>,
b: Matrix<T>,
noinline bufferFactory: MutableBufferFactory<T> = MutableBuffer.Companion::auto,
noinline checkSingular: (T) -> Boolean,
): FeaturedMatrix<T> {
): Matrix<T> {
// Use existing decomposition if it is provided by matrix
val decomposition = a.getFeature() ?: lup(bufferFactory, elementContext, a, checkSingular)
return decomposition.solveWithLUP(bufferFactory, b)
}
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, FeaturedMatrix<T>>.inverseWithLUP(
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.inverseWithLUP(
matrix: Matrix<T>,
noinline bufferFactory: MutableBufferFactory<T> = MutableBuffer.Companion::auto,
noinline checkSingular: (T) -> Boolean,
): FeaturedMatrix<T> = solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), bufferFactory, checkSingular)
): Matrix<T> = solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), bufferFactory, checkSingular)
public fun RealMatrixContext.solveWithLUP(a: Matrix<Double>, b: Matrix<Double>): Matrix<Double> {
// Use existing decomposition if it is provided by matrix
val bufferFactory: MutableBufferFactory<Double> = MutableBuffer.Companion::real
val decomposition: LupDecomposition<Double> = a.getFeature() ?: lup(bufferFactory, RealField, a) { it < 1e-11 }
return decomposition.solveWithLUP(bufferFactory, b)
}
/**
* Inverses a square matrix using LUP decomposition. Non square matrix will throw a error.
*/
public fun RealMatrixContext.inverseWithLUP(matrix: Matrix<Double>): Matrix<Double> =
solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum))

View File

@ -1,12 +1,9 @@
package kscience.kmath.linear
import kscience.kmath.structures.Buffer
import kscience.kmath.structures.BufferFactory
import kscience.kmath.structures.Structure2D
import kscience.kmath.structures.asBuffer
import kscience.kmath.structures.*
public class MatrixBuilder(public val rows: Int, public val columns: Int) {
public operator fun <T : Any> invoke(vararg elements: T): FeaturedMatrix<T> {
public operator fun <T : Any> invoke(vararg elements: T): Matrix<T> {
require(rows * columns == elements.size) { "The number of elements ${elements.size} is not equal $rows * $columns" }
val buffer = elements.asBuffer()
return BufferMatrix(rows, columns, buffer)
@ -17,7 +14,7 @@ public class MatrixBuilder(public val rows: Int, public val columns: Int) {
public fun Structure2D.Companion.build(rows: Int, columns: Int): MatrixBuilder = MatrixBuilder(rows, columns)
public fun <T : Any> Structure2D.Companion.row(vararg values: T): FeaturedMatrix<T> {
public fun <T : Any> Structure2D.Companion.row(vararg values: T): Matrix<T> {
val buffer = values.asBuffer()
return BufferMatrix(1, values.size, buffer)
}
@ -26,12 +23,12 @@ public inline fun <reified T : Any> Structure2D.Companion.row(
size: Int,
factory: BufferFactory<T> = Buffer.Companion::auto,
noinline builder: (Int) -> T
): FeaturedMatrix<T> {
): Matrix<T> {
val buffer = factory(size, builder)
return BufferMatrix(1, size, buffer)
}
public fun <T : Any> Structure2D.Companion.column(vararg values: T): FeaturedMatrix<T> {
public fun <T : Any> Structure2D.Companion.column(vararg values: T): Matrix<T> {
val buffer = values.asBuffer()
return BufferMatrix(values.size, 1, buffer)
}
@ -40,7 +37,7 @@ public inline fun <reified T : Any> Structure2D.Companion.column(
size: Int,
factory: BufferFactory<T> = Buffer.Companion::auto,
noinline builder: (Int) -> T
): FeaturedMatrix<T> {
): Matrix<T> {
val buffer = factory(size, builder)
return BufferMatrix(size, 1, buffer)
}

View File

@ -133,8 +133,6 @@ public interface GenericMatrixContext<T : Any, R : Ring<T>, out M : Matrix<T>> :
public override fun multiply(a: Matrix<T>, k: Number): M =
produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] * k } }
public operator fun Number.times(matrix: FeaturedMatrix<T>): M = multiply(matrix, this)
public override operator fun Matrix<T>.times(value: T): M =
produce(rowNum, colNum) { i, j -> elementContext { get(i, j) * value } }
}

View File

@ -11,17 +11,19 @@ public interface MatrixFeature
/**
* Matrices with this feature are considered to have only diagonal non-null elements.
*/
public object DiagonalFeature : MatrixFeature
public interface DiagonalFeature : MatrixFeature{
public companion object: DiagonalFeature
}
/**
* Matrices with this feature have all zero elements.
*/
public object ZeroFeature : MatrixFeature
public object ZeroFeature : DiagonalFeature
/**
* Matrices with this feature have unit elements on diagonal and zero elements in all other places.
*/
public object UnitFeature : MatrixFeature
public object UnitFeature : DiagonalFeature
/**
* Matrices with this feature can be inverted: [inverse] = `a`<sup>-1</sup> where `a` is the owning matrix.
@ -76,17 +78,17 @@ public interface LupDecompositionFeature<T : Any> : MatrixFeature {
/**
* The lower triangular matrix in this decomposition. It may have [LFeature].
*/
public val l: FeaturedMatrix<T>
public val l: Matrix<T>
/**
* The upper triangular matrix in this decomposition. It may have [UFeature].
*/
public val u: FeaturedMatrix<T>
public val u: Matrix<T>
/**
* The permutation matrix in this decomposition.
*/
public val p: FeaturedMatrix<T>
public val p: Matrix<T>
}
/**
@ -104,12 +106,12 @@ public interface QRDecompositionFeature<T : Any> : MatrixFeature {
/**
* The orthogonal matrix in this decomposition. It may have [OrthogonalFeature].
*/
public val q: FeaturedMatrix<T>
public val q: Matrix<T>
/**
* The upper triangular matrix in this decomposition. It may have [UFeature].
*/
public val r: FeaturedMatrix<T>
public val r: Matrix<T>
}
/**
@ -122,7 +124,7 @@ public interface CholeskyDecompositionFeature<T : Any> : MatrixFeature {
/**
* The triangular matrix in this decomposition. It may have either [UFeature] or [LFeature].
*/
public val l: FeaturedMatrix<T>
public val l: Matrix<T>
}
/**
@ -135,17 +137,17 @@ public interface SingularValueDecompositionFeature<T : Any> : MatrixFeature {
/**
* The matrix in this decomposition. It is unitary, and it consists from left singular vectors.
*/
public val u: FeaturedMatrix<T>
public val u: Matrix<T>
/**
* The matrix in this decomposition. Its main diagonal elements are singular values.
*/
public val s: FeaturedMatrix<T>
public val s: Matrix<T>
/**
* The matrix in this decomposition. It is unitary, and it consists from right singular vectors.
*/
public val v: FeaturedMatrix<T>
public val v: Matrix<T>
/**
* The buffer of singular values of this SVD.

View File

@ -1,35 +1,57 @@
package kscience.kmath.linear
import kscience.kmath.misc.UnstableKMathAPI
import kscience.kmath.operations.Ring
import kscience.kmath.structures.Matrix
import kscience.kmath.structures.Structure2D
import kscience.kmath.structures.asBuffer
import kscience.kmath.structures.getFeature
import kotlin.math.sqrt
import kotlin.reflect.KClass
import kotlin.reflect.safeCast
/**
* A [Matrix] that holds [MatrixFeature] objects.
*
* @param T the type of items.
*/
public interface FeaturedMatrix<T : Any> : Matrix<T> {
public override val shape: IntArray get() = intArrayOf(rowNum, colNum)
public class MatrixWrapper<T : Any>(
public val matrix: Matrix<T>,
public val features: Set<MatrixFeature>,
) : Matrix<T> by matrix {
/**
* The set of features this matrix possesses.
* Get the first feature matching given class. Does not guarantee that matrix has only one feature matching the criteria
*/
public val features: Set<MatrixFeature>
@UnstableKMathAPI
override fun <T : Any> getFeature(type: KClass<T>): T? = type.safeCast(features.find { type.isInstance(it) })
/**
* Suggest new feature for this matrix. The result is the new matrix that may or may not reuse existing data structure.
*
* The implementation does not guarantee to check that matrix actually have the feature, so one should be careful to
* add only those features that are valid.
*/
public fun suggestFeature(vararg features: MatrixFeature): FeaturedMatrix<T>
public companion object
override fun equals(other: Any?): Boolean = matrix == other
override fun hashCode(): Int = matrix.hashCode()
override fun toString(): String {
return "MatrixWrapper(matrix=$matrix, features=$features)"
}
}
/**
* Add a single feature to a [Matrix]
*/
public operator fun <T : Any> Matrix<T>.plus(newFeature: MatrixFeature): MatrixWrapper<T> = if (this is MatrixWrapper) {
MatrixWrapper(matrix, features + newFeature)
} else {
MatrixWrapper(this, setOf(newFeature))
}
/**
* Add a collection of features to a [Matrix]
*/
public operator fun <T : Any> Matrix<T>.plus(newFeatures: Collection<MatrixFeature>): MatrixWrapper<T> =
if (this is MatrixWrapper) {
MatrixWrapper(matrix, features + newFeatures)
} else {
MatrixWrapper(this, newFeatures.toSet())
}
public inline fun Structure2D.Companion.real(
rows: Int,
columns: Int,
@ -39,51 +61,37 @@ public inline fun Structure2D.Companion.real(
/**
* Build a square matrix from given elements.
*/
public fun <T : Any> Structure2D.Companion.square(vararg elements: T): FeaturedMatrix<T> {
public fun <T : Any> Structure2D.Companion.square(vararg elements: T): Matrix<T> {
val size: Int = sqrt(elements.size.toDouble()).toInt()
require(size * size == elements.size) { "The number of elements ${elements.size} is not a full square" }
val buffer = elements.asBuffer()
return BufferMatrix(size, size, buffer)
}
public val Matrix<*>.features: Set<MatrixFeature> get() = (this as? FeaturedMatrix)?.features ?: emptySet()
/**
* Check if matrix has the given feature class
*/
public inline fun <reified T : Any> Matrix<*>.hasFeature(): Boolean =
features.find { it is T } != null
/**
* Get the first feature matching given class. Does not guarantee that matrix has only one feature matching the criteria
*/
public inline fun <reified T : Any> Matrix<*>.getFeature(): T? =
features.filterIsInstance<T>().firstOrNull()
/**
* Diagonal matrix of ones. The matrix is virtual no actual matrix is created
*/
public fun <T : Any, R : Ring<T>> GenericMatrixContext<T, R, *>.one(rows: Int, columns: Int): FeaturedMatrix<T> =
VirtualMatrix(rows, columns, DiagonalFeature) { i, j ->
public fun <T : Any, R : Ring<T>> GenericMatrixContext<T, R, *>.one(rows: Int, columns: Int): Matrix<T> =
VirtualMatrix(rows, columns) { i, j ->
if (i == j) elementContext.one else elementContext.zero
}
} + UnitFeature
/**
* A virtual matrix of zeroes
*/
public fun <T : Any, R : Ring<T>> GenericMatrixContext<T, R, *>.zero(rows: Int, columns: Int): FeaturedMatrix<T> =
VirtualMatrix(rows, columns) { _, _ -> elementContext.zero }
public fun <T : Any, R : Ring<T>> GenericMatrixContext<T, R, *>.zero(rows: Int, columns: Int): Matrix<T> =
VirtualMatrix(rows, columns) { _, _ -> elementContext.zero } + ZeroFeature
public class TransposedFeature<T : Any>(public val original: Matrix<T>) : MatrixFeature
/**
* Create a virtual transposed matrix without copying anything. `A.transpose().transpose() === A`
*/
@OptIn(UnstableKMathAPI::class)
public fun <T : Any> Matrix<T>.transpose(): Matrix<T> {
return getFeature<TransposedFeature<T>>()?.original ?: VirtualMatrix(
colNum,
rowNum,
setOf(TransposedFeature(this))
) { i, j -> get(j, i) }
) { i, j -> get(j, i) } + TransposedFeature(this)
}

View File

@ -1,9 +1,6 @@
package kscience.kmath.linear
import kscience.kmath.operations.RealField
import kscience.kmath.structures.Matrix
import kscience.kmath.structures.MutableBuffer
import kscience.kmath.structures.MutableBufferFactory
import kscience.kmath.structures.RealBuffer
@Suppress("OVERRIDE_BY_INLINE")
@ -22,9 +19,9 @@ public object RealMatrixContext : MatrixContext<Double, BufferMatrix<Double>> {
produce(rowNum, colNum) { i, j -> get(i, j) }
}
public fun one(rows: Int, columns: Int): FeaturedMatrix<Double> = VirtualMatrix(rows, columns, DiagonalFeature) { i, j ->
public fun one(rows: Int, columns: Int): Matrix<Double> = VirtualMatrix(rows, columns) { i, j ->
if (i == j) 1.0 else 0.0
}
} + DiagonalFeature
public override infix fun Matrix<Double>.dot(other: Matrix<Double>): BufferMatrix<Double> {
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
@ -69,16 +66,3 @@ public object RealMatrixContext : MatrixContext<Double, BufferMatrix<Double>> {
* Partially optimized real-valued matrix
*/
public val MatrixContext.Companion.real: RealMatrixContext get() = RealMatrixContext
public fun RealMatrixContext.solveWithLUP(a: Matrix<Double>, b: Matrix<Double>): FeaturedMatrix<Double> {
// Use existing decomposition if it is provided by matrix
val bufferFactory: MutableBufferFactory<Double> = MutableBuffer.Companion::real
val decomposition = a.getFeature() ?: lup(bufferFactory, RealField, a) { it < 1e-11 }
return decomposition.solveWithLUP(bufferFactory, b)
}
/**
* Inverses a square matrix using LUP decomposition. Non square matrix will throw a error.
*/
public fun RealMatrixContext.inverseWithLUP(matrix: Matrix<Double>): FeaturedMatrix<Double> =
solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum))

View File

@ -5,31 +5,16 @@ import kscience.kmath.structures.Matrix
public class VirtualMatrix<T : Any>(
override val rowNum: Int,
override val colNum: Int,
override val features: Set<MatrixFeature> = emptySet(),
public val generator: (i: Int, j: Int) -> T
) : FeaturedMatrix<T> {
public constructor(
rowNum: Int,
colNum: Int,
vararg features: MatrixFeature,
generator: (i: Int, j: Int) -> T
) : this(
rowNum,
colNum,
setOf(*features),
generator
)
) : Matrix<T> {
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
override operator fun get(i: Int, j: Int): T = generator(i, j)
override fun suggestFeature(vararg features: MatrixFeature): VirtualMatrix<T> =
VirtualMatrix(rowNum, colNum, this.features + features, generator)
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is FeaturedMatrix<*>) return false
if (other !is Matrix<*>) return false
if (rowNum != other.rowNum) return false
if (colNum != other.colNum) return false
@ -40,21 +25,9 @@ public class VirtualMatrix<T : Any>(
override fun hashCode(): Int {
var result = rowNum
result = 31 * result + colNum
result = 31 * result + features.hashCode()
result = 31 * result + generator.hashCode()
return result
}
public companion object {
/**
* Wrap a matrix adding additional features to it
*/
public fun <T : Any> wrap(matrix: Matrix<T>, vararg features: MatrixFeature): FeaturedMatrix<T> {
return if (matrix is VirtualMatrix)
VirtualMatrix(matrix.rowNum, matrix.colNum, matrix.features + features, matrix.generator)
else
VirtualMatrix(matrix.rowNum, matrix.colNum, matrix.features + features) { i, j -> matrix[i, j] }
}
}
}

View File

@ -179,13 +179,15 @@ public object FloatField : ExtendedField<Float>, Norm<Float, Float> {
* A field for [Int] without boxing. Does not produce corresponding ring element.
*/
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
public object IntRing : Ring<Int>, Norm<Int, Int> {
public object IntRing : Ring<Int>, Norm<Int, Int>, NumericAlgebra<Int> {
public override val zero: Int
get() = 0
public override val one: Int
get() = 1
override fun number(value: Number): Int = value.toInt()
public override inline fun add(a: Int, b: Int): Int = a + b
public override inline fun multiply(a: Int, k: Number): Int = k.toInt() * a
@ -203,13 +205,15 @@ public object IntRing : Ring<Int>, Norm<Int, Int> {
* A field for [Short] without boxing. Does not produce appropriate ring element.
*/
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
public object ShortRing : Ring<Short>, Norm<Short, Short> {
public object ShortRing : Ring<Short>, Norm<Short, Short>, NumericAlgebra<Short> {
public override val zero: Short
get() = 0
public override val one: Short
get() = 1
override fun number(value: Number): Short = value.toShort()
public override inline fun add(a: Short, b: Short): Short = (a + b).toShort()
public override inline fun multiply(a: Short, k: Number): Short = (a * k.toShort()).toShort()
@ -227,13 +231,15 @@ public object ShortRing : Ring<Short>, Norm<Short, Short> {
* A field for [Byte] without boxing. Does not produce appropriate ring element.
*/
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
public object ByteRing : Ring<Byte>, Norm<Byte, Byte> {
public object ByteRing : Ring<Byte>, Norm<Byte, Byte>, NumericAlgebra<Byte> {
public override val zero: Byte
get() = 0
public override val one: Byte
get() = 1
override fun number(value: Number): Byte = value.toByte()
public override inline fun add(a: Byte, b: Byte): Byte = (a + b).toByte()
public override inline fun multiply(a: Byte, k: Number): Byte = (a * k.toByte()).toByte()
@ -251,13 +257,15 @@ public object ByteRing : Ring<Byte>, Norm<Byte, Byte> {
* A field for [Double] without boxing. Does not produce appropriate ring element.
*/
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
public object LongRing : Ring<Long>, Norm<Long, Long> {
public object LongRing : Ring<Long>, Norm<Long, Long>, NumericAlgebra<Long> {
public override val zero: Long
get() = 0L
public override val one: Long
get() = 1L
override fun number(value: Number): Long = value.toLong()
public override inline fun add(a: Long, b: Long): Long = a + b
public override inline fun multiply(a: Long, k: Number): Long = a * k.toLong()

View File

@ -1,5 +1,6 @@
package kscience.kmath.structures
import kscience.kmath.misc.UnstableKMathAPI
import kotlin.jvm.JvmName
import kotlin.native.concurrent.ThreadLocal
import kotlin.reflect.KClass
@ -42,6 +43,13 @@ public interface NDStructure<T> {
public override fun equals(other: Any?): Boolean
public override fun hashCode(): Int
/**
* Feature is additional property or hint that does not directly affect the structure, but could in some cases help
* optimize operations and performance. If the feature is not present, null is defined.
*/
@UnstableKMathAPI
public fun <T : Any> getFeature(type: KClass<T>): T? = null
public companion object {
/**
* Indicates whether some [NDStructure] is equal to another one.
@ -121,6 +129,9 @@ public interface NDStructure<T> {
*/
public operator fun <T> NDStructure<T>.get(vararg index: Int): T = get(index)
@UnstableKMathAPI
public inline fun <reified T : Any> NDStructure<*>.getFeature(): T? = getFeature(T::class)
/**
* Represents mutable [NDStructure].
*/

View File

@ -9,12 +9,14 @@ public interface Structure2D<T> : NDStructure<T> {
/**
* The number of rows in this structure.
*/
public val rowNum: Int get() = shape[0]
public val rowNum: Int
/**
* The number of columns in this structure.
*/
public val colNum: Int get() = shape[1]
public val colNum: Int
public override val shape: IntArray get() = intArrayOf(rowNum, colNum)
/**
* The buffer of rows of this structure. It gets elements from the structure dynamically.
@ -56,6 +58,9 @@ public interface Structure2D<T> : NDStructure<T> {
private inline class Structure2DWrapper<T>(val structure: NDStructure<T>) : Structure2D<T> {
override val shape: IntArray get() = structure.shape
override val rowNum: Int get() = shape[0]
override val colNum: Int get() = shape[1]
override operator fun get(i: Int, j: Int): T = structure[i, j]
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()

View File

@ -40,6 +40,8 @@ public inline class DMatrixWrapper<T, R : Dimension, C : Dimension>(
private val structure: Structure2D<T>,
) : DMatrix<T, R, C> {
override val shape: IntArray get() = structure.shape
override val rowNum: Int get() = shape[0]
override val colNum: Int get() = shape[1]
override operator fun get(i: Int, j: Int): T = structure[i, j]
}
@ -147,6 +149,7 @@ public inline fun <reified D : Dimension> DMatrixContext<Double>.one(): DMatrix<
if (i == j) 1.0 else 0.0
}
public inline fun <reified R : Dimension, reified C : Dimension> DMatrixContext<Double>.zero(): DMatrix<Double, R, C> = produce { _, _ ->
0.0
}
public inline fun <reified R : Dimension, reified C : Dimension> DMatrixContext<Double>.zero(): DMatrix<Double, R, C> =
produce { _, _ ->
0.0
}

View File

@ -1,10 +1,13 @@
package kscience.kmath.ejml
import kscience.kmath.linear.*
import kscience.kmath.structures.NDStructure
import kscience.kmath.misc.UnstableKMathAPI
import kscience.kmath.structures.Matrix
import kscience.kmath.structures.RealBuffer
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
import org.ejml.simple.SimpleMatrix
import kotlin.reflect.KClass
import kotlin.reflect.cast
/**
* Represents featured matrix over EJML [SimpleMatrix].
@ -12,85 +15,65 @@ import org.ejml.simple.SimpleMatrix
* @property origin the underlying [SimpleMatrix].
* @author Iaroslav Postovalov
*/
public class EjmlMatrix(
public inline class EjmlMatrix(
public val origin: SimpleMatrix,
features: Set<MatrixFeature> = emptySet()
) : FeaturedMatrix<Double> {
public override val rowNum: Int
get() = origin.numRows()
) : Matrix<Double> {
public override val rowNum: Int get() = origin.numRows()
public override val colNum: Int
get() = origin.numCols()
public override val colNum: Int get() = origin.numCols()
public override val shape: IntArray by lazy { intArrayOf(rowNum, colNum) }
public override val features: Set<MatrixFeature> = hashSetOf(
object : InverseMatrixFeature<Double> {
override val inverse: FeaturedMatrix<Double> by lazy { EjmlMatrix(origin.invert()) }
},
object : DeterminantFeature<Double> {
@UnstableKMathAPI
override fun <T : Any> getFeature(type: KClass<T>): T? = when (type) {
InverseMatrixFeature::class -> object : InverseMatrixFeature<Double> {
override val inverse: Matrix<Double> by lazy { EjmlMatrix(origin.invert()) }
}
DeterminantFeature::class -> object : DeterminantFeature<Double> {
override val determinant: Double by lazy(origin::determinant)
},
object : SingularValueDecompositionFeature<Double> {
}
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<Double> {
private val svd by lazy {
DecompositionFactory_DDRM.svd(origin.numRows(), origin.numCols(), true, true, false)
.apply { decompose(origin.ddrm.copy()) }
}
override val u: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getU(null, false))) }
override val s: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getW(null))) }
override val v: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getV(null, false))) }
override val u: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getU(null, false))) }
override val s: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getW(null))) }
override val v: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getV(null, false))) }
override val singularValues: Point<Double> by lazy { RealBuffer(svd.singularValues) }
},
object : QRDecompositionFeature<Double> {
}
QRDecompositionFeature::class -> object : QRDecompositionFeature<Double> {
private val qr by lazy {
DecompositionFactory_DDRM.qr().apply { decompose(origin.ddrm.copy()) }
}
override val q: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(qr.getQ(null, false))) }
override val r: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(qr.getR(null, false))) }
},
object : CholeskyDecompositionFeature<Double> {
override val l: FeaturedMatrix<Double> by lazy {
override val q: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(qr.getQ(null, false))) }
override val r: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(qr.getR(null, false))) }
}
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Double> {
override val l: Matrix<Double> by lazy {
val cholesky =
DecompositionFactory_DDRM.chol(rowNum, true).apply { decompose(origin.ddrm.copy()) }
EjmlMatrix(SimpleMatrix(cholesky.getT(null)), setOf(LFeature))
EjmlMatrix(SimpleMatrix(cholesky.getT(null))) + LFeature
}
},
object : LupDecompositionFeature<Double> {
}
LupDecompositionFeature::class -> object : LupDecompositionFeature<Double> {
private val lup by lazy {
DecompositionFactory_DDRM.lu(origin.numRows(), origin.numCols()).apply { decompose(origin.ddrm.copy()) }
}
override val l: FeaturedMatrix<Double> by lazy {
EjmlMatrix(SimpleMatrix(lup.getLower(null)), setOf(LFeature))
override val l: Matrix<Double> by lazy {
EjmlMatrix(SimpleMatrix(lup.getLower(null))) + LFeature
}
override val u: FeaturedMatrix<Double> by lazy {
EjmlMatrix(SimpleMatrix(lup.getUpper(null)), setOf(UFeature))
override val u: Matrix<Double> by lazy {
EjmlMatrix(SimpleMatrix(lup.getUpper(null))) + UFeature
}
override val p: FeaturedMatrix<Double> by lazy { EjmlMatrix(SimpleMatrix(lup.getRowPivot(null))) }
},
) union features
public override fun suggestFeature(vararg features: MatrixFeature): EjmlMatrix =
EjmlMatrix(origin, this.features + features)
override val p: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(lup.getRowPivot(null))) }
}
else -> null
}?.let{type.cast(it)}
public override operator fun get(i: Int, j: Int): Double = origin[i, j]
public override fun equals(other: Any?): Boolean {
if (other is EjmlMatrix) return origin.isIdentical(other.origin, 0.0)
return NDStructure.equals(this, other as? NDStructure<*> ?: return false)
}
public override fun hashCode(): Int = origin.hashCode()
public override fun toString(): String = "EjmlMatrix($origin)"
}

View File

@ -2,23 +2,29 @@ package kscience.kmath.ejml
import kscience.kmath.linear.InverseMatrixFeature
import kscience.kmath.linear.MatrixContext
import kscience.kmath.linear.MatrixWrapper
import kscience.kmath.linear.Point
import kscience.kmath.linear.getFeature
import kscience.kmath.misc.UnstableKMathAPI
import kscience.kmath.structures.Matrix
import kscience.kmath.structures.getFeature
import org.ejml.simple.SimpleMatrix
/**
* Converts this matrix to EJML one.
*/
public fun Matrix<Double>.toEjml(): EjmlMatrix =
if (this is EjmlMatrix) this else EjmlMatrixContext.produce(rowNum, colNum) { i, j -> get(i, j) }
/**
* Represents context of basic operations operating with [EjmlMatrix].
*
* @author Iaroslav Postovalov
*/
public object EjmlMatrixContext : MatrixContext<Double, EjmlMatrix> {
/**
* Converts this matrix to EJML one.
*/
public fun Matrix<Double>.toEjml(): EjmlMatrix = when {
this is EjmlMatrix -> this
this is MatrixWrapper && matrix is EjmlMatrix -> matrix as EjmlMatrix
else -> produce(rowNum, colNum) { i, j -> get(i, j) }
}
/**
* Converts this vector to EJML one.
*/
@ -80,6 +86,7 @@ public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Matrix<Double>): EjmlMa
public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Point<Double>): EjmlVector =
EjmlVector(a.toEjml().origin.solve(b.toEjml().origin))
@OptIn(UnstableKMathAPI::class)
public fun EjmlMatrix.inverted(): EjmlMatrix = getFeature<InverseMatrixFeature<Double>>()!!.inverse as EjmlMatrix
public fun EjmlMatrixContext.inverse(matrix: Matrix<Double>): Matrix<Double> = matrix.toEjml().inverted()

View File

@ -3,7 +3,8 @@ package kscience.kmath.ejml
import kscience.kmath.linear.DeterminantFeature
import kscience.kmath.linear.LupDecompositionFeature
import kscience.kmath.linear.MatrixFeature
import kscience.kmath.linear.getFeature
import kscience.kmath.linear.plus
import kscience.kmath.structures.getFeature
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
import org.ejml.simple.SimpleMatrix
import kotlin.random.Random
@ -58,7 +59,7 @@ internal class EjmlMatrixTest {
@Test
fun suggestFeature() {
assertNotNull(EjmlMatrix(randomMatrix).suggestFeature(SomeFeature).getFeature<SomeFeature>())
assertNotNull((EjmlMatrix(randomMatrix) + SomeFeature).getFeature<SomeFeature>())
}
@Test

View File

@ -1,8 +1,12 @@
package kscience.kmath.real
import kscience.kmath.linear.*
import kscience.kmath.linear.MatrixContext
import kscience.kmath.linear.VirtualMatrix
import kscience.kmath.linear.inverseWithLUP
import kscience.kmath.linear.real
import kscience.kmath.misc.UnstableKMathAPI
import kscience.kmath.structures.Buffer
import kscience.kmath.structures.Matrix
import kscience.kmath.structures.RealBuffer
import kscience.kmath.structures.asIterable
import kotlin.math.pow
@ -19,7 +23,7 @@ import kotlin.math.pow
* Functions that help create a real (Double) matrix
*/
public typealias RealMatrix = FeaturedMatrix<Double>
public typealias RealMatrix = Matrix<Double>
public fun realMatrix(rowNum: Int, colNum: Int, initializer: (i: Int, j: Int) -> Double): RealMatrix =
MatrixContext.real.produce(rowNum, colNum, initializer)

View File

@ -1,6 +1,5 @@
package kaceince.kmath.real
import kscience.kmath.linear.VirtualMatrix
import kscience.kmath.linear.build
import kscience.kmath.real.*
import kscience.kmath.structures.Matrix
@ -42,7 +41,7 @@ internal class RealMatrixTest {
1.0, 0.0, 0.0,
0.0, 1.0, 2.0
)
assertEquals(VirtualMatrix.wrap(matrix2), matrix1.repeatStackVertical(3))
assertEquals(matrix2, matrix1.repeatStackVertical(3))
}
@Test