Buffer streaming next iteration

This commit is contained in:
Alexander Nozik 2019-02-17 15:38:34 +03:00
parent 9c416e185b
commit 472dfd7b88
3 changed files with 85 additions and 187 deletions

View File

@ -2,6 +2,9 @@ package scientifik.kmath.transform
import org.apache.commons.math3.transform.* import org.apache.commons.math3.transform.*
import scientifik.kmath.operations.Complex import scientifik.kmath.operations.Complex
import scientifik.kmath.sequential.Processor
import scientifik.kmath.sequential.Producer
import scientifik.kmath.sequential.map
import scientifik.kmath.structures.* import scientifik.kmath.structures.*
@ -60,4 +63,24 @@ object Transformations {
): BufferTransform<Double, Double> = { ): BufferTransform<Double, Double> = {
FastHadamardTransformer().transform(it.asArray(), direction).asBuffer() FastHadamardTransformer().transform(it.asArray(), direction).asBuffer()
} }
}
/**
* Process given [Producer] with commons-math fft transformation
*/
fun Producer<Buffer<Complex>>.FFT(
normalization: DftNormalization = DftNormalization.STANDARD,
direction: TransformType = TransformType.FORWARD
): Processor<Buffer<Complex>, Buffer<Complex>> {
val transform = Transformations.fourier(normalization, direction)
return map { transform(it) }
}
@JvmName("realFFT")
fun Producer<Buffer<Double>>.FFT(
normalization: DftNormalization = DftNormalization.STANDARD,
direction: TransformType = TransformType.FORWARD
): Processor<Buffer<Double>, Buffer<Complex>> {
val transform = Transformations.realFourier(normalization, direction)
return map { transform(it) }
} }

View File

@ -1,178 +1,78 @@
package scientifik.kmath.sequential package scientifik.kmath.sequential
import kotlinx.atomicfu.atomic
import kotlinx.coroutines.CoroutineScope import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.GlobalScope import kotlinx.coroutines.channels.Channel
import kotlinx.coroutines.channels.* import kotlinx.coroutines.channels.produce
import kotlinx.coroutines.isActive import kotlinx.coroutines.isActive
import kotlinx.coroutines.launch import kotlinx.coroutines.sync.Mutex
import kotlinx.coroutines.sync.withLock
import scientifik.kmath.structures.Buffer import scientifik.kmath.structures.Buffer
import scientifik.kmath.structures.asBuffer import scientifik.kmath.structures.BufferFactory
import scientifik.kmath.structures.asSequence
fun <T> Buffer<T>.asChannel(scope: CoroutineScope): ReceiveChannel<T> = scope.produce {
for (i in (0 until size)) {
send(get(i))
}
}
interface BufferProducer<T> : Producer<T> {
suspend fun receiveBuffer(): Buffer<T>
}
interface BufferConsumer<T> : Consumer<T> {
suspend fun sendBuffer(buffer: Buffer<T>)
}
abstract class AbstractBufferProducer<T>(scope: CoroutineScope) : AbstractProducer<T>(scope), BufferProducer<T> {
override fun connectOutput(consumer: Consumer<T>) {
if (consumer is BufferConsumer) {
launch {
while (this.isActive) {
consumer.sendBuffer(receiveBuffer())
}
}
} else {
super.connectOutput(consumer)
}
}
}
abstract class AbstractBufferConsumer<T>(scope: CoroutineScope) : AbstractConsumer<T>(scope), BufferConsumer<T> {
override fun connectInput(producer: Producer<T>) {
if (producer is BufferProducer) {
launch {
while (isActive) {
sendBuffer(producer.receiveBuffer())
}
}
} else {
super.connectInput(producer)
}
}
}
abstract class AbstractBufferProcessor<T, R>(scope: CoroutineScope) :
AbstractProcessor<T, R>(scope),
BufferProducer<R>,
BufferConsumer<T> {
override fun connectOutput(consumer: Consumer<R>) {
if (consumer is BufferConsumer) {
launch {
while (this.isActive) {
consumer.sendBuffer(receiveBuffer())
}
}
} else {
super.connectOutput(consumer)
}
}
override fun connectInput(producer: Producer<T>) {
if (producer is BufferProducer) {
launch {
while (isActive) {
sendBuffer(producer.receiveBuffer())
}
}
} else {
super.connectInput(producer)
}
}
}
/** /**
* The basic generic buffer producer supporting both arrays and element-by-element simultaneously * A processor that collects incoming elements into fixed size buffers
*/ */
class BasicBufferProducer<T>( class JoinProcessor<T>(
scope: CoroutineScope, scope: CoroutineScope,
capacity: Int = Channel.UNLIMITED, bufferSize: Int,
block: suspend ProducerScope<Buffer<T>>.() -> Unit bufferFactory: BufferFactory<T> = Buffer.Companion::boxing
) : AbstractBufferProducer<T>(scope) { ) : AbstractProcessor<T, Buffer<T>>(scope) {
private val input = Channel<T>(bufferSize)
private val currentArray = atomic<ReceiveChannel<T>?>(null) private val output = produce(coroutineContext) {
private val channel: ReceiveChannel<Buffer<T>> by lazy { produce(capacity = capacity, block = block) } val list = ArrayList<T>(bufferSize)
private val cachingChannel by lazy { while (isActive) {
channel.map { list.clear()
it.also { buffer -> currentArray.lazySet(buffer.asChannel(this)) } repeat(bufferSize) {
} list.add(input.receive())
}
private fun DoubleArray.asChannel() = produce {
for (value in this@asChannel) {
send(value)
}
}
override suspend fun receiveBuffer(): Buffer<T> = cachingChannel.receive()
override suspend fun receive(): T = (currentArray.value ?: cachingChannel.receive().asChannel(this)).receive()
}
class BufferReducer<T, S>(
scope: CoroutineScope,
initialState: S,
val fold: suspend (S, Buffer<T>) -> S
) : AbstractBufferConsumer<T>(scope) {
var state: S = initialState
private set
override suspend fun sendBuffer(buffer: Buffer<T>) {
state = fold(state, buffer)
}
override suspend fun send(value: T) = sendBuffer(arrayOf(value).asBuffer())
}
/**
* Convert a [Buffer] to single element producer, splitting it in chunks if necessary
*/
fun <T> Buffer<T>.produce(scope: CoroutineScope = GlobalScope, chunkSize: Int = Int.MAX_VALUE) =
if (size < chunkSize) {
BasicBufferProducer<T>(scope) { send(this@produce) }
} else {
BasicBufferProducer<T>(scope) {
//TODO optimize this!
asSequence().chunked(chunkSize).forEach {
send(it.asBuffer())
} }
val buffer = bufferFactory(bufferSize) { list[it] }
send(buffer)
} }
} }
override suspend fun receive(): Buffer<T> = output.receive()
/**
* A buffer processor that works with buffers but could accumulate at lest [accumulate] elements from single input before processing.
*
* This class combines functions from [ChunkProcessor] and single buffer processor
*/
class AccumulatingBufferProcessor<T, R>(
scope: CoroutineScope,
val accumulate: Int,
val process: suspend (Buffer<T>) -> Buffer<R>
) :
AbstractBufferProcessor<T, R>(scope) {
private val inputChannel = Channel<Buffer<T>>()
private val outputChannel = inputChannel.map { process(it) }
override suspend fun receive(): R {
TODO("not implemented") //To change body of created functions use File | Settings | File Templates.
}
override suspend fun send(value: T) { override suspend fun send(value: T) {
TODO("not implemented") //To change body of created functions use File | Settings | File Templates. input.send(value)
}
}
/**
* A processor that splits incoming buffers into individual elements
*/
class SplitProcessor<T>(scope: CoroutineScope) : AbstractProcessor<Buffer<T>, T>(scope) {
private val input = Channel<Buffer<T>>()
private val mutex = Mutex()
private var currentBuffer: Buffer<T>? = null
private var pos = 0
override suspend fun receive(): T {
mutex.withLock {
while (currentBuffer == null || pos == currentBuffer!!.size) {
currentBuffer = input.receive()
pos = 0
}
return currentBuffer!![pos].also { pos++ }
}
} }
override suspend fun receiveBuffer(): Buffer<R> = outputChannel.receive() override suspend fun send(value: Buffer<T>) {
input.send(value)
override suspend fun sendBuffer(buffer: Buffer<T>) {
inputChannel.send(buffer)
} }
}
fun <T> Producer<T>.chunked(chunkSize: Int, bufferFactory: BufferFactory<T>) =
JoinProcessor<T>(this, chunkSize, bufferFactory).also { connect(it) }
inline fun <reified T : Any> Producer<T>.chunked(chunkSize: Int) =
JoinProcessor<T>(this, chunkSize, Buffer.Companion::auto).also { connect(it) }
}

View File

@ -170,33 +170,6 @@ class PipeProcessor<T, R>(
} }
} }
/**
* A [Processor] that splits the input in fixed chunked size and transforms each chunked
*/
class ChunkProcessor<T, R>(
scope: CoroutineScope,
chunkSize: Int,
process: suspend (List<T>) -> R
) : AbstractProcessor<T, R>(scope) {
private val input = Channel<T>(chunkSize)
private val chunked = produce<List<T>>(coroutineContext) {
val list = ArrayList<T>(chunkSize)
repeat(chunkSize) {
list.add(input.receive())
}
send(list)
}
private val output: ReceiveChannel<R> = chunked.map(coroutineContext, process)
override suspend fun receive(): R = output.receive()
override suspend fun send(value: T) {
input.send(value)
}
}
/** /**
* A moving window [Processor] with circular buffer * A moving window [Processor] with circular buffer
@ -276,6 +249,9 @@ fun <T> ReceiveChannel<T>.produce(scope: CoroutineScope = GlobalScope) =
fun <T, C : Consumer<T>> Producer<T>.consumer(consumerFactory: () -> C): C = fun <T, C : Consumer<T>> Producer<T>.consumer(consumerFactory: () -> C): C =
consumerFactory().also { connect(it) } consumerFactory().also { connect(it) }
fun <T, R> Producer<T>.map(capacity: Int = Channel.RENDEZVOUS, process: suspend (T) -> R) =
PipeProcessor(this, capacity, process).also { connect(it) }
/** /**
* Create a reducer and connect this producer to reducer * Create a reducer and connect this producer to reducer
*/ */
@ -294,7 +270,6 @@ fun <T, R, P : Processor<T, R>> Producer<T>.process(processorBuilder: () -> P):
fun <T, R> Producer<T>.process(capacity: Int = Channel.RENDEZVOUS, process: suspend (T) -> R) = fun <T, R> Producer<T>.process(capacity: Int = Channel.RENDEZVOUS, process: suspend (T) -> R) =
PipeProcessor<T, R>(this, capacity, process).also { connect(it) } PipeProcessor<T, R>(this, capacity, process).also { connect(it) }
fun <T, R> Producer<T>.chunked(chunkSize: Int, process: suspend (List<T>) -> R) =
ChunkProcessor(this, chunkSize, process).also { connect(it) }
fun <T> Producer<T>.chunked(chunkSize: Int) = chunked(chunkSize) { it } fun <T, R> Producer<T>.windowed(window: Int, process: suspend (Buffer<T?>) -> R) =
WindowedProcessor(this, window, process).also { connect(it) }